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Further Re6nements on the Brillouin-Wigner Perturbation Procedure*
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The first-order correction to the wave function in the Brillouin-
Wigner perturbation procedure is generalized by associating
independent amplitude coe%cients G, with each physically
distinct type of interaction W( ) occurring in the interaction
operator. The modified formulas for wave function and energy
can be evaluated by using only quantities which occur in the
original formulation of the perturbation procedure (characterized
by Gx = 1).The energy formula is invariant under a transformation
which changes the scale of all energy denominators by a constant
factor. A uniform displacement of the zeroth-order energy
spectrum provides an additional variational parameter.

A simple example is worked out to show how the computed
energy improves as the amplitude parameters are displaced from
G = 1 to optimum values. An incidental result is the observation
that the statistical weight of the first order correction to the wave
function depends strongly on the amplitude parameters.

Finally, results for degenerate and nondegenerate zeroth order
states are embodied in an efkctive interaction operator which
determines the energy and the correct zeroth-order linear combi-
nation.

I. INTRODUCTION
' 'N a recent paper' we described a method for im-
~ ~ proving the Brillouin-Wigner (8-W) perturbation
procedure in accuracy and rapidity of convergence by
a simple modification of the approximate wave functions
used in that procedure. The modified formulas for wave
functions and energies can be evaluated by using only
quantities which occur in the original formulation of
the perturbation procedure.

An additional refinement is possible in problems
where the perturbation operator W appears as a linear
combination of distinct types. This is, in fact, the
usual situation. For example, in a, nuclear problem,
W may contain short-range radial repulsive terms,
radial exchange interactions, tensor operators, and
harmonic oscillator potentials.

YVe write
W=P. W&*' —U,

the index x distinguishing the different types, and, in
the simplest possible formulation of the proposed
refinement, use the approximate wave function'

t;t;~ 0(x)-

4= A+K G*2'0-
jV jV

to estimate the energy E of the state generated by the
zeroth-order function $0. We proceed in Sec. II to
develop formulas for computing E when no degeneracy
exists in the zeroth order description of the state. The
problem of degeneracy is treated in Sec. III. An
example to illustrate the use of the method is worked
out in Sec. IV.

* Supported in part by the U. S. Atomic Energy Commission,
the 0%ce of Naval Research, and the Once of Scientific Research.

f Now at the University of Delaware, Newark, Delaware.
' P. Goldhammer and E. Feenberg, Phys. Rev. 101, 1233

(1956); also B. A. Lippmann, Phys. Rev. 103, 1149 (1956).
2 In the total Hamiltonian FIo+W, FXO possesses a complete set

of normalized orthogona1 eigenfunctions P„and associated eigen-
values E~(EO&EI&E~~ ~ ~ ~ ). The constant —U in W compen-
sates tIfor a uniform displacement of the zeroth-order energy
spectrum by the amount +U.

II. NONDEGENERATE ZEROTH ORDER

The variational formula for the energy,

E=(0 I&0+~IS)/(0 0)
now yields

E=Ep+W pp+Q (G,02 +G,02,)

2 G*Gv ('»0 e»v) ~ (4)

in which

tvQ Tr 0
y

m

02.——p 02.„(5)

Also

t'f' p tV „H „0(")

mn(E —E, )(E—E„) p

/
63xy

62 62xy)
x)y

63 63xy
x, y

(6)

G= (1—ep/02)
—',

E=EO+1F00+02/(1 03/02) ~

(7)

The trivial, but useful, generalization which we now
consider, is just to treat the set of amplitudes G as
independent variational parameters. Applying the
condition

BE/BG, = BE/BG.= 0

to the right-hand member of Eq (4), we ge. t

Q„(02.„—02.„)G„=02„

The condition G = 1 characterizes the original formu-
lation of the 8-W procedure in the first order approxi-
mation to the wave function. The modified procedure
described in reference 1 involves replacement of G by
G (independent of x) and application of the extremum
condition dE,~dG=O to obtain
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and
E=Eo+ Woo+ sgx(Gzssx+Gzssz) . (10)

8 pp=0 may determine U close to the optirruIm value
given by the correct supplementary condition

Equation (9) determines G; with these amplitudes
Eq. (10) becomes a definite implicit equa, tion for E.

If all third-order energy terms es,„vanish (or are
neglected), Eq. (9) yields G =1 and Eq. (10) reduces
'to E=Ep+Wpo+es In. general however e& „$0and G,
is not as a rule independent of x. To facilitate the appli-
cations, we give explicit formulas for G, and E. The
notation

is convenient here.
a=a, b.—

gxy 62xg ~3x'g

gbb62a gab626 gbb63a gab630
G,= =1+

q..qbb I q bl—' q-q» I q b—l'

g aa62b gba62a g aa63b gba63a
Gb= =1+

q-q» —
I q.bl

E=Ep+W pp

qaal sob
I +qbbl coal qabosaesb qbaesaesb

(12)

and a term
G.= es./q. .. xWa or b,

»= 2 I"-I'/q**
xga, b

(14)

(15)

is added to the right-hand member of Eq. (13).
When two or more nondiagonal q's with shared

indices diGer from zero, the exact formulas are some-
what cumbersome. A series expansion in powers of
q,„(x&y) may sometimes converge fast enough to be
useful. Applying an obvious iteration procedure to
Eq. (9), one finds

Gx= esz/qzx Qqxpesp/—qzxqvp+ ' ' ')
g+x

E=Ep+Wpp+Q
I es. l'/q. .
—2 E es*q*,es,/q*-q„+ - (17)

The displacement parameter U is still available for
adjustment to minimize the computed energy. We
observe that e2,„ is a function of E—U only while e3,„
depends also linearly on U through the diagonal matrix
elements 8'„„.In some problems the simple condition'

x M. Bolsterli and E. Feenberg, Phys. Rev. 101, 1349 (1956).

In this case the conditions q„(0, qob(0, qaaqbb
—

I qabl

&0, insure that the extreme value of the energy
determined by Eq. (12) is actually a minimum.

@=a, b, c, . ; g, =qb =0, x&a or b, q &0.—
Equation (12) is supplemented by the statement,

BE/BU=O.

When the implicit equation for E is not too complicated,
the supplementary condition can be developed into a
semiexplicit equation for U. Equation (5) has been
treated in this manner in an earlier publication. 4 The
general implicit functional relations for U and E have
the form

U= f(E U), —
E—Ep—Woo= g(E—U, U)

=g(E- U, f(E U)). -
(19)

These relations yield an implicit equation for a single
unknown:

E U=Eo+W—oo+g(E U, f(E U)) f(E U). (20)

A root of Eq. (20) introduced into Eq. (19) determines
the associated values of 8 and U.

A simple graphical procedure is available as a practi-
cal last resort when semianalytical techniques become
too complicated. The function g(E—U, U) is first
evaluated as a function of E& —U. The dependence on
U is then easily determined since U enters linearly in
63 y and no where else. Plots of E—Ep —5 pp and
g(E—U, U) against E Uyield a low—est root E(U).
A series of such plots determines the minimum value of
E as a function of U.

A parenthetical remark is in order here. The role of
displacement parameter U in the general 8-W energy
series,

2n+1

E=Ep+Wpp+ Q si,
l=2

(21)

a E. Feenberg, Phys. Rev. 103, 1116 (1956).' K. A. Brueckner, Phys. Rev. 100, 36 (1955).
b W. G. Swiatecki, Phys. Rev. 101, 1321 (1956)

deserves careful study particularly in connection with
the dependence of E on the number of particles 2 and
on the order 2n+1 of the perturbation series. I.et
E(A, n, U) denote the lowest root of Eq. (21). This
root is given as a function of the number of partic1es 3,
the order of the energy perturbation series 2n+1, and
the displacement of the zeroth order spectrum U. A
formal proof that E(A, ae, U) does not depend on U is
easily supplied. 4 For finite n, the supplementary condi-
tion BE/BU=0 determines U as a function of A and n
We are interested in the behavior of E(A,n, U(A, n))
as a function of A and n, especially the limiting behavior
as 3 becomes infinite for fixed n. Brueckner's discussion
of the "linked cluster approximation" bears on this
problem, but his conclusions are not immediately
applicable to E(A,n, U(A, n)).

The possibility of introducing an energy-dependent
term into the zeroth-order Hamiltonian provides addi-
tional variational parameters. ' However, Eq. (10) for
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the energy is invariant under the simplest transfor- energy becomes
mation of this type'f, :

E=Eo+Q C,Cg[wp p, op+a (Geeqzyg+Geeseqy)
Ho+ W =Ho'+W',

H p'= Hp+ (is —1) (Hp —E),
W'= W —(is —1) (Hp —E)

p, —1= W — (Hp' —E).

(22)

p

2 G*Gq(eq wnq es*qg q)7/2 C C (28)

Equa, tions (9), (10), and (18) are still valid, but must
be supplemented by

& Cqrwpr pq+& (G*'»nq+Ge'»qp)

The proof of invariance follows immediately from the
formulas Q G G&(eq &pq es &&q) (E Ep)3~q7=0. (29)

These yield

/
62zy 62Zy7

&2Zy
p2

1 p, —1
/

eseq eseq+
p2

(23)

Equations (9), (18), a.nd (29) determine the energy
and the variational parameters G„C~, and U.)

In applications, the simplified formulation having
G,=G= (1—os/oq) ' may provide a convenient starting
point for a procedure of successive approximations.
Equation (29) simplifies to

/ /
62Zy &3Zy = 62Zg 63Zy

p
2

(24) 262 pq 62pq 63pq2 Cq Wop;oq+
1 es/eq (1—es/eq)

—(E Ep)b„q =—0. (30)
as in the more limited context of reference 3. Equation
(9) now requires G,'=isG, ; consequently,

P G, 'eq. ' ——P G,eq„
(25)2 G.'G.'(e».' —e».') =Z G*Gq(e".—so*.).

Z, Q

Also, in this formula, tion, Eq. (18) can be reducecl
to the quasi-explicit form

III. DEGENERATE CASE

The zeroth-order wave function Pp is given by

P,=P C,yo./LZ C,C,71, (26)

in which

Wp„W„p

E3'e2 —2CV2e3'
U=

2t Pseq —Eq'7
(31)

eqeo ——P CyCqesxqyq/P CrCry
(27)

a linear combination of the complete set of normalized
orthogonal functions Pp„belonging to the function
space defined by E„=Ep. Now we introduce the
notation

(W(~))p (W(g))
62zypq

(E E)q

Wp„S'„p
Pq ——P'

(E L~'.)'—
w, (w„„yU~„„)w„p

es'= 2'
(E E-) (E E-)— —

Wp (W +US )W p 1E'=

(32)

in which the prime on the summation symbol means
absence of terms with E„=Ep. Equation (4) for the

f Pote added in proof.—The transformation

Ho'=Ho+& (a'o —Z),
W'= W —&(Ho —Z) &,

yields
&o'= ~=p(Ho —E) (8'o—2+1/p, ).

All infinite sums occurring in the energy formula can be trans-
formed into forms suitable for numerical evaluation by the
method of reference 3 with the help of the identity

1 1
Hp' —E Hp —E Ho —E+1jp,

(E—E ) (E-E„)

A relation equivalent to Eq. (31) is discussed in
reference 4.

An even simpler and less accurate starting point is
given by the approximation of neglecting third-order
energy quantities in conjunction with

8 pp=—Xpp —U= 0, (33)

$ Tote added in proof. —Compare with Van Vleck's treatment
of degenerate problems t E. C. Kemble, The Princi &les of Quantu/n
Mechanics, p. 394 (1937)j based on the Schroedinger form for the
energy denominators.
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as in reference 3. Equation (29) is replaced by

Q C,((1+X)Xo,, o,+
—[E+(1+iVs)Xpp —Ep]b~p) =0. (34)

The perturbation operator is

W= V(q) —-,'h~q' —U
= V(q) —M—U. (37)

In nuclear problems, characterized by the presence
of a strong tensor component in W, Eqs. (29), (30),
and (34) yield mathematical formulations of Fein-
gold's ' "reduced tensor coupling" model.

IV. NUMERICAL EXAMPLES

The example of the deuteron may be used to illustrate
the theory even though other methods are more suitable
for an accurate treatment of the deuteron problem.
Following the procedure described in reference 3, we

choose for the zeroth-order Hamiltonian

A Gaussian radial dependence of the potential func-
tion simplifies the calculation of the needed matrix
elements. We choose

with

V= A exp( —a'rts')+8 exp( —b'r, s'),

1/b=2. 18X10 "cm,
a'= Sb2

8 (0 (attractive potential well),

A) 0 (repulsive core).

(38)

(39)

In terms of the dimensionless coordinate q, the potential
becomes

in which

Hp= —,'Aced(p'+q')+ U, (35)
with

V= A exp( —o.'q')+8 exp( —P'q'),

P'= (2h/Mco)b' n'= 8P'.

(4o)

(41)
q= (Mcp/2h)'r, r= rts,

p= i (2h/—M(u) &V,= iV p—

(36)
Numerical values are required for suitable xy compo-

nents of the quantities

ss—=E'
E—E n E—E

Voo'
+ L(M')oo —Moo' —2 (M V) oo+2Moo Voo],

E—Ep E—E2

Iw„, l

iV,—=P'
(E—E„)s

862

BE

Vpm Vmn Vnp 2Vpp v-o Vop'
es+XsU=

m, n (E E„)(E E„) E Ep (E Ep) 2

Vpp Mpp

(E—Ep)s

VpM „V„p Voo (M V) oo VooMoo
2" (E E)(E E„)— E —Ep E E—p—

(42)
2 Vp„(VM) p Vp„V p—Mpp P

E2 E m

Voo
((VM)oo VooMoo)

E—Ep

2 (M')p V„p (Ms) oo Voo (M V) oo Mpp Vpp—Mpp--
E—E2 m E—E E—Ep E E2

+ l (MVM)pp —2Mpp(VM)pp+Mpp Vpp] —
I (M )pp —2Mpp(M )op+Mop ].

(E—Es)' (E E)s

The separate xy components in the quantities listed above,

(W*)p (W") p

e" (W'e "HoW")opd)t,
E—E ~p

(W*)p (V—M) „(W&) p
e(x+k') E(Wee—xylo( V M) e

—&IIoWo)pg)hd) ~

mn (E—E )(E—E) Jp Jp

are evaluated with the help of the harmonic oscillator transformation' and the notation

&o~=&o—U, p= s)t~, y'= sX'htp, g= tanh2p, k= 1/cosh2p, g'= tanh2y', k'= 1/cosh2p, '.
7 A. M. Feingold and E. P. Wigner (unpublished calculations, 1950).
s A. M. Feingold, Phys. Rev. (to be published).

(43)

(44)
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Results are

15 (k)'"(1 1 )' (1 1 ) (1 1 ) k'
(exp( —~'q') exp( —»o )M')oo= —(&~)'I —

I I
-+—++

I I
-+—

II -+—+~' l—
16 42g) (2 2g ) E2 2g) 42 2g ) 4g'

(k)"' (1 1 q (1 1 ) k'
(exp( —n'q') exp( —XHo,) exp( —P'q'))oo=

I I I
+ +a'

l I + +&'
I

(2g) (2 2g ) (2 2g ) 4g'

3 (k )"'(1 1 ) (1 1 ) (1 1 ) k' - —'~'

(exp( —p'q') exp( —XHo,) exp( n—'q') M)oo= kooI —
I I

-+—+~'
I I

-+—+~' ll -+—++ I—
4 (2g) (2 2g ).E2 2g ) E2 2g ) 4g'

(exp (—P'q') exp( —X'Ho, )M exp( —XHo,) exp (—&'q') )oo

3 (k k')"'(1 1 q (1 1 ) 1(1 1) (1 1 q(1 1
=-~~l —,I I

-+—+~' ll -+,+~'
I

-I -+—,II -+—+~' ll -+ +P'
I

4 (2g 2g') E2 2g ) E2 2g' ) 2 (g g') E2 2g ) E2 2g' )
(k)'(1 1 ) ( k' )'(1 1—

I

—
I I

-+—+ '
I
—I, I I -+,+&' I, (43)

42g) k2 2g ) ( 2g') (2 2g' )
(exp( —ai'q') exp( —X'Ho, ) exp( —no'q') exp( —XHo,) exp( —no'q'))oo

(k k'q'" (1 1 q (1 1 y(1 1
22 &12 ~32

E2g 2g') E2g 2g' ) E2 2g' ) E2 2g )
(k) (1 1 q (k )'(1

611

E2g) (2 2g' ) (2g') (2 2g

The final integration with respect to X and X' (or p
and p') can now be carried out by a procedure which

restores the original form of the infinite sums, but with

all matrix elements replaced by explicit formulas. ' An
alternative representation of the integrals as power
series in (E U—

oo ko~) j—ko~ is also useful.
Tables I, II, and III exhibit numerical results for

two sets of force parameters chosen arbitrarily to give
eigenvalues between —2 and —3 Mev. In Table I the
interaction is purely attractive (A =0) and U is deter-
mined by the condition lVpp= 0. The sixth column shows

the remarkable increase in configuration mixing as
refinements are introduced into the first order wave

function. The physical parameters of Table I are re-

tained in Table II, but the former supplementary
condition Woo ——0 is replaced by BE/8 U =0. This change

almost doubles the required value of U. Now the second-
order energy is much larger than before, the third-order

energy is greatly reduced, and the optimum value of G
is close to 1. Results from varying both G and U are
not significantly different from varying G or U alone.

A substantial amount of short-range repulsive po-
tential is included in a second example (Table III).
The amplitude parameters G~ and G~ are associated
with A exp( —Sn'q') and 8 exp( —n'q') ——', hcuq', respec-

tively. Consideration of the expected behavior of the
wavefunction near the origin provides a simple inter-

pretation of the result G~ (1.The term

(A exp( n'q')) „o—

TABLE I. Energy eigenvalues for B= —41.1 Mev, A =0(lYpp=0). All energies are in Mev.

Method

E=Ep
E=Ep+ e2

E=Ep+ &2+ e3

E=Ep+e2(1 —e3/~2) '
E=Ep+ Ga~2a+ G~~~2~'

Correct value

—1.69
—2.21
—2.41
—2.53
—2.85
—3.0

Qp

—1.69
—1.68
—1.69
—1.69
—1.69

—0.63
—0.52
—0.52

—0.20
—0.20

0.010
0.010
0.028
0.051

13.3
12.4
12.6
12.6
12.6

Remarks

G= 1.64

Gg 2 2 1) Ggy 1 26

a Here Ga denotes variational coefficient of B exp( —p'q'), while GM is the variational coefficient of M.
b Estimated from Table III, H. A. Bethe and R. F. Bacher, Revs. Modern Phys. 8, 83 (1936).
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TABLE II. Energy eigenvalues for B=—41.1 Mev, A =0; adjusting U to minimize the energy. All energies are in Mev.

Method

E=Ep+ e2+ e3

E=Ep+ e2 (1—e3/e2)

—2.55
—2.56

E0

—1.69
—1.69

eg N2 —1

heal

—0.85 —0.01 0.029 12.6
—0.82 —0.03 0.029 12.6

Remarks

Upp= 1.95(Vpp —Mpp) = —40.1 Mev
G= 1.035, Upp= 1.92 (Vpp —3f'pp) = —39.5 Mev

TABLE III. Energy eigenvalues for B= —49.9 Mev, A = 105 Mev (Wpp ——0). All energies are in Mev.

Method

E=Ep
E=Ep+e2
E=Ep+e2+e3
B=Ep+ pp (1—pp/p2)

E=Ep+ G~e2~+ Gae2a'
Correct value

—1.65
—2.00
—2.14
—2.26
—2.57
—2.7~0.1

—1.65
—1.64
—1.64
—1.64
—1.64

—0.36
—0.36
—0.36

—0.14
—0.14

N2 —1

0.009
0.009
0.026
0.029

10.8
10.3
10.3
10.3
10.3

Remarks

G= 1.74
Gg =0.63, Gg= 1.40

a GA is the variational coefficient of A exp( —cr2q2), while GLf is the variational coefficient of both Bexp( —a2g2) and M.

in Eq. (2) is surely too large. This statement is proved
by the observation that the sign of lt near the origin
(with Gz= 1) can be reversed by making A sufficiently
large. The correct wave function approaches zero at
the origin as A is increased indefinitely, but never
reverses sign. Thus the factor G&(1 is required to
compensate for the incorrect behavior at the origin of
the wave function generated by the conventional first
order procedure.

V. CONCLUDING REMARKS

An "effective" interaction operator g appears in
Eqs. (4) and (29). This operator is defined by the
equations

Woy; oq= Woy; op+a LGp2eypq+G pesqpy]

—P G&„fes,„„q es.„„q] (—46).
The usefulness of the concept of an effective inter-

action operator depends strongly on the sensitivity of
the amplitude parameters G, to special features of
particular problems. The possibility that a fixed or
slowly varying set of amplitude parameters may be
satisfactory in the 1s and 2p shells provides a powerful
motivation for working out the properties and conse-
quences of this operator as fully as possible. Among

'A special form of the repulsive potential, Jz(r)=A, or~1
and Jz(r) =0, ar &1, may be used to discuss the limiting situation
A —+~. In this case AGg approaches a finite limit and all other
G 's approach limiting values. The energy formula also approaches
a definite limiting form. These results may be contrasted with the
failure of the energy formula E=Ep+ lVpp+ e2+ e3 O(A') in the
same limiting situation.

other properties we are interested in (a) the relative
importance of two- and many-particle terms in
when W contains only 2-particle operators, (b) the
magnitude of spin-orbit type components generated by
iteration of the tensor interaction, ' and (c) the relative
magnitudes of tensor-type components in 8 and lV.

A detailed comparison of the refined B-W procedure
with the Brueckner method' of computing stationary
state properties would have great value. However,
numerical results for such comparisons are not yet
available. The great power and elegance of Brueckner's
method, as evidenced in applications to the infinite
nuclear medium, has motivated recent attempts to
adapt it to the description of finite nuclei. ""These
attempts seem promising, but it is hardly possible to
be certain, at present, that the resulting formalism is
superior in accuracy or simplicity to the refined B-W
procedure in applications to low states of light nuclei
(especially in the range X+Z~16).

The "absence of clustering" advanced by Eden" as a
necessary condition for the accuracy of a practical
formulation of the Brueckner scheme may also be used
to support the neglect of fourth and higher order energy
terms as in the present discussion. A recent note on
the perturbation treatment of the nuclear many-body
problem bears closely on these controversial questions. "
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