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Derivation of Dispersion Relations for Forward Scattering*f
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The dispersion relation for forward meson-nucleon scattering is derived in the simplified case of scalar
neutral particles. Use is made of the local property of the nucleon field and of certain features of the mass
spectrum. In addition, it is assumed that the only singularities of certain matrix elements of the nucleon
field commutator are derivatives of finite order of 8 functions on the light cone. Under some further assump-
tions of existence, the dispersion relations for the derivatives of the scattering amplitude with respect to
angle at zero angle can also be derived.

'HK details of the dispersion relations for forward
scattering of mesons by nucleons have been given

by Goldberger' and Goldberger, Miyazawa, and Oehme. '
Since these relations seem to be experimentally con-
firmed, ' the question of whether they are rigorous con-
sequences of the local meson field theory has been of
considerable theoretical interest. The derivations of
these relations given so far' ' are known to be incon-
clusive.

In this paper we answer this question in the a%r-
mative and shall outline, under well-specified assump-
tions, the rigorous proof of these relations. '

To this end it will be sufhcient if, for the sake of
lucidity, we confine ourselves to the simple model of
the coupled fields of two scalar neutral particles, a
heavy one of mass M and a light one of mass p. For
brevity vie shall refer to these particles as nucleon and
meson, respectively. We shall observe the selection rule
that the matrix elements of the nucleon field operator
P(x) vanish if taken between two states each having
even or odd numbers of nucleons. (This is related to
but not implied by the fact that nucleons can be

produced only in pairs. A possible realization of this
selection rule would be by the introduction of a nucleon

spin. ) Bound states, e.g. , the deuteron, may exist.
The only properties of the mass spectrum we shall

actually use are that p, (2M and that any state of odd
nucleon number, if not the one-nucleon state, has a
rest mass greater than or, as in the case of the one-
nucleon-one-meson system, at least equal to 3I+IJ,.

We are using the 1, —1, —1, —1 metric; T is the
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' Anderson, Davidon, Kruse, Phys. Rev. 100, 339 (1955); G. F.
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time-ordering symbol; B~p is defined by

(p'k'ISI pk)= —i ~e'i'* &* (k'Iop(x)
I pk)dx

gpss —OO

e'""Bzo(k'IP(x)
I
pk)dx

+i e*&'*(O'I O(x) I pk)dx

=(P'k'I Pk)+i(2 )'&(p'+k' p k)——

&(k'Io«) IPk) (2)

Since we assume invariance of the theory under space-

6 E.g. , Lehmann, Symanzik, Zimmermann, Nuovo cimento 1,
205 (1955).

7 F. E. Low, Phys. Rev. 97, 1392 (1955).

f(x)~*C(x)=f(x) —a(x) C(x) —f(x),
~So BXp

and O(x) by
( cP

O(x) —=
I

— +~—m2 Ip(x).)BXp'

) is the true vacuum state.
I k), I p) are states of one

meson or one nucleon, respectively, with the indicated
four-momenta.

I pk) is a state of an ingoing nucleon
and an ingoing meson, etc. We adopt the usual con-
vention that all one-particle states are defined to be
invariant under space-time inversion. The x dependence
of P(x) is given by

P(x) =exp(i(Px)P(0) exp( —i(Px),

where 5' is the total four-momentum operator, and
similarly that of O(x). We impose the causality condition
that the nucleon field be local, i.e., that

I P(x),P(x'))=0 if (x—x')'(0.
The 5-matrix element for scattering of a nucleon of

momentum p and a meson of momentum k into a
nucleon of momentum p' and a meson of momentum k'

is given by"
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time inversion, the scattering amplitude

n'I, ' » —=(k IO(o) Ipk)

is symmetric. (Here we may subtract the vanishing'
quantity (O'I k)(I O(0) I p) at will and carry through the
following manipulations with its inclusion, without
hereby affecting the final result. ) We furthermore have

e '"' B*o(k'IO(0)f(x) Ik)dx

=i ~I e
—*& a*o(k'I TP(x)O(0) I

k)dx
~g—+—00

components of p, and, by reasons of invariance, may
be written as a polynomial in p(k —k') and p(k+k')
with real kk'-dependent coeflicients. Since p(k —k')
=kk' —p,', that variable can be omitted. The trans-
formation p—+—p, k~k' shows that p(k+k') can only
appear squared. The integral may therefore be written
(RL(p(k+k'))', kk'] In t.he decomposition

TO (x)0(0) = -,' (—1+signxo) LO(x),O(0)]+O(x) 0(0),
(3)

the last term of (5) does not contribute in (3) since
intermediate states of odd nucleon number and mo-
mentum k' —p do not exist. Specializing now to forward
scattering, we have

e '"* it*o(k'Ip(x)O(0) Ik)dx T„„,k (R(4—(pk)'; p') =T»t„

=i e'"*(k
I LO(x),O(0)] I

k)2 '(1+signxo)dx. (6)

X(k'I TP(x)0(0) Ik)dx

We write the invariant quantity T„&~„ in the rest
system of the meson. &u

—=pk/ti is the nucleon energy in
this system. We have, replacing x by —x,

=i l e 'i'*(O'I TO(x)0(0) Ik)dx

e '"*Bxo(k'
I I P(x),0(0)] I k)dx. (3)

T„=
J F(oi,r)dr,

0

F(oo,r) —=4mir(~' —M') l sinL(oP —M' )'r]

(7)

Contrary to the procedure of Low' and Goldberger, ' we
have fixed the meson and set the nucleon free. The
reason for this will be apparent later.

Formulas (2) and (3) may be expected to hold even
if there are bound states. In order to show this, we
remember that actually the validity of

f f
I
pk)= lim T ' dxoi e '"*8*of(x)Ik)dx (4)+~0@

is sufficient for that derivation. By use of (1), the right-
hand side of (4) is easily shown to be an eigenvector of
p with eigenvalue p+k, and adopting the weak-
coupling treatment of the bound state problem by
Nishijima one may show that the right-hand side of
(4) actually represents the properly normalized state
of two ingoing particles as expressed by the left-hand
s&de.

The last integral in (3) is real. Because of the com-
mutator condition, the matrix element and its deriva-
tive must be linear combinations of spatial 8 functions
and derivatives thereof of finite order. (The occurrence
of derivatives of finite order only might be taken as
substantial supplement to the definition of a local
field. ) The integral then becomes a polynomial in the

X ~ e'"'(p, OI I O(t, x),0(0,0)]I Otal)dt (8).
0

Although T, as it stands in (7), is meaningful only
for aP& M' (because of the exponential factor if
oP (M'), F(oi,r) is definable by (8) for all values on the
real axis and in the upper half co plane. Since the
integral actually extends only from r to infinity, the
factor exp(ioir) could have been taken out and the
exponential increase of the integral function (co'—M') &

XsinI (coo—M') &r] in the upper half-plane is just com-
pensated. We may furthermore assume that the matrix
element of the commutator is continuous inside the
light cone so that, as a consequence of the Riemann-
Lebesgue Lemma, ' the asymptotic behavior of F(a&,r)
for co~~ is governed by the singularity of the com-
mutator on the light cone." If one inserts in (8) a
derivative of 5(t' —r') of order n ~& 0, one finds an asymp-
totic behavior like cv" '. Since, as before, an infinite n
would not correspond to a local theory, the multipli-
cation of F(cu,r) by a finite number of factors

[(oi+ib„)' a']—' ti )—0

will suSce to secure the asymptotic vanishing of the

~ E. C. Titchmarsh, Theory of Fourzer Integrals {Oxford Uni-
K. Nishijima, Progr. Theoret. Phys. (Japan) 10, 549 (1953); versity Press, Oxford, 1937), p. 11.

12, 279 (1954); 13, 305 (1955). ' E.g. , H. Lehmann, Nuovo cimento 11, 342 (1954).
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F(cdp, r) + dog
Re = P I—

II[(kpp+ib, )p —ap] n & kp
—

kp p

product so that the Hilbert relation" holds:

F (cu,r)
Im

II[(~+ib.)'—a']
or, with b„~+0, a„)0,

kdp
—Qg 2 kpdcd Im F (cd,r)

Re F(up, r) =P Re F(a„,r)g +—II(cpp' —a,.')P
r Xgr gr —gg K v kp —

kpp II(kp —a )

(9)

Im T„o2 —g p,
2 2 f~

o)Cko
Re T, +Re T „ I—I ——II(kpp' —ap)P '

r ~~ ap —a),' ~ ~ ~M ~' —~p'II(~' —a,')

Here we have used the easily established fact that Re F(cd,r) and Im F(cd,r) are even or odd functions of the real
variable ko, respectively.

We now perform on (9) the r integration required by (7), choosing cdp) M. This integration certainly commutes
with the or integration in the region ~ &~Sf. For the sake of simplicity, we choose all a„)M and are left with the
integral from 0 to M:

kpdkp sinh[(M' —cp') &r] t
+"

=4II(kpp' ap) —rdr ' II(cd' —a„') '
~l

e' '(tk, OI [O(t, r),O(0,0)]Itk,0)dt. (10)J ~P ~„P „(Mp ~P) $

In order to obtain the dispersion relation we are looking
for, we have to evaluate the right-hand side of (10)."
This we shall accomplish by shifting the ~ path in such
a fashion that we can perform the r integration under
the co integral. This, of course, requires some knowledge
of the commutator since an analytic continuation of
the u integrand has to be carried out. Splitting the
matrix element and inserting a complete set of states

which we label by f, with energy kp» and momentum k»,
we get for the matrix element in (10):

+{exp[ i(kp»—tk) t] exp[i(kp» —tc) t7}

Xexp(ik». r) I(kp», k»IO(0) Itc,0) I'.

Carrying out the t integration and remembering the
selection rule, we obtain from the first exponential

Sin{[(cp+tk)' —M'r]&}
2~ b(~+t k«) I (km k» IO—(0) It 0& I',

M» =M [(cd+tk)' —M'r]&

where k»p= (cd+tc)' —M' and only the one-nucleon
intermediate states contribute. We shall show later
that the nucleon-meson matrix element

oR(cd)[=(cp, kIo(0) Itk, 0) (12)

is an analytic function in the cut ~ plane; the cut goes
from —pp to —M; OR(kp) is real on the real axis from
—M to + m and increases at infinity at most like a
finite power of kp. OR(cp)', which we can insert instead of

I
OR(kp) I' because of the reality of OR(kp) in the required

~ange M &~kp&M+tk, then has the same properties.
With the normalization factor adapted to our choice
of the wave functions (2~) '5(k»P —M')dk», i.e.,

(2~) '
I
k» I b[

I
k» I

—(k «P M') &]d
I
k—p» I dk«,

and from (11) and (12) we obtain for the right-hand
side of (10):

2 c
"

»
~

kpdkp [OR(kp+tc)]' sinh[(M' —cp') &r]
—II(cdp' —a„') dr sin{[(kp+tk)' —M ]~r

~
p ~ ~ „kpp —kpp' II(kp' —a,') (M' —kp') &

The exponentially decreasing part of the hyperbolic sine can be integrated at once to give

1 t
~ cddkp [OR(kp+tk)]' [(cd+tc)'—M']&

GOp 8
~~ „kp' —kpp' II(kp' —a„') 2kpp, +tk' (Mp —kp') &

(13)

"See Chap. V of reference 9.
'~ Equation (10) and the method we have used to derive it are due to R. Oehme, Nuovo cimento (to be published). The author is

indebted to Dr. Oehme for communicating these results to him prior to publication.
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For the remaining integral, we write

1 piCku exp{i(cp' —M') ir —iL (co+p)' —M']lr)
—P(ppp' —aP) dr Re t DR(co+p)]'.

r "u—~
—0 (- -M)-n(- —;) (14)

Here we have chosen the cuts in such a way (Fig. 1)
that the square roots behave at infinity like ro and
cu+p, respectively. The original integration path AB
is indicated in the figure. We deform this path into
the path ACDEB, where C lies arbitrarily between
ip = —p/2 and &u= —M on the real axis and the quadrant
DE is removed to infinity. CD and EBlie at Re p~ (—p/2

+M

the r and the co integration. In order to show this, we
consider the r integral as the limit as R—+~ of the
integral with the finite upper limit R. On CD and EB
the integrand is an exponentially decreasing function
of r. On DE the integrand is exponentially increasing.
But there the r integration gives the factor

exp( —i((~+p) '—M'] iR+ iLip' —M'] &R) —1

=exp[ ipR—,'yM—'—Rip ' —]—1,

~ —P I Cln e

B

E

and by shifting the quadrant DE to values
~

~
~

&M(pR) &,

without hereby altering the value of the integral, this
factor is made bounded so that the contribution from
DE vanishes if we have introduced so many auxiliary
denominators that

lim g ~~
—'~ ~mt(pp+p)~'(~.

t

FIG. 1. Integration path for (14).

or Imago&0, respectively. The residues at coo and a„
have to be written separately. We now observe that
along the segment AC of the real axis the integrand in

(14) is imaginary so that this part can be omitted. This
is the decisive point of our method. (Note that there
are no poles on AC.) Along CDEB we can interchange

Then also the limits of the contributions from CD and
EB exist. The residues at coo and a„are purely oscillatory
in r and have to be evaluated for instance in the sense
of an Abelian limit. (This is justified if we keep in
mind that our earlier interchanging the t, r integration
and the summation over intermediate states neces-
sitates such a precaution. The use of the Abelian limit
would also simplify the discussion of the"contribution
from DE but there it seems to be less motivated. ) The
result of this limiting process is, apart from the con-
tributions from the residues, the integral

1 r &Ae [5E(co+p)]' (~ —M )k+L(u+&) —M ]l—g(cpp2 —aP) Re -Xj cDEB ~ ~p (co M )' i(2ipp+p2)g(happ —a„~)

We now deform the path CDEB back into the path
CAB. The contributions from the poles at coo and a„
cancel the separately calculated terms. The contri-
bution from AB is immediately seen to be just the
opposite of (13). Along CA the integrand is imaginary
so that only a small half-circle in the lower half-plane
around the pole at co= —p/2 contributes. This half-
circle then gives for the right-hand side of (10) the

result

1 ~pp' —aP LOE(-', p)]'
&p2 g 2

Inserting this into (10), introducing the meson energy
in the laboratory system cp'=a&p/M, defining [~(p/2)]-'
=g'Mp, u»ng (6), and adding Im T~p. , we obtain

0 (vp" —aX" p'/(2M)
T., =(R(4M' " p') —P Gt(4M'a" y')Q +P Re T .' Il —g'

V XQv Qy gg v &«co,"—a)," (p'/4M') —ppp"

Go Q 2 Go de) Im T„
Xg +—II(~p"—a„")&, , (15)

(p'/4M') —a„" 7r ~ j„co"—(happ'+ip)' g(ip" —a„")
V

where o. (cg') = ipse '(cg"—M') & Im T~. is the total cross section. In (15) the first two terms on the right-hand
side cancel each other as soon as the number of pairs of auxiliary denominators is greater than the degree of the
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real polynomial (R(4M'p~p'P; tiP) of ~pp". Equation (15) is just the Goldberger dispersion relation for our model. It
shows that the scattering amplitude T„may be analytically continued from arguments on the real axis co &~p onto
the entire cut pp' plane with the cuts from —pp to —ti and from +ti to +~. It possesses a pair of poles at
p~'=+ti'/(2M), increases in infinity at most like a finite power of ~p'P, and the values in the left and right
half-planes are connected by T„=(T „") . This latter property establishes the crossing theorem which, without
reference to the analytical continuation, would be a meaningless statement.

We finally have to prove our assertions below (12) about the analytical properties of (~p, k~0(0)
~
p, 0) which

have been of importance in our method. To this end we write, in analogy to the treatment of the scattering
amplitude in (3) to (8),

mt(pi) = i— e'"" '" * Bzp(
~
TP (x)O(0)

~ p,0)dx

fl

=i e'"' '"'(~ [O(t,r),O(0,0)]~p,0)-,'(1+signt)dtdr —i e'"' '~' 8 (~ [P(t,r),O(0,0)]~ti, 0)dr.
~&0

The last integral again is a real polynomial in or. The other integral may be written

r
" sin[(co' —M' )'r]

rdr ' ie'"'(~ [O(t, r),O(0,0)] ~ ,ti)0td
~ p (p~' —MP)'* ~ p

The imaginary part of the t integral turns out to be

sin~kr~r—vr Q [B(kpr —pi) —8(kpr —@+co)]((O(0)
~
kprkr)(kprkr ( O(0) ( p,0).

r fkr/r
(16)

Because of our selection rule, this expression certainly vanishes in the region —M& p~ & (M+@) since the matrix
element of O(x) between the vacuum and a one-nucleon state vanishes. ' Consequently we can at once perform
the r integration on the equation which corresponds to (9) since the critical region —M &pp &+M is completely
empty. Furthermore, the resulting 5[~kr

~

—(ipP —M')&] rules out contributions from the first 5 function in (16)
and our assertions about 5R(pi) immediately follow from the relation for this quantity which we obtain instead of
(15). (Such a simplification does not occur if we analyze the matrix element of the meson field operator between
two one-nucleon states. This is the reason why we fixed the meson in our treatment and not the nucleon as in
Goldberger's. ')

UVe shall add a few remarks on the derivation of the dispersion relations for the derivatives of the scattering
amplitude with respect to angle at angle zero. These relations cover all dispersion formulas which have been made
use of so far in meson-nucleon scattering.

We first rewrite (3) in the center-of-gravity-system of the ingoing and the outgoing meson. In this system the
meson energy is E=-,'[(k+0')']& and the spatial meson momentum k and —k, respectively. The initial and final
nucleon energy is pp= p(k+0 )/(2E). We furthermore introduce cylindrical coordinates r, z, pp with respect to the
axis k. With earlier mentioned simplifications (3) takes the form

with

T„,e—(R(4E'p~p; 2E' p') = T~, e= ]I rdrF(&u—),E,r—),
0

(17)

F (co,E,r) =2~iJpPr (cu' M—' E'+ti') &]— —

00 )+
dte' ' ) «~k~-'k+rni

d.(E, —k[ Ol-
E2 2 ) E 2

'k+rn q
(Ig)

2

where n is a unit vector perpendicular to k. As a consequence of the commutator condition, F(cv,E,r) is analytic in

the upper half co plane and increases in infinity not stronger than a finite power of pp. So we get instead of (10)
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the equation
cop Gg 2 a)dao Im T„,~

Re T„,z —2 Re T... v II ——II (p)o' —a,')
"&"8, —Qy ol " 'I (E2+M' —v&)& p) —Mp II(p) —G„)

QP c„4p

(' (z~+,&2 „~)) (pd(p los (E' p'p—+M' ~')&7—(
+"

=2 II(~o' —o.')
~

~+(x) (t alki 'k+rn) )r t alki 'k+rn)
X ds E, —k 0I —,

I OI ——,—
I

Ek
E2 2 ) L. 2 2 )

(.( '+ ' —&" oodp) IpLr(E' —p'+M' —p)')&]
=8pr'II((pp' —a ') I rdr ) P 5(p)+E kpr)f)(lkl 'k kr)

~ o ~ —(~'+~ — )) ~ ~o II(& & )

(19)

X&ol r(kprp —Mrp) l](E, —k
I 0(0) I kor, kr&(kor, kr

I
0(0)

I
E, k&

where we have introduced the usual decomposition of the matrix element, made use of (1) and ca,rried o« th«
and s integrations. M~ is the rest mass of the intermediate states.

For an easy survey of the contributions to the right-hand side of (19), we introduce the variables

v:E(p/p —and QP—:ko =EP—t(P

The energy in the center-of-mass system is

W= (2t(v+M'+p'+26') &

and the scattering angle in this system is

6=2 sin '(Whl (t(v+LP)' —M't('] &)

In the "physical region" defined by p) ~&(E'—t('+M') & or

v&t 'I (M'+~')(t '+~')]'—=v-'. ,

we obtain for Im T„,E——Im Tv (;,vt„e.g. , from (3), with an obvious generalization of (4), the equation

Im Tv (, vt, =— ~e+" ~v' *(O'I LO(x/2), 0(—x/2)]I k)dx
2

= p(2~)' E ~(kr p k) (T~r—, "—)*T~r,.~

and this, of course, coincides with the expression for the unitarity of the Smatrix which we obtain directly from (2):
(p'k'l~t~lpk)=(p'k'Ipk&=(p'k'Ipk&+t(2~)'~(p'+k' —

p —k)I T.', ,k (T k, 'k')*

—&(2~)' Zr t') (kr p k) (T~r, v ~ )—*T~—„,v~],

since the unitarity of the S matrix is a direct consequence of the presupposed completeness of the states of both
ingoing or outgoing particles.

In the "unphysical region" v&v;„, where the x integration cannot be carried out completely, there are con-
tributions to the right-hand side of (19) from kpr )~Mr, this means

v )~ p '(p'+ L) P) &Mr —p —ti, 'LV —= v;„(Mr),

whereas the extrapolation from the physical region would have given a 8 function at

v (Mt) = -', p
—'(Mrp —M' —p') —p 'LV & v;„(Mr). (20)

This function and the various regions are indicated in Fig. 2.
As one easily finds in a way entirely analogous to the forward scattering case, the contribution from the one-

nucleon intermediate state is
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and therefore can actually be described by a pair of poles at the locations we get from (20) for Mr ——M. Equation
(19) now takes the form

2 2 2 i2

vo —ar' 1 g M14 ( 5 ) 2 p" vdv Irn T„om
«T",o —Q «T., * Q +-

~
1+2—i

——Q(,P —„")P
2 (-,'p+a'/p)' —v' ( p')

=84r' Q (vo' —a„"), rdr
V

~ &min

v2 g 2+p pmin (Mg) v vp

vdv Ip[rp(v . '—v') (y'+6') —
$
-b[(~'+~') '+»(~'+~') ' —&prj

X&(~k~ 'k. kr) jp[r(&or' —Mr' )*)((44'+6')&, —k~0(0) ~4r, kr)(&or, kriss(0) ~

(p'+&')&, k). (21)

Since we do not yet know the analytic properties of
the matrix elements that appear on the right-hand side
of (21), we make use of the following device: The left-
hand side of (21) being finite, the r integral on the
right-hand side must converge. So we may perform it
in the Abelian sense without committing an error.
Owing to the convergence factor exp( —or), «)0, we

can interchange the r and the v integrations provided
that p(v; —v') &(p'+)V) & (o. Since o~+0 this means

v; —v;„(M+4i) (oo/(2M) and therefore, as seen
from Fig. 2, necessitates a restriction to the derivatives
of T, ~~ with respect to iV at 6'=0 or, in the center-of-
mass system, with respect to angle at angle zero. If
the limit &~0 exists, it necessarily is the correct result.
Now from

1'I

Physicol Regio~ -~
Region

e '"jp(ar) jp(pr)rdr=26(a' —b'),
Fro. 2. "Physical" and "unphysical" regions of the

variables 6', v in (21).

we derive

lim e "Ip(ar) jp(br)rdre~ j

defined by
8

Im T„o~——Im T„,;„,o~+ (v —v;„)—Im T„,o4

t9v

or, more suitably, by

+' ' '

=2&(b&)y2a&b'(b') ya4b" (bo) y" .,

where Ip(ar) is understood to be defined by the series

Ip(ar) = 1+ ', a'r'+ 1/64a'r4+-

and the required derivatives are supposed to exist.
This means that we may perform the r integration on
the right-hand side of (21) as if v) v; provided that
we use the resulting formula only in the sense of the

power series in LV or, expressed geometrically, in the
infinitesimal neighborhood of the forward direction.
The integration clearly gives a similar integral as on
the left-hand side of (21), extended from

v(M+i4) =M I4 'LV—
to v;„where in this unphysical region Im T„&~ is

III1 Tvr, 0= III1 Trr, p+i III1 Tg, o + ' '

a p

As long as these derivatives exist, the resulting formulas
must hold. These are just the dispersion relations for
the derivatives of the scattering amplitude with respect
to angle as considered by various authors. "' The
remaining difhculty is that we do not yet know whether
the needed derivatives at 8 =0 do exist as a consequence
of causality alone.
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