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Imperfect Bose Gas with Hard-Sphere Interaction
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The method developed in the previous paper for the treatment of the quantum-mechanical Ã-body hard-
sphere problem is applied to a calculation of the grand partition function of an imperfect Bose gas with
hard-sphere interactions. The grand partition function is calculated to second order in an expansion in
powers of a/X, where o is the hard-sphere diameter and X the thermal wavelength. The approximate equation
of state for the gas phase is thereby obtained by calculating all the virial coefficients to order (a/X)'.

The erst-order energy levels obtained in the previous paper embody some interesting physical properties.
A Qctitious system with exactly such energy levels is considered. The partition function for such a system
can be calculated exactly and the exact equation of state obtained. It is shown that there is a phase transi-
tion, which more closely resembles an ordinary gas-liquid transition than the Bose-Einstein condensation.

I. INTRODUCTION

' 'N this paper, we shall calculate the virial coeffi.cients
~ - for an imperfect Bose gas with hard-sphere inter-
actions, using the method of the pseudopotential de-
veloped in the preceding paper. ' The calcglatiort of the
viri al coegciertts reqsti res ortly a krtotvledge of the behavior

of the system irl the neighborhood of sero density, since
they are the coeKcients appearing in the expan-
sion of the equation of state in a Taylor series about
zero density. There is therefore no question that a
perturbation treatment with the diameter u of the hard
spheres as expansion parameter is valid. Accordingly,
we adopt for the Hamiltonian of the system, in the
same notations as I,

H=Ho+H',

Hs ———(h'/2m) (Vts+ +V'g'),

8
H'= (4s.ah'/m)P 8(r;—r~) r,;,

Br;~.

where r;;—= ~r;—r, ~. The interaction Hannltonian H'
will be treated as a small perturbation, and will cor-
rectly account for eGects up to order u'.

We shall see that this program will enable us to
calculate a/1 the virial coefIicients; but each virial
coefFicient is calculated only approximately to order u'.
Actually, the dimensionless perturbation parameter will

turn out to be a/X, where

eKcients in quantum-statistical mechanics is vastly
more dificult than in classical statistical mechanics. In
the latter case, with the help of the well-known Ursell-
Mayer expansion of the partition function into cluster
integrals, ag virial coefFicients are formulated in a
volume-independent manner in terms of well-defined
integrals involving the interaction potential. We may
say that the problem there has been "reduced to quad-
ruture. "In quantum-statistical mechanics, on the other
hand, no such volume-independent formulation so far
exists for virial coefFicients higher than the second. The
quantum-mechanical /th cluster integral involves either
the wave functions or energy levels of / interacting
particles, so that to evaluate it explicitly we would have
to solve the general quantum-mechanical /-body prob-
lem in a box. It is therefore not surprising that only for
the second virial coefFicient do we have a volume-
independent formula involving the scattering phase
shifts of the two-body system. '

An interesting question that arises in any theory of
imperfect Bose gases is the effect of the imperfection
on the Bose condensation. A mere knowledge of the
virial coefficients, however, is not sufficient for the dis-
cussion of this question. Accordingly, no attempt has
been made here to discuss the Bose condensation on the
basis of the perturbation calculation; but purely for
heuristic purposes we have included in Sec. 6 a certain
example of an imperfect Bose gas for which the con-
densation can be rigorously discussed, and which a
hard-sphere Bose gas may in some sense resemble.

X= (2''/mkT)*' (2) 2. FORMULATION OF THE PROBLEM

is the "thermal wavelength, " of the order of the
de Broglie wavelength of a particle with energy kT.
What we have then will be a low-temperature expansion
of the virial coefficients.

To make such a calculation is not entirely a trivial
matter. We recall that the calculation of virial co-

' K. Husng and C. ¹ Yang, preceding paper )Phys. Rev. 105,
767 (1956)J hereafter referred to as I.

We collect here first a few definitions and formulas
well known in statistical mechanics. ' The partition
function of a Bose gas of Ã interacting particles en-
closed in a volume V is

Q~ ——Spe—e~,
s E. Beth and G. E. Uhlenbeck, Physica 4, 915 (1937).' See, for example, D. ter Haar, ELements of Stutisticul Mechunics

(Rinehart Publishing Corporation, New York, 1954).
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where P= 1/kT, and the spur is taken over symmetrical where Ho" means Ho to the power k. Correspondingly,
states only. The grand partition function & is defined by g will have the expansion

g—P sNQ
Ã 0

(4)

8
E=s log g—.

88

(6)

It is customary to expand log g in a power series in s,
so that

where z is the fugacity, related to the chemical potential
by

z= e" (5)

The equation of state is then obtained by the usual
prescription of eliminating z between the following
equations:

PV/kT= log g,

g(0)+ g(i)+ g(2)+. . .

g(n) g SXQ t )n

NM

Ke have, therefore,

g(i) g(2)
log 9=log (("

I
1+ + +

g(o) g(o) )
g()) - g(2) 1 t

g())
~

2-

=»g z"'+ + —-I
I

+"
2 ( g('))

Thus
00 1
P bi(')s'= —log g('),

V

(12)

(13)

P 1 00—=—log g=P b«',
kT V

1 g«)
P b &'&s'=—

g(o)
(13a)

(7)
8 (P)—=s—

I

—
I
=E tb«'

Qs (PT)
and

1 g(» 1
)

g(')y '

V g(') 2 & g(')J
(13b)

The coefficients b ~ are the coeKcients which correspond
to the classical cluster integrals. They are actually
functions of the volume U, but we shall be interested
only in their values at V—+~. (In doing so we forsake
all possible knowledge concerning the system except
in the gaseous state. ')

Our program consists in putting the Hamiltonian in

(3) equal to that of E hard spheres of diameter a with
periodic boundary conditions, and computing the
coefEcients b ~

..
bi —bi(o)+bi(i)+bi(2)+. . . (g)

in ascending powers of a.
The coefficients b~ "), i.e., the value of b~ for free

particles, is well known:

b (0) =X 'l 't2 (9)
Since the Hamiltonian in (1) gives the same result

as the hard-sphere Hamiltonian up to order a', we shall
use it in (3) for the calculation of bi(') and bi&».

The calculation proceeds by expanding the partition
function and the grand partition function in ascendiD g
powers of a:

It should be emphasized that by confining ourselves
to the calculation of b~ m e do not hase (o ievestiga/e or
to make assumptions concerning the infinitely many body

problem at finite density X/V. This is so because
for any fixed 1, the calculation of b& involves first the
calculations of Qi, Q2, . Qi, and then the limiting

process U—+~ .The calculation therefore requires knowl-

edge only of the l body problem at zero density. In this
process we lose information, of course, concerning
the condensed state. It is our feeling that to treat
with rigor the problem of the condensed state (which
requires a knowledge of the infinitely many body prob-
lem at finite density) is a mathematical task of a di6'er-

ent order of magnitude in its difficulty,
In the calculation of the series expansion of Q~ and

g, it is important that all orders of V be kept. The
limiting process U—+ 00 should only be taken after the
expression for bi has been obtained from (13).

3. FIRST-ORDER CALCULATION

The first-order partition function can be calculated
(10) as follows:Q~ =Q~")+QN ")+QN ")+

where
Q «)= —P P exp( —Pg (o))(@ (0) H @ (o))

)4n.ah'P ~= —
I I P exp( —p P-n-e-)

mV ) z nnnn~

Q&(0) =Spe e&o—
QN"' = —p Sp(e e~'H')

( )
(~+1)(-O)'

Qn(') = Sp P P H, H'H, H', X (E'—-'X—-' Q n '), (14)
i'-o x=o (j+P+2) !

ph R S7 where the notations are the same as those in I, and use
Compare, e.g., C. N. Yang and T. D. Lee, Phys. Rev. S7,

4Q4 (t952&.
' '

has been made of (41) of I. The first-order grand parti-
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tion function is therefore

(4a-ah'P yz&"=-I
I Z LIIL -p(-e -)]".]

mV ) ~~o

B' is applied. Let

4+1
s(~y)=P P

i=»=o (j+k+2)!
Then

ev —e*—(y —x)e*

(y —x)'

yI P rs.me+-,'P (e.s —m.)]. Q =~ Z(~., ~'ZL~( ~~—-, -~~-)~'-~-])
Hence

f 47rah'p y

EmV)
xLP (.)( &)+!Z((.')—!( -))], (»)

where ( ) denotes ensemble average. For example,

(rs.)=P nfl exp( —pe.)]"/P Ls exp( —pe„)]"
n=o n=o

s exp( —Pe )

1—s exp( —Pe )

One can perform the summations in (15) by converting
them into integrals. Upon substituting into (13a) and
taking the limit V—&~, one obtains

(17)

where X is defined by (2).

4. SECOND-ORDER CALCULATION'

The direct second-order perturbation calculation is
complicated owing to the existence of degeneracies in
the unperturbed system. We shall show now, however,
that in the calculation of the partition function, and sub-
sequently the equations of state, this difficulty can be
easily circumvented. A similar situation exists for the
first-order calculation. We recall that in (14), it is the
diagonal matrix elements of H' that enter into the
calculations. These matrix elements, which are known,
give the first-order energy shifts only in an average
sense, because of the degeneracies of the unperturbed
system. The detailed first-order level splitting is more
dificult to obtain, but is unnecessary for the calculation
of the partition function.

The second-order partition function, defined in (11),
can be reduced as follows:

- - (~+I)(—4)""'
Qiv"'=XI +,2

n ( s.=o s=o (j+P+2)!
x(&„)"sPp(&„)~a'..e

where &' „=(4' gp@„).It is important that the sum-
mation over m be carried out first, before the operator

s From now on, we shall omit the superscript (0) on the wave
functions + & ) and eigenvalues E„& ).

Therefore'
II'

Q„&@=PP e—~e I~a„, H'
z.—z. i

+-'p' p e ~e" IH' .I'.
m. n

Em =En

(18)

+ZZZ
(j+~) (&+~) (j&~)*

(19)

S. EQUATION OF STATE AND THE VIRIAL
COEFFICIENTS

Collecting the formulas (7), (9), (17), and (19), one
obtains the equations:

(Pi 2a
) 'I —

I

=a;(s) ——La:( )]s
(Pz')

(a')
+81 —

I Lg:(s)]'Lg:(s)]
Ex

oo oo oo - Z&+ +~

+ZZZ
i (y+l) (k+l) (jhow)-'*

+higher orders of (a/X), (20)
~
—PEm ~

—PEn
'The term Z 4„,H' Z, H'~%' van-

n m, R~ gE (+m +n)
ishes because the expression in the curly brackets is a wave func-
tion that is regular everywhere. Consequently II' can be replaced
by its Hermitian part: (4s aAs/m)Z;&;e(r; —r;), which can be put
under the Z sign. The expression then obviously reduces to zero.

In the matrix element in the first term of (18), we
must n.ot interchange IJ' with the summation. P, since
H' involves a diGerentiation —a precaution we learned
from I. The second term of (18) isolates the degenerate
states, which now present no difficulty. [If there were
no degeneracy in the unperturbed system, and if H'
were Hermitian, then (18) would reduce to the usual
formula of second-order perturbation theory. )

From (18), the second-order grand partition can be
written down. However, we are actually interested in
the combination ( &&s&/ &"&)——'( g&'&/ &"&)' which ap-
pears in (13b). In fact, each term of the bracket above
would have a leading volume dependence of V', giving
a divergent contribution to b~&'), in the limit of infinite
volume. In the combination above, these divergent
terms cancel. The explicit calculation for this quantity
is given in the Appendix. We shall merely give the
result here:

(a) 1 ao oo

P y, i»s& 8I I LP ~
—&&i]LP f ',&i]s—

X'

Zg+k+1,
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1V ci (Xsp)
)~'—=s—

f

V cist kT f

where

(21)
length term depends, of course, on the particular
interaction.

6. BOSE CONDENSATION

(z) P )—osl
1

(22)

The equation of state is obtained by eliminating s from

(20) and (21).The virial coeKcients «are defined by

()sg) i—1

=1+2 «~ (23)

(25)

(26)

As we have mentioned before, for the second virial
coeflicient n&' (and only for this coeKcient), there
exists a volume-independent formulation in terms of
the scattering phase shifts. The result for the hard-
sphere potential may be quoted here for comparison~:

ns' ——2 (a/X) —(44m'/3) (a/X) '+0(a/X)'. (27)

The convergence of the expansion in powers of a/X is
therefore very good.

It is important to note that the expansion here is a
low-temperature one, where quantum sects are pre-
dominant. The hard-sphere diameter a enters into the
calculations as a scattering length rather than as the
radius of an excluded volume. The excluded-volume
effect of the hard-sphere interaction —the only eGect in
the high-temperature classical region —does not enter
into the present calculation, because it is at least of
order a'.

The virial coeKcients given in (24)—(26) contain the
parameter a as the scattering length of the interaction
considered. We can be sure, therefore, that any inter-
action which possesses the same scattering length a mill

give rise to virial coefhcients whose lowest order terms
are given by these expressions. Shape-dependent terms
occur only in the higher approximations. The import-
ance of the higher terms relative to the scattering

7 J. de Boer and R. B.Bird, article in Hirschfelder, Curtis, and
Bird, Molecular Theory of Gases and Liquids (John Wiley and
Sons, Inc. , New York, 1954).

and may be worked out from (20)—(23). It is convenient
to decompose 0, ~ into two parts.

rri=«"'+«',
where 0.~& & are independent of a and are the well-

known virial coefficients for the ideal Bose gas. ' The
contributions from the imperfection is contained in n~,
a few of which are (to order a'/X'):

The virial coefficients calculated previously give the
equation of state only in the gas phase, but furnish no
information whatsoever about the condensed phase,
nor the nature of the condensation. Nevertheless, we
would like to have a hint of the existence and the nature
of the Bose condensation of this imperfect gas, even
though we cannot hope to obtain a rigorous treatment
at the moment.

In this section, we shall discuss the condensation of
a fictitious imperfect Bose gas whose energy levels are
rigorously given by the first order results for the hard-
sphere gas derived in (41) of I:

E„=P.rs e + (4srah'/srsV) (1V'—-', rip'), (28)

where the term —,eo' is all that we retain in the original
sum —',P ss '. This is justifiable, because near the con-
densation region, the average occupation number eo
of the single-particle "ground" state' is much greater
than those for the "excited" states.

Such a fictitious system, as we have pointed out in I,
embodies some interesting physical properties. For
example, it clearly exhibits the phenomenon, arising
from the uncertainty principle and from the symmetry
of the wave function under exchange of particles, that
a spatial repulsion gives rise to a momentum-space
attraction. The energy levels which correspond to
states of the system diGering in eo become separated
by energy gaps —leading to a behavior of the system
not dissimilar to that of a superAuid. It is felt, in-

tuitively, that these are the properties which a hard-
sphere Bose gas might really have, and that, although
they have so far been demonstrated only to the first
order, they might survive more rigorous calculatioms.
It might therefore be interesting to look at the equation
of state of a system whose energy levels are rigorously
given by (28).

It is important to stress that while any similarity
between this fictitious system and an actual hard-
sphere gas can only be advanced on a heuristic basis,
the calculation of the equation of state arising from
(28) will be rigorous.

Briefly, then, we consider the partition function Q&
of this fictitious system:

Q&
—

& P&iv =—
ncs, Zntx=N

&& exp f —P[P ss e.+ (47rab'/rrsU) (Ã' ', srp') j), —(2-9)

where P&, defined by the above equation, is the Helm-
holtz free energy. The partition sum over ss in (29),

' Single-particle states no longer exist, of course, in the presence
of interaction. The terminology "single-particle ground states, "
etc. , are used only for convenience. The quantum number eo is a
label identifying the state which (28) reduces to when the inter-
action is switched off,
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subject to PN =A, may be decomposed in the fol-

lowing manner:

Z
ma, Zna=N no=a &a, Zna Ã—no

We note that, by definition,

exp( —p pe o )
n~, Znex=N —nO

Vo=NX'/2 61, (4o)

the actual curve now goes over to branch II. Between
V~ and V2, z becomes triple-valued, with

=QN o' =—exp( PFN—o' )—, (31)

To sketch the isotherms, we may first plot z as a
function of V, at fixed E and T, as shown in Fig. 1.
There are two branches of the curve. Branch I, which

(30) corresponds to co=0, is essentially that for an ideal
gas; but whereas the ideal gas curve would remain
constant with z=1 below the critical volume

Ke note that the left-hand side is just the chemical
potential v for an ideal Bose gas of X—eo particles,
whose behavior is well known. ' Thus, eo will be ob-
tained by eliminating the parameter z=e" from the
following coupled equations:

(2''eo/ V) = —logs, (36)

where
X—No

——(V/X') gl (s), (37)

where Far-no(') is the Helmholtz for energy of anideal
Bose gas of E—eo particles. We can write

logQ„= pF„=— (2''1—V'/V)

+log[+ exp(ag'moo/V) exp( —PFN —no"')]. (32)
np

In the second term above, the argument of the logarithm
is a sum of positive terms. We can therefore apply the
usual theorem that this logarithm may be replaced by
the logarithm of the largest term of the summand and
obtain

PFN= ——PFN —no~o& —(2''1P/V)+ (A'rioo/V), (33)

where eo assumes that value which maximizes the sum-
mand in (32).

If eo——0, then (33) gives

pFN = pF—N &o& (2—A'N'/ V—), (eo 0) ——(34.)

The equation of state for this case is then not essen-

tially diferent from that of an ideal Bose gas in the
uncondensed state.

If eo/0, the value for rso is determined by

(gFN' ~o~ l 2''eo
(vox 0). (35)( BLV' ~ N =N-no V

Vi= 2.61Vo[g,*(so)—P /2a) logso] ',

where zo is the root of the equation

g;(so) =X/2a.

(41)

(42)

Only one value of z will be realized, of course. It is
determined by requiring the Helmholtz free energy FN
to be minimum —a condition which mathematically
follows from the procedure we used: that of taking the
largest term in the summand. in (32).

Taking the behavior of z from Fig. 1, an isotherm is
obtained as shown in the full curve of Fig. 2(a). This
is not the equilibrium curve, because P is triple-valued
between V~ and V2. The equilibrium curve is that with
the vertical dotted line, a b e d e f g, which results from
minimizing

FN= — EdV, at constant T, (43)

such that the shaded areas are equal. The minimizing
procedure is obvious from Fig. 2(b).

Thus in the canonical ensemble, the isotherm ob-
tained is a very unphysical one, in which the pressure
drops discontinuously at a particular volume. However,
we may go over to the grand canonical ensemble. It can
be easily shown that this is achieved by applying the
usual double-tangent construction shown in Fig. 2(b).
The resulting isotherm in the grand canonical ensemble,
aha f g, is in fact equivalent to that obtained by a
Maxwell s construction on the original curve, as indi-
cated by the heavy horizontal line in Fig. 2(a). This
new isotherm now exhibits a phase transition similar
to that of an ordinary gas-liquid transition.

g„(s)=—P l-"z'.
1

The equation of state, for eo/0, is then obtained by
standard procedures resulting in the parametric
equations:

P f 2gg2g2—=—g-:(s)+ — (logs)',
kT X' V' 4''

|decl Oae

E 1
-=-g~(s) — »gs.
V A,

' 2','

(39)
VI V)

.= V

FIG. 1. The fugacity of the imperfect Bose gas as a function of V
at Axed T. Branch I—no=0. Branch II—n0/0.
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It thus appears that for our 6ctitious system, the
canonical ensemble and grand canonical ensemble yield
di6'erent thermodynamic properties. In particular, the
canonical ensemble predicts a nonphysical behavior
that is not in accordance with van Hove's theorem'
which states that the isotherm must be a monotonic
function of V. This is not surprising, because the energy
levels, as given by (28), describe a system which favors
such strong density Auctuations that it does not satisfy
the assumptions one usually makes about a physical
system. In particular, if we cut the system into two
volumes by inserting into it an impenetrable wall, the
energy does not necessarily increase, as it must for
van Hove's theorem to be valid. )The first term of the
expression (28), proportional to X', satisfies that re-
quirement. However, the second term, ——,'mo' works
exactly in the opposite direction. That is, if ever it
becomes favorable to have particles go into the single-
particle ground level in one side of the wall, this will

happen in an avalanche until the entire system is
transformed. ]

The grand canonical ensemble, on the other hand,
has implicitly given the system the possibility of a
two-phase equilibrium. For physical systems, in which
such a possibility is inherent in the system anyway, the
grand canonical ensemble yields the same results as the

(a)

(b)

Vg
I

I

Fn+ const.
I

I

I I

2 I )Q
II
II
II
II

Fro. 2. (a) Isotherm for the imperfect Bose gas. Calculated
with canonical ensemble: abed ef g. Calculated with grand
canonical ensemble: o b d f g. (b) Free energy of the imperfect
Bose gas. Minimization of free energy leads to the isotherm
abed ef g of Fig. 2(a) (canonical ensemble), while the double
tangent construction, equivalent to a Maxwell's construction on
the isotherm, leads to the isotherm a b d f g of Fig. 2(a) (grand
canonical ensemble).

e L. van Hove, Physica 15, 951 (1949).

Vg Vg

+&G. 3. Qualitative sketch of the isotherms of the imperfect Bose
gas, calculated in the grand canonical ensemble.

canonical ensemble. For the present case, the grand
canonical ensemble disagrees with the canonical en-
semble in that the former does not take the energy
level formula as literally as the latter. If we adopt the
grand canonical ensemble, then the energy formula
(28) is to be understood in the sense that it only gives
the energy levels of the system in one single phase, and
we have to assume in addition that a two-phase sepa-
ration of the system is possible. Therefore, in the
partition sum we would not only sum over possible
states of the system in a single phase, but also states in
which the system is broken. up into two phases in equi-
librium with each other. This in practice is achieved by
using the grand canonical ensemble. '

Taking the point of view of the grand canonical
ensemble, then, we arrive at the isotherms for the
system qualitatively summarized in Fig. 3, which is
self-explanatory. For large volumes, the isotherm
closely approximates that for the ideal Bose gas. At a
volume V„which is greater than the transition volume
of the ideal Bose gas, the system breaks up into two
phases. Then, at some smaller volume V~, the system
is in a single phase again, and the pressure goes up with
decreasing volume, because the energy of the system,
as shown by (28), increases rapidly at high density. The
condensed phase in this case has a finite density equal
to X/V~, unlike the ideal Bose case where the condensed
phase has in6nite density. Note that at the transition
point V„ the isotherm is discontinuous in slope, in
contradistinction to the case of the ideal Bose gas. This
is a reflection of the fact that the spatial repulsion of the
interaction enhances the momentum-space attraction.

' It is this difference between the predictions of the canonical
and grand canonical ensembles which suggested the speculation
mentioned in I, that a better treatment of the quantum-mechanical
hard-sphere many-body problem may be obtained by applying
the methods in I only to smaller subsystems, while employing
hy«odynarpit; rpptb. a(Is for the treatment of long-ranged cor-
relations,



782 HUANG, YANG, AND LUTTINGER

n,

fixed T

Tsss p8r feCt.

&as

B

Ideal

I &A~ If%I ~~
Vg V~ V, Vy

enhancement of the momentum-space attraction due
to the repulsive interaction.

where, from (18)

g&»= g'+ g", (A1)

APPENDIX

In this appendix we shall derive (19). The second-
order grand partition function will be written

Fro. 4. Number of particles ep in the single-particle "ground"
state, as a function of V at fixed T. For an ideal Bose gas, ep/N
is zero for V& V2, and increases linearly to unity between V= V&
and V=0. For the imperfect gas the system breaks up into two
phases at V= Ve (point A). For one phase, Ne/iV remains zero,
while for the other phase assumes the value at V= Vi (point 8).

~ 4 4
~ ~ 4

~ ~ ~
~ 4 ~

4 4
~ ~ ~

~ ~ 4

~ 4 ~

The transition region, shown shaded in Fig. 3, does
not terminate at a critical point.

The nature of the two phases for this imperfect gas
can best be described in terms of ep, the number of
particles in the single-particle ground level. A plot of
ns is shown in Fig. 4, making use of (36) and. the be-
havior of z from Fig. 1. At very large volumes, ep=0.
This region corresponds to the "gas phase" of the sys-
tem. When the volume is reduced to V„ indicated by
point A in Fig. 4, a part of the system goes into a
diiferent phase in which the ratio ee/N (where N is the
number of particles in this second phase) assumes some
finite value less than unity, as indicated by point 8
in Fig. 4. When the volume is decreased further, the
pressure remains constant. Only the relative amount of
these two phases is changed, while the compositions of
the phases remain at their respective states A and B.
Finally, when V= V&, there is only a single phase, and
the entire system is at point 8 of Fig. 4. Upon further
compression, the ratio rds/N approaches unity. The
transition process may be pictured by the series of
schematic diagrams shown in Fig. 5. At the instant of
its formation, the "liquid phase" possesses a finite
ratio of ns/N, so that the number of particles in the
ground state increases discontinuously in going from
the "gas" to the "liquid" phase. This again reflects the

m yl

&m =&a

(A3)

To evaluate g', let us 6rst examine the matrix ele-
ments H'„„ in (A2). Let the initial and final states be
characterized by their respective occupation numbers:

S = Ip,Si,S2, ' ' '

5$ —RZp)8$$)622) ' ' '
~

(A4)

!e)=! es .
rsvp

. e . .~a

!~)=!"n, 1~,——1" ~.+2 ")
y, X, n all unequal,

K,i, = 2k.,
k, i,~p,
a'.„=(8 aI /~v) [N,~, (N.+1)(~.+2)7i

Type 3,

(A6)

Then, for a given initial state ! e), H' connects only
three types of final states !m), all subject to conserva-
tion of total momentum, and all o6 the energy shell.
It is best to list these types by displaying their occupa-
tion numbers that are Chgererdt from those of !rs):

Type 1,

l e)=! rd rdg. . I ep /)

!m) =! . n, 1. .
rial

——1 rd.+1 mp+1. ),

y, )I, , n, P all unequal,
(AS)

K,),=K.p, K,g
—=k,+ki„

k~i, N+k p, k~&,—=—',(k,—kg),
B' „=(8zak'/nzV) [n, rd),,(rd +1)(Np+1)7i.

Type 2

Y&V V)~ V & V~ Yg& V ~ Vg

V

Transition region

V)+V VRPY !ge ~ ~ ege ~ egh ~ ~ ege ~ ~
A a

!m) =! ei +1 rdg+1 ~ es —2 ~ )
(reversed transition of type 2).

(A7)

4-particle in excited state

0-particle in ground state
~ — "gas" phase

gg - "liquid" phase

Fzo. 5. Schematic pictures of the imperfect Bose gas when thy
volume is varied at constant temperature.

Restrictions same as type 2,

H'„„=(8z-ass/mV) L(rd, +1)(rid, +1)(e —1)e 7&.

The sum over rds in (A2), for given e, is then the sum
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over these three types (i.e., over the indexes (2, p, y, X), subject to conditions given for each type. Hence we have

( -+1)( +1)j'
X„—= P. e„=~

~

P(') ~N, —1, ~,—1, ~.+1, 2.,+1)
& && F„F.„— & 2)2V ) ~ ())22/2)2)(k )22 —k, )P)

$22,ni(22 +1)(22„+2))'
~

22 —1, 22' —1, 22 +2)
(52/2)2) k, ),

2

$(22,+1)(22),+1)(22 —1)22 ]'
+Q (2)

~
n, +1, 22),+1, 22 —2), (AS)

())22/m) k, ),
2

(gpr'a')22' ) 2),ni(2),.e()+22.+happ)
(e„,a'x.)=

i i s p(')
( 2)2V2 ) k p2 —k~),2

22,22), (2) +1)(22 +2)
+2 p 22,22),—LrG(k, )„r)j,=p —Q

v&& Or v&~ kg'A

22 (22 —1) (22,22),+22,+22),)
+4 Q(2)

O

+p 22 ()2 —1)—prF(r)j. p . (A9)
0( Of

where F(r)=g),~p(e'k'/k2) and has been calculated
in (53) of I, and

where P(" denotes a sum over states of type 1, etc.
Now the expression I„is to be operated on by LI'.

This is best done by representing H' in the second
quantized form given by (38) of I, and note that al-

though the differential operator (8/Br)r in H' may not
be taken to the right across any summation, the crea-
tion and annihilation operators may. Performing then
the required operations, we obtain, after some straight-
forward reduction:

where we already kn.ow, from (53) of I, that

8 V(237'—LrF(r) j -o= ——
(

Br 4)r ( 1.
(A13)

g(p)

64)ra9, 2
fbo Ãy 'Sg

Q (i)
V2 k p2 —k~),2

(A14)

where (22 ) has been defined in (16). The states ~2)2)

of type (1) are characterized by the momenta of the

single particles levels(2, p, y, and X:k, k)2, k~, k), . Inter-
changes of k, and k(), or k„and ki produce the same
state. We shall explicitly display (A14) as a sum over
the independent momenta k, kp, k~, k), as follows:

Substituting these into (A9), we see that all terms
in (A9) other than the first sum (the one involving the
summation P(')) may be neglected, since they are all
smaller than the hrst sum by at least one power of the
volume V. Furthermore, in the first sum itself, the
terms involving four occupation numbers sum to zero.
Substituting (A9), thus calculated, into (A2), we ob-
tain in the limit V~~,

G(kp, r) = P, (kp/0),
&go, k~1(:o k2 —kp2

(A10) p) (p) V2

'S~ 'Sy Sg

-', (k.'+k p2 —k,'—k)P)

where all k vectors are single-particle momenta defined

in a box of volume V=I.' with periodic boundary
conditions. We note that the quantity G(kp, r) —F(r)
is not singular at r=0. It is thus convenient to consider

G(kp, r) —F(r)

1
=kg P ——g e'~' (A11)

) ~ 2~2 k'(k' —k ') k ' i=20

from which we conclude

O O—(rG(kp, r)j, p
———LrF (r)j, p

8'r Of'

1 1
+kp2 1, (A12)

~~ 2~2o k2(k' —k ') k(' 2=2p

X()(k.+kp —k,—k),), (A15)

where the p' is taken over all k„, k)2, k~, and k), with
the restrictions that k Nk)2, k~Wk)„and that terms
with a vanishing denominator k 2+k)22 —k~2 —ki2 are
omitted.

To calculate (A15) explicitly, we convert the sum P'
into an integral. To take into account the restriction
k 2+k~2 —k~2 —k)22/0, the singularity in the denomina-
tor in (A14) is avoided by taking the Cauchy principal
value of the integral. We then have

162ra2)P ( 4V2)
~ZEZ

g(p) V2 Epr9Lp) )=1 k=1 )=1

8
X —J(N, v,2()), (A16)

(j+k+l) *'(j—k) l p)m



The calculation of g" is easier. It can be readily
proved that in (A3) we need only retain the terms for
which m=e. The other terms do not contribute to
b~('& in the limit V~~. One therefore obtains, after

X exp( —vq' —mp'), (A17) some algebra,

O'P ~2(j—k)lq

Z~ & j+k+S)
O'P

~ (j+k)l y

2~ &q+k+&i

h'P ) (j+k)l+4jk~
zv=-

]2' ( j+k+l

a9.'
((2 Q e np+P, n '—P I )').

2V'

But we have, from (15),
(A1S)

%e obtain, therefore, as V—&~,

Calculation yields

BJ x m(m —
w)

Bu 4 L(w+ v)' —I'1$4wv —cPj-'*

vr' (j+k+l)&(j—k)l
(A19)

SX2 (j+l) (k+1)(jkl)-:

Substituting this into (A16), and (A16) in.to (A14),
we 6nally obtain

1 ( g&'&) ' Sa'X'
(K&I-))' Z (&~~'&—(~~&')

2 E g&'&3 V' p

Se'V ~

X'

(A21)

Adding (A20) and (A21), and using (13b), one obtains
(19).
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