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This paper deals with the diamagnetic susceptibility of a
degenerate gas of Bloch electrons in a cubic lattice. It is shown
that the effective Hamiltonian of such electrons in a magnetic
field is rigorously a particular power series in P of the form
H= E(P), where P= (h/i)V (e—/c)A and E(hk) is the energy of
the band in question. (Because of the noncommutativity of the
components of P, E(hk) does not determine E(P) uniquely.
E(P) is not a symmetrized power series in the components of P.)
By expanding E(P) in powers of P, one is led to a series expansion
for the diamagnetic susceptibility of the form

e'kp m—+c2kp'+c4kp4+ ~ ~ ~

12m-'mc' m*

where ho=(3n'n)& and n is the number of electrons per unit
volume. (For a spherical band, kp is the wave number on the
surface of the Fermi sea.) The 6rst term of this series is the
well-known Landau-Peierls expression, the higher terms are
corrections to it. In the tight binding approximation the second
term becomes dominant and reduces correctly to the atomic
diamagnetism. We have calculated the erst two terms of this
series for Li and Na. For Na the second term was found to be very
small; for Li it is more than half as large as the 6rst and of op-
posite sign. Our numerical results are XL;= —0.074)&10 P and
XN, = —0.260(10 ' cgs volume units.

where kp is the wave number at the top of the Fermi
surface. The next important advance was made by
Peierls' who extended Landau's theory to the case of
tightly bound Bloch electrons. He obtained an expres-
sion for the susceptibility consisting of the following
three terms

x=xt+xs+xs, (1.2)

where X~ is the susceptibility of an isolated metal atom
multiplied by the number of atoms per unit volume;
X2 is a term which has no simple physical interpretation
and whose magnitude and even sign are uncertain;
and x3 is given by

e' p O'E O'8

84m' 'cd'~ ctkts itkss

where E(k) is the energy of the band in question and
the integration extends over the Fermi surface. This
last term is a direct generalization of Landau's result

*Supported in part by the OfFice of Naval Research.
' L. Landau, Z. Physik 64, 629 (1930).' R. Peierls, Z. Physik 80, 'f63 (1933).
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1. INTRODUCTION

HE quantum theory of the diamagnetism of
conduction electrons has been discussed from

diferent points of view by a number of authors. Free
electrons were treated in a classic paper by Landau'
who showed that for a degenerate electron gas the
diamagnetic susceptibility per unit volume is

8kp
X—

12/saic

(1.1). For a simple band with the effective mass trt*, it
reduces to the Landau-Peierls expression

e'kp
XLP

127PSS C

(1.4)

A. H. Wilson, Proc. Cambridge Phil. Soc. $9, 292 (1933).
4 E. N. Adams II, Phys. Rev. 89, 633 (1953).

For simple metals the tight-binding approximation
and hence the theory of Peierls are not appropriate.

More recently Wilson' has treated the diamagnetism
of Bloch electrons without recourse to the tight binding
approximation by studying the density matrix as a
function of the magnetic Geld. He obtained a number
of contributions, among them Peierls' x,, Eq. (1.3), a
term Xl which in the tight binding limit reduces to the
atomic diamagnetism (Peierls' xt) as well as other
terms some of which are not explicitly evaluated.
Wilson states that he expects certain of these other
terms to be of the same order of magnitude as Xl'.
With some reservations Wilson believed all terms other
than X3 to be of minor importance. This elegant pro-
cedure can lead in principle to an exact evaluation of
the diamagnetism of Bloch electrons. However, because
of its complexity an application to real metals appears
very dificult.

Adams' has also independently derived an expression
for the diamagnetic susceptibility which, however, like
Wilson s is very dificult to evaluate. Adams criticized
the usual procedure of taking X3 to be the dominant
contribution to the diamagnetic susceptibility and
showed that in many important cases there are other
contributions of comparable magnitude.

Apart from these theoretical considerations new
interest in the diamagnetic susceptibility has been
aroused by recent experimental developments. During
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kp'= 3x'rS. (1.7)

(For a spherical band, ks is the wave number on the
surface of the Fermi sea. ) For both Li and Na the
6rst two terms of this series give an excellent approxi-
mation. In the present paper we extend this approach
to problems involving an external magnetic field by
means of the formalism of Luttinger and Kohn' which
yields a similar series for the diamagnetic susceptibility'.

e'kp ( nz
+csks'+cckp'+ . ). (1.8)

12m mes (sr'*

The erst term in this series is just the Landau-
Peierls expression, (1.4). The coefficients of the higher
order terms can be expressed in two ways: Either in
terms of energy differences and momentum matrix
elements between the entire set of Bloch waves at
k=O; or in terms of simple integrals involving the
functions which occur in the power series expansion of
the Bloch waves of the band in question, say the mth
near k=O:

P s(r) =e'"'t N„(r)+k u„(r)
+k kdu„nd(r)+ $. (1.9)

~ Schumacher, Carver, and Slichter, Phys. Rev. 95, 1089
(1954); R. T. Schumacher and C. P. Slichter, Phys. Rev. 101,
58 (1956).' J. Bardeen, J. Chem. Phys. 6, 367 (1938).

~ R. A. Silverman and W. Kohn, Phys. Rev. 80, 912 (1950);
R. A. Silverman, Phys. Rev. 85, 227 (1952).

J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
'From here on we shall, for simplicity, talk about a non-

degenerate band with minimum at %=0, in a cubic crystal.

the past two years Slichter and his co-workers' have
for the first time succeeded in measuring separately the
spin susceptibilities of two metals, Li and Na. As the
total susceptibility is generally regarded as a sum of
three terms,

(cond)+X . lcond)+X . (corel (1 3)

(where "cond" refers to conduction electrons), a
combination of Slichter's results with measurements of
x~,~ and estimates of the core diamagnetism, xq;,(""&,
yields experimental estimates of the diamagnetism of
the conduction electrons.

It will be clear from the foregoing remarks that there
remained a need for a theory of diamagnetism which
could actually be applied to some simple metals. The
present paper represents an attempt in this direction.
It is closely related in spirit to the method of Bardeen, '
extended by Silverman and Kohn, ' for calculating the
cohesive energies of the alkali-metals. These authors
expand the energy as a power series in k, and from
this expansion obtain the total energy, per unit volume,
of the conduction electrons in the form

Ec,c,i——rs(Eo+Askos+A4ko'+ ' ' ); (1 6)

here n is the number of conduction electrons per unit
volume and

7i'(Ako) '/ts'(i), E)'«1, (1.10)

where p is a mean momentum matrix element between
Bloch states at k=O and hE is a mean energy denomi-
nator between such states. This condition is written
down merely to indicate the general circumstances
under which (1.8) may be expected to be useful.

We have obtained explicit expressions for the coeK-
cient cs in (1.8) and evaluated it for both Li and Na.
The results of taking the first two terms in (1.8) are
as follows:

Li: y = (0.37xi,p) = —0.074

&10 ' cgs volume units,
(1.11)Na: x= (1.02xz,p)= —0.26

/10 ' cgs volume units.

In the case of I.i the ratio of the second to the 6rst
term is 0.6 so that higher order terms may well be
important. However, our calculation shows clearly
that the Landau-Peierls result is too large. In the case

»This statement holds equally well for ellipsoidal energy
surfaces.

"However, when evaluated for the actual lattice parameter in
Li and Na it is very much smaller than Peierls' g&.

We note at once, from (1.8), that in cases where the
band is suKciently empty (ks—+0), the Landau-Peierls
expression xi,p, Eq. (1.4), becomes an exact expression
for the total diamagnetic susceptibility. This fact does
not depend on m*/sos being close to 1. The higher order
terms in (1.8) contain, first of all, corrections which
come from the more complete Peierls expression (1.3)
when not only the quadratic terms of E(hk) are taken
into account. But they also contain other contributions
which in general are of the same order of magnitude
(in Li they are even much larger). Thus the Peierls
expression (1.3) gives the correct susceptibility for
sufficiently few electrons but in applying it, there is no
point to include in E(hk) terms higher than quadratic
in k"

In the limit of infinite lattice parameter (tight
binding), m/m~ vanishes exponentially while the c;
approach certain 6nite limiting values. Since kp—&0,

like the reciprocal of the interatomic spacing, the second
term in (1.8) alone survives, and we have shown that
it reduces correctly to the ordinary atomic diamagnet-
ism, i.e., to Peierls' g~."

We see then that the first two terms of (1.8) give the
exact result in the following three limiting cases:

(1) number of conduction electrons —+0;
(2) free electrons;
(3) tightly bound electrons.

When one is not near the tight-bin. ding limit (where
special cancellations take place due to atomic sum
rules) the rapid convergence of (1.8) depends on the
following condition:
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of Na, the second term is very smalP' and our result
should represent a reliable estimate. "

These theoretical results may be compared with the
(indirectly obtained) experimental values given in
reference 5:
Li: X, o= (—0.14&0.15)

X10 ' cgs volume units,
(1.12)

Na: x,„n= (—0.07&0.11)
X10 ' cgs volume units.

(Reference 5 gives 7t= —0.18 for Li due to an arithmetic
error. ) In both cases there are indications of a discrep-

ancy between theory and experiment. More accurate
experimental data would be very desirable.

The details of our calculation are described in the
following sections.

2. ELIMINATION OF INTERBAND MATRIX
ELEMENTS

The Hamiltonian of a Bloch electron in a magnetic
field can be represented by a matrix of the form

(sttk
i
H

i
stk'), (2 1)

where k is the wave vector running over the first
Brillouin zone and m and n are quantum numbers
labeling diIIferent bands. Our procedure for calculating
the susceptibility consists of two steps:

(1) The elimination of interband matrix elements,
that is, the diagonalization of (2.1) with respect to the
band indices m and e by means of an appropriate
unitary transformation:

( krt~ teHee
~

stk') = (k)H
~

k')fI . (2.2)

(2) With the transformed Hamiltonian (k~H ~k'),
the susceptibility of the electrons in the mth band can
then be calculated using the trace method of Peierls. '

respectively. The usual summation convention is em-
ployed. I' is of course the velocity operator. The
operators x and I'" satisfy the following commutation
relations

Lx Pe]= tb ~

and if the magnetic field K is in the x3 direction

(2.5)

I-k(r) =st e(r)e'k', (2 7)

where the tt e are the set of all Bloch waves with k= 0.
The I ~ form a complete orthogonal set of functions
which are normalized as follows:

X„k*x„kdr =b„„b(k—k'),f
(2.8)

where the integration extends over all space. This
corresponds to the following normalization of the n 0.

I~0 +~odl'=
(27r)'

(2.9)

where 0 is the volume of one crystal cell.
Before expressing the Hamiltonian in this represen-

tation let us brieQy discuss the matrix elements of the
relevant operators. We first consider x which enters
into the Hamiltonian via the vector potential 2 .

(ntk~x ~mk')= tt„e*e '"'x u oe"'dr

$P' P'j= ( / )X,, [P' P'j= P",P'3=0. (2.6)

We express the Hamiltonian (2.3) in the represen-
tation of Luttinger and Kohn which is convenient for
problems involving Bloch electrons in external electro-
magnetic fields. The basis functions of this represen-
tation are

This section is concerned with step 1, the next section
with step 2. From here on we shall generally use atomic
units, that is e=1, m=1, 5=1, but in our final results
we shall restore these constants.

The Hamiltonian of a Bloch electron in an external
magnetic field is given by

8
See—ik rtt eik' ~ rdr

iBk~

(2.10)

where

H=-isP~P +V(r),

P =p (1/c)A, —

(2.3)

(2.4)

p is the periodic potential, and p~ and A are the
0, components of the momentum and vector potential,

We note that the k-dependent part is identical with
the matrix element of x in a plane wave representation.
This mak. es it convenient to introduce the following
notation: Let Q be an operator which is a function of
p and x . We then define

is This is dne to the smallness of P, Eq. (1.10). The Bloch
function no in the 3s-band at k=o is nearly everywhere almost a
constant so that (1/t)vie=0 This is also the r. eason why for
Na, m*=m.

"Here, as elsewhere in this paper, we neglect the eRects of
electron-electron interaction, which are believed to be small.
See D. Pines, in Solid State Physics (Academic Press, Inc. , New
York, 1955), Vol. 1, p. 424. Also, H. Konezawa, Progr. Theoret.
Phys. 15, 273 (1956).

1
(k

~ Q ~

k') =— I e
—'k'ge'k "dr

(2w)s~

&quation (2.10) can now be rewritten as

(mk~x ~stk')=8 „(k~x ~k').

(2.11)

(2.12)
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Similarly the matrix elements of p and P are

(mk[p Ink')=l„„k 8(k—k')yp „8(k—k')

=5 „(k[p Ik')+p.„„s(k—k'), (2.13)

elimination of the o8™diagonal terms to higher and
higher orders of (k I

P
I
k') by successive unitary

transformations.
Let us write

and

(r)sk[P [teak')=h .(k[P Ik')+p .8(k—k'), (2.14)

where the p „are the matrix elements of the mo-
mentum operators between Bloch waves at k=O:

H =Hp+Hi+Hs,

(mk
I
H p I

ask') =8 „e 5 (k—k'),

(mk[H)INk')=p (k[P Ik'),

(~k [H, I
~k') = -;a..a-s(k

I
P-P~ [1').

(2.22)

(2.23)

(2')s
I

1 c)

mn= Imp Nnpdl ~

n ~„1( i aX.
(2 15) The first transformation is equivalent to that of

reference 8. We de6ne

H&') =—exp[ —So)]H exp[S'"], (2.24)We can now evaluate the kinetic energy, —,'P P, in
our representation and choose S&" so as to remove the off-diagonal part

of H, namely Hi, to first order. '4 Clearly S") is deter-
mined by the equation

(2.25)

for o& „=0, (2.26)=0

s (mk
I
P"P

I
ask') = -,'P;, ), (mk [P I

ik") (ik"
I
P

I
ask')

=-',a„„(k
I
P-P-[1')+p-„„(k[P-Ik')

+-'g .p,.p,.„$(k—k') (2 16) [Ho tS ]+Hi
1 1 /

where the symbol P denotes both summation over
repeated band indices and integration over repeated
wave vectors in the first Brillouin zone. In the last (mk[S&')I)sk')= — (k[P Ik') for o& „WO

step of (2.16) we have used the fact that

k" over zone
(1 IP-Ik")(k" IP-Ik')

= P (k[P-Ik")(k"IP-[1')
a11 k"

= (k I

P-P- [1'). (2.17)

In other words, matrix multiplication in k space is the
same as in the free electron case. For although k" runs

only over the first Brillouin zone, the 5-function char-
acter of (k[P~[k') [see Eqs. (2.4), (2.10), and (2.13)]
allows one to extend the integration over all k space.

The potential energy has a representation of the form

(mk
I
V(r) I

r)k') = V „8(k—k'). (2.18)

where co „—=e —e„. The transformed Hamiltonian is
now given by

H(s) =He+. i[[He So)] So)]

+[Hi,S"'7+Hs+ (2.27)

where the omitted terms are of the third and higher
orders in P . H&2) contains terms diagonal in the band
index (intraband) of orders 0, 2, 4, etc. , and off-diagonal
(interband) terms of orders 2, 3, 4, etc.

The next step is to remove the interband matrix
elements of order 2 by a further unitary transformation
generated by S&@, given by

Combining (2.16) with (2.18), we obtain for the total
Hamiltonian:

(ask
I
H

I
r)k') = -', 8 .(k

I
P P

I
k')+ p (k I

P
I

k')

+ (-,'P, p „;p;„+V )8(k—k'). (2.19)

Now setting k and A equal to zero, we see that

(mk[s&') Ink')

=0

(1 iq
Ip -p".(kIP P'Ik')

for co „NO

for co„„=0. (2.28)

sZ'p 'p '+V (2.20)

where e is the energy of the mth band at k=0, so that
we have Anally

(rnk
I
H

I
sk') =B„„[e„b(k—k')+ s B p (k I

P P~
I
k') ]

+p- .(k[P-[1'). (2.21)

This expression is valid in any gauge and reduces to
Eq. (II.45) of Luttinger and Kohns with their particular
choice of gauge.

The Hamiltonian (2.21) has terms which are diagonal
in the band indices and terms which are off-diagonal.
The procedure of Luttinger and Kohn consists of the

The diagonal matrix elements of the new Hamiltonian,
B&4), are the same as those of H&2) to orders 0 and 2 but
different in higher orders. H&4& contains interband
elements of orders 3, 4, etc.

This procedure may be continued so that after the
nth transformation the intraband part of II(2"', up to
order 2e inclusive, is not changed by further transfor-
mations, and its interband parts are of orders r)+1 and
higher. In this way one obtains a series expansion of

'4 The superscript (1) on S&'& indicates that it is of 6rst order
in I'~; the superscript (2) in H&') indicates that its diagonal terms
coincide with those of the completely diagonalized Hamiltonian
up to second order in E inclusive.
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H in even powers of P:
(kiB ik') =e„S(1—k')

+p E o1os" «(kipo1pos p tik').
i=2

In the absence of a magnetic 6eld,

(ki p-ik') =k.~(k—k'),

so that, by (2.29),

(k[H ik')

(2.30)

The coeKcients E & 2'" ~ can also be expressed in
terms of the functions I,I, I &, . which occur
in the expansion of the periodic part of the Bloch-wave
1P & in powers of k [see Eq. (1.9)7. This expansion
can be generated by the unitary transformation es:

P„k——esx 2
——(expSi'i expSisi )x 2

= (1+Si'&+-,2(Soi)'+Si'&+ )x„k. (2.35)

Using the expressions (2.26) and (2.28) for S&" and S&"
in the absence of a magnetic Geld, one obtains an
expansion of the form (1.9), with

e +p E„& 2''' tkaikn2'''hat 8(k k). (2.31)
l=2

p mip ijp jkp km

E ~Pvs= P P
jism i,k &m'&m~mI

1
2

m$ sm P mkP km

The factor in parentheses must be just the expansion
of the energy of the 212th band, E (k), in powers of k.
It should, however, be noted that a knowledge of the
power-series expansion of E (k) does not uniquely
determine the coeS.cients E ' '" ' but only certain
linear combinations of these. Thus, for example, the
coeflicient in E (k) of ki'k2' gives only the combination

1122+E 2211+E 1212+E 2121+E 1221+E 2112

In the presence of a magnetic Geld, the Hamiltonian
(2.29) can then itt tt certttiN sertse be regarded as

(k~H ~k')=(kiE„(P)ik'), (2.32)

where E (P) corresponds to some particular set of
expansion coefficients E ' '" ' of some E (k). Which
set it is cannot be ascertained from a knowledge of
E (k) alone, and difFerent sets will in general lead to
diferent Hamiltonians because of the noncommuta-
tivity of the P . The only way we know of determining
the correct set is by the successive unitary transfor-
mations discussed above or by some other equivalent
perturbation procedure. It might be remarked that the
correct set is not the completely symmetrical one in
which all terms such as E '"', E "",etc. , are equal.

We have used the procedure described in this section
to diagonalize the Hamiltonian up to fourth order in
P, inclusive, with the following results:

E '=2~.s+Z (2.33)
mi

+m= +mO)

p jtN
uroo=Q ujo

+my (2.36)

ni lm m.
u„ t'= Q P u.o

—-', u o Q
or-"m i toimgnm ' (toim)

By means of (2.36), Eqs. (2.33) and (2.34) can be
rewritten as follows:

( 1 8
E "tt= 128.tt+i u„-,— u

i etxt'
(2.33')

1 it
E„-t =] .&-,— u„'

i'2 aX~ ")
( 1 8

Imp +m Nm elm
E i ax

', $ (u„—-,u„~)t'1 &' 2(u„—,o„u')8»

+(u„',u &)5 Pj. (2.34')

One advantage of this reformulation is the following.
In the spherical approximation, "the functions I, I
n ~, are obtained as solutions of differential
equations so that by using (2.33') and (2.34') one
circumvents the infinite sums over other bands. f

3. DIAMAGNETIC SUSCEPTIBILITY

To evaluate the diamagnetic susceptibility it is
convenient to write the Hamiltonian as a sum of two
terms, a completely symmetrized Hamiltonian and a
remainder. (To simplify our notation we shall for the
rest of this section suppress the common band index m

P miP im P mkP kto

2
2m~

1
(p p' ~"' '(-;)

-2p.-p"-» +p - p"-~') (2.34)

'~That is the familiar Wigner-Seitz approximation in which
the polyhedral cell is approximated by a sphere.

$ Pote added trt Proof The ri ot need. e—d in (2.34'l is defined
in (2.36). In general it consists of a part symmetric in 0, and P,
as well as a small antisymmetric part involving high-order
spherical harmonics (L ~&4). A knowledge of the Bloch wave (1.10)
evidently yields only the symmetric part. However, in the
spherical approximation, which is used in Sec. 4, I is entirely
symmetrical {l=0,2) and hence can be completely determined
from the wave function (1.10).We are indebted to Dr. C. Herring
for drawing out attention to this matter.
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and take our zero of energy at the bottom of the mth
band. )

(k)B)k') =P 6.1.2 'l(1 ~P.1P" P.l [k')
l=2

+( ~Z(k). (3.1)

Here 8 ' '"~' is the average of all E~'~'"~~ with a
given set of superscripts; for example

h1122 f1212—.. . 1 (+1122+E2211++1212

++121++1221+E2112) (3 2)

The total diamagnetic susceptibility per unit volume
is obtained by combining (3.4) and (3.7). Recalling
that 8"= 1/(22)2*) and writing

h(4) —(3/5) gllll+ (6/5) h1122 (3 8)

for the coe%cient of the 6rst fourth-order term in
E(k), Eq. (3.6), we obtain

kp 1 (28
h(&)+8 (/1221 —/1122)

12x2c2 m* I 3

gllll —Ellll

The 8's are completely determined by the expansion of
the energy E(k) in powers of k . [See the discussion
following Eq. (2.31).$

Starting from Eqs. (2.31) and (2.34), and using the
commutation relations (2.6) for the P, we find that
to fourth order in I' the remainder is given by

(k
~

g
~

k') = (1/c2) $+1221—@1)22jg (k—k')gP (3 3)

+

in atomic units. In arbitrary units, this becomes

e'kp 222 t'28
+

~

—h«)+8(Z —Z
12lmc2 m* ( 3

+

(3.9)

(3.10)

(+1221 +1122)k 2

3' C

(3.4)

The symmetrized part of the Hamiltonian (3.1) is
identical to the Fourier expansion

H„=Q, A,e' '", (3.5)

where the r, are the translation vectors of the lattice
and the A, are coefIicients, independent of 3.', chosen
to give the correct dependence of P on k in. the absence
of the field. This identity can be verified by expanding
(3.5) in powers of P . The susceptibility due to (3.5)
has been evaluated by Peierls' and gives the result p3,
Eq. (1.3). In the spirit of the present paper, we substi-
tute in (1.3) a power series expansion of the energy

&(k) = @"k2+
t (3/5) &""+(6/5) h'"'3k'

+$—(2/5) Pill+ (6/5) h1122j

)&[5(kl'k2 +k2'k22+kp kl') —k']+ (3.6)

where the omitted terms are of order k and higher.
This gives

To this order, then, the remainder term produces a
uniform shift of all energy levels proportional to the
square of the field. Since it is of the form of a constant
times l)(k—k') it has no effect on the wave functions.
Its contribution to the susceptibility is simply the
coeKcient of —2K2()(k—k') in (3.3) multiplied by 22,

the number of electrons per unit volume,

2
X 22 (+1221 +1122)

C2

where ao is the Bohr radius and h&') E"" E"" are
evaluated in atomic units. This expression is of the
required form (1.8). Further canonical transformations
yield terms of higher order in ko.

We shall now show that our expression (3.9) for X
reduces correctly to the atomic diamagnetism in the
limit where the lattice parameter, a, becomes infinite
(tight binding). In this limit the band E(k) becomes
inlnitely narrow and the Peierls term z3 tends to zero
exponentially with a. Therefore only zz survives; and
since ko approaches zero as a ', while all the E ' 2"' '

approach finite (or vanishing) limits, we need to keep
only the term of lowest order in kp. Thus, by (3.4) we
have

22 (2/c2) (+1221 +1122) (3 11)

We must now evaluate E""—E'"' in the tight-binding
limit. By (2.34),

E1221 E1122

P miP ijP jkP km P miP ijP jkP km=ZZ —ZZ
+~i~mq&ma ~™ ~

& miM~q'~~1

+P ) 1++ (. (3.12)
((d, )2 ( k ip k )

In the present limit the N„o become superpositions of
atomic functions, so that the p~;; are simply momentum
matrix elements between atomic functions. We can
therefore use the following relationships, which are a
consequence of the commutation relations of x and
x xt' with the total Hamiltonian:

h" 7 (3 6
~

-a' +-h '
~k (37)

62r'c2 92r'c2 E 5 5

Xma wm(P2P mmq

(x x~) „(p „= 2(x pj)+p~xj)—) „ (3.13)
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Kith their help it is shown in the Appendix that in the
tight-binding limit

E1221 El122~ & (y2 i12 % /~9') (3.14)

where m is taken to be an s-state. Substitution into
(3.11) gives

y~ —e (1/6c') (r')„„, (3.15)

which is just the well-known expression for atomic
diamagnetism (in atomic units).

4. APPLICATION TO METALLIC Li AND Na

The theory which we have developed in the preceding
sections was applied to the metals Li and Na for two
reasons. They are the two simplest metals, whose
theory has been studied in considerable detail in the
past; and they are the only metals for which there
exists at present an (indirect) experimental value of
the diamagnetic susceptibility (see reference 5). The
object of the theoretical calculation is the evaluation of
the eGective mass m* and the coefficients E &&' with
which x can be evaluated by Eq. (3.10)." As the
algebraic and numerical work is rather extensive, we
have, in the case of Li, calculated these parameters by
both methods described in the preceding section; that
is, by summation over intermediate states [Eqs. (2.33)
and (2.34)$ and by using the Bardeen expansion
functions m, e, I s fEqs. (2.33') and (2.34')].
Both methods should give the same results and in fact
agreed quite closely.

where g, h&o, h&'& have cubic symmetry and vanishing
derivatives on the cell-boundary.

It can hardly cause a substantial error in either the
matrix-elements or the energy denominators if we
impose the boundary conditions not on the actual cell
boundary but rather on the surface of the Kigner-
Seitz sphere. In that case h&') and h&'& become identical
and the functions f, g, and j's are spherically sym-
metrical. The f;, for example, are determined by the
following equations:

1( 1 d d 2)
)+V(r) —Z, f,=o,

. 2 E r' dr dr r') (4 3)

where r, is the radius of the Kigner-Seitz sphere and
V(r) is the ionic potential.

A series of s, p, and d functions was calculated by
numerical methods and the matrix-elements calculated.
These were then substituted in (2.33) and (2.34).

I.~thill

The summations (2.33) and (2.34) were carried out
using four s-like, three p-like, and three d-like functions.
(These numbers do not include the 3- and 5-fold
degeneracies of the p- and d-functions. ) The potential
was the semiempirical potential constructed by Seitz
to fit the optical spectrum of atomic Li, '~ and r, =3.21.

8"= 1/2m*= 0.363,

Summation over Intermediate States
8«) = —O.O2,

E1221—E»22= —0.16.

(4 4)

Ke shall first describe the summation over inter-
mediate states. The band of interest, m, is an s-band.
That is, I 0 belongs to the identity representation Al
of the cubic group. Since the momentum operator
(1/i)B/Bx transforms like Tt, the intermediate states
N, s and ass occurring in the matrix-elements in (2.33)
and (2.34) also transform like T~, while the intermediate
states u;0 transform like Al, E, or Tl. Thus a typical
state of the first group has the form

The surprisingly small value of h«&, which has been
noted before (see reference 7) is the result of an appar-
ently fortuitous near-cancellation of contributions
coming from intermediate s- and d-like states. The
band i.s therefore very nearly parabolic, although its
effective mass is substantially different from 1 (rn*
=1.34). In the term E""—E'" however, there is no
major cancellation so that the fourth order (in P )
contribution to x is quite substantial.

N, s
——(x/r) f, (r) ("p-like" ), (4 1)

5odilnz
where f(r) has cubic symmetry and vanishes on the
cell boundary, while the states of the second group are used. The potential was the Prokofjew potential" and
of three types: ~,=4.p69.

I;s=g;(r), (cc& lg ecc) 8»=p.48p,

a«&= —o.ps,

or h, o& (r), ("d-like")
r2

xy
or —h, i'&(r),

r'
("d-like")

's 8«& is obtained from the 8 ~~ by (5.8) and (5 2)

E1221 E»22 P P2
(4.2

These numbers show that the diamagnetic behavior of
the conduction electrons of Na is very similar to that
of free electrons, for which the corresponding numbers

'~ W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
's W. Prokofjew, Z. Physik 58, 255 (1929).
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are 0.5, 0, and 0, respectively. The susceptibility,
calculated by Eq. (3.10), is given in Eq. (1.11).

Substituting into (A.1) gives

T 1 2(g(»g(2) p(2)g(1)) (A.4)
Use of Bardeen Exyansion Functions

To evaluate E j' and E 2 i' from (2.33') and (2.34'),
we have to construct the functions occurring in the
Bardeen expansion (1.9) of the Bloch waves. These
functions are discussed in reference 7. The results
were as follows:

Lithium

The next term in (3.12) can be transformed as
follows:

P miP ijP j kP km
1.1. 2. 2

T2=——E 2
7&m i,& Cvm;Mm~COmp

(g(1)p(1)) .(p(2) g(2)),

h» = 1/(22)2*) =p.363,
h«) = —0.0&,

+1221 +1122 0 ]5

(44')
= ——i P ((gO))2) .(p(2)g(2)) .

', i—((—x('&)'p(')x('&) „
The rather close agreement with (4.4) constitutes a
check on the calculations. We believe that the results
(4.4') are slightly more accurate and have used them
to calculate x according to Eq. (3.10). The result was
given earlier in Eq. (1.11).

y-,'i((x(»)2) „(p(»x(»)„„. (A.S)

Combining with (A.4), we And

T1+T2 +-,'i(x('——&)' „(p'»x "&)„„
+12[(g(1 )2(x(2)p(2) p(2)x(2))j

= —1'2 (r')-,
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APPENDIX: TIGHT-BINDING LIMIT

With the help of (3.13) the expression (3.12), required
for the calculation of y, can be reduced to an expectation
value of r2 in the atomic state m which we take to be
an s state. Let us begin with the first term, which we
shall call T1 ..

P miP ijP jkP km
1 . 2. . 2. 1

»—= Z Z~™i ~ mimq+mk

g miP ijP jkg km
1 . 2. . 2. I

j'gm i,k

'mi 'm
=Q(ix(». ~)(ix(»;' —)

mi

= [(g(")'3-=2 (r')- (A.S)

The other sum in this term gives

P mkP km =P p', (—ig',„)=—i(p('g('&) „

which follows from (3.13) and the commutation relation
of x and p.

Finally, we take the last term in (3.12) which we
call T2. By (3.13),

(go) p(2)) .(p(2) g(») .

(A.1) 1
27 (A.9)

Since "m" is an s state

(xo)P(2) x(2)P(») .—P

so that, by (3.13),

+my

=—,'i (x('&x('&)„;.

(g(1)p(2)) 1 (g(1)p(2)+g(2)p(1))

2

by Eq. (A.7). (This is a well-known atomic sum rule. )
By combining (A.8) and (A.9), we obtain

(A.2)
T2 ———,

' (r')

Thus we find, in the tight-binding limit,

E'"—E'"'= T1+T2+ T2=—'(r') „m. (A.11)

When this is substituted into (3.11), one obtains the
(A.3) well-known atomic diamagnetic susceptibility (3.15).


