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Ferromagnetic Resonance in Metal Single Crystals*
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Microwave susceptibility expressions for ferromagnetic resonance have been derived for metal single
crystals possessing crystalline anisotropy. Crystals of uniaxial and cubic magnetic symmetry are considered.
When the magnetization M is aligned with the applied field I, the results are equivalent to those of Kittel.
When a simple multidomain structure occurs on a crystal face, two resonances are found for a given H.
These correspond to microwave excitation being perpendicular or parallel to H. These multidomain reso-
nances are related to H, saturation magnetization III, anisotropy parameter E/3E, and the ratio of skin-
depth to domain width. Thus domain spacings can be inferred from microwave measurements. In particular,
predictions of the theory are compared with the microwave measurements of Kip and Arnold and magnetic
domain pattern observations in the literature. Secondary resonances found in Ni by Reich can also be
attributed to a multidomain structure.
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Derivations of the ferromagnetic resonance relations

applicable to single crystals with magnetic anisotropy
have been given recently by Smit and Beljers, ' Zeiger, '
and Suhl. 4 Extensions to simple multidomain configura-

tions have been given by Smit and Beljers, ' Nagamiya, '
and by Artman. ' The above analyses refer to noncon-

ducting ferromagnetic substances for which propaga-
tion-depth effects are usually ignored so that the dc and

rf demagnetizing factors are the same. In this paper we

will modify the analyses so as to apply to conducting

ferromagnetic media. Formulas will be given for crystals

of cubic and uniaxial magnetic symmetry.
The susceptibility tensor derivation follows from
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I. INTRODUCTION

HE tensorial properties of conducting ferromag-
netic media have been used by Young and

Uehling' to describe resonance phenomena observed in
microwave cavities. The Young and Uehling deriva-
tions were given for microwave magnetic suscepti-
bilities of the form

examination of the free energy. First, orientation of the
magnetization M necessary for static equilibrium in the
presence of a dc magnetic field H is determined. The
tensor susceptibility components (2) are then evalu-
ated from consideration of small gyrations of M about
the equilibrium direction. The propagation relations
and the cavity perturbation equations are next ob-
tained by the procedure of Young and Uehling. When
the crystal is a single magnetic domain and H is applied
along a principal direction, the results are equivalent
to those derived first by Kittel. ' Simple structures in
which the crystal is composed of many magnetic
domains are also considered. Observations made by
Kip and Arnold' in Fe, by Reich' in Ni, and by Ohtsuka"
in Co are compared with theory.

II. SINGLE-DOMAIN ANALYSIS

(a) Cubic Crystal-Disk in (011) Plane

Consider a thin disk lying in a (011) plane as shown
in Fig. 1. 8 lies in this plane and is inclined at the
angle P to the L1001 axis. M is inclined to the $100j
axis at the angle 8. The azimuth of M with respect to
the L010$ axis is p. The free energy per unit volume,
considering just first-order anisotropy and magnetic
contributions, is

F= -'EqLsin'(28)+sin48 sin'(2p) j
MHfcos8 cosP+sin8 si—nP sin(4'w+@)$

+& X4~M'[rs cos'8+sr, sin'8 sins (sr 7r+p)

+ (1—2e) sin'8 cos'(-'~+p) j (3)

where E& is the first-order anisotropy energy constant
and 4m' is the demagnetization factor in the plane of

' C. Kittel, Phys. Rev. 73, 155 (1948).' A. F. Kip and R. D, Arnold, Phys. Rev. 75, 1556 (1949).
9 K. H. Reich, Phys. Rev. 101, 1647 (1956) and private com-

munication."T. Ohtsuka, Technical Report No. 187, Cruft Laboratory,
Harvard University, August 30, 1953 (unpublished).
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the disk. The angular derivatives of the free energy are

BF/Bg= pE tI 2'sin4& sin'gj
—MH sing sinlt cos(~22r+$)

—22rM2(1 —322) Sin'8 Sin(2'2r+2&), (4)

BF/Bg= srEtL2 sin4g+4 sin'8 cosg sin'(2g)$
—MHL —sing cosf+cosg sing sin(x22r+Q))
+22rM2L —22 Sin28+22 Sin28 Sinp(-'2r+Q)

+ (1—222) Sin28 COS2(~pr+P)$.

At equilibrium, BF/Bg=BF/OP=0. These relations are
SatiSfied by p= ~2r and the equatiOn

MH sing —8)=Ei sin8 cosg(3 cos'8 —1). (5)

Lineup of M with H can occur only for roots of the
equation sin8 cosg(3 cos'8 —1)=0, namely, 8=0, pr/2,
cos '+-'

To evaluate the tensor components and resonance
relations, second-order derivatives must be calculated.
Since the rf fields are confined to a very small depth,
the e6ects of dynamic demagnetizing fields in the plane
of the metal can be ignored. The rf demagnetizing
fields perpendicular to the plane of the disk do not
enter as such but will be accounted for later by the
boundary conditions at the metal-air interface. %e
consider a thin lamina in the interior of the specimen
parallel to the plane of the disk. . In Eqs. (4) H is re-
placed by the internal field H', where H'=H —42rM22.

The angle f between the L100] axis and H is replaced
by f', the angle between the [100] axis and H'. The
demagnetization term involving 3P is dropped. The
second-order derivatives of these modified equations
evaluated at &=2r/4 are

O'F'/Bg'= ErL12 sin'0 —13 sin'8+2)
+MH' cos(f' —8),

O'F'/BqP =2Ei sin'8+MH' sing sing',
(6)

O'F'/808$ =0.

F has been replaced by Ii' in these equations. The
resonant angular frequency co' follows from the equa-
tion' 4:

where
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in which coo is the microwave angular frequency and
1/yT the ferromagnetic resonance breadth. Young and
Uehling have considered plane wave propagation in
metals whose magnetic properties are specified by the
tensor (1).As shown in the Appendix, their formulation
can be carried over to media specified by the more
general tensor (2). For rf propagation in direction 2 and
surface excitation in direction 1, the perturbation on
the cavity is

(1) happ ( c

& g& cpp & 42rM per &

(1+xii) (1+x22)—K"*
X j

1+x22
(10)

where o. is the conductivity. If, in (7) and (9),
(1/M sin28) (B2F'/BqP) is replaced by (1/M sin'8) (O'F'/
Bps)+42rM, then the resulting expression for 1+xii is
found to be identical with L(1+xii) (1+x22) K ]/
(1+X22) in Eq. (10). Hence the perturbation of the
cavity is governed by

where y is the gyromagnetic ratio. Axes (1,2,3) are
selected: (1) normal to M and in the plane of the disk;
(2) perpendicular to the plane of the disk; (3) parallel
to M. With reference to this system the susceptibility
tensor elements are:
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FIG. 1. M and H in cubic crystal, disk and H in (011)plane.

Situations in which M is parallel, or almost parallel, to
H are frequently of interest. If the quantity P—8—= e
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and is inclined at the angle C to the L100] axis. M is
inclined at the angle 8 to the [010] axis. The azimuth
of M with respect to the L100] axis is p. The expression
for the free energy per unit volume is

F=4E iLsin'(20)+ sin'8 sin'(2P) ]
—MHLsin0 cos(C' —Q)]

+-', X47rM'Le sin'0+ (1—2e) cos'0] (17)

The equilibrium relations, OF/O0=OF/8&=0, are satis-
fied by 0= sr/2 and

MH sin. (C —P) = rsEi sin4&. (lg)
FIG. 2. M and H in cubic crystal, disk and H in (010) plane.

becomes small,

M can line up with H only at P values of 0 and 4r~.

Analogously to (6) in part (a) we obtain

El 1
e= —X—sin0 cos0(3 cos'0 —1).

3f II

To the first order in e ..

H' cosQ' —0) =H —4mMe,

H' sing'/sin0= H+He cot0 —4~Mn.

(13)

(14)

=Et[2—sin'(2P)]+MH' cos(C ' —g),
80'

=2Ei cos4&+MH' cos(rf ' —P),

=0
7

(19)

Formulas (6) through (12) are modified accordingly.
In particular, formula (12) becomes

(M 'i Ei—(12 sin'0 —13 sin'0)+H —4m.Me
M

where C' is now the angle between the L100] axis and
O'. With reference to axes (1,2,3) selected as in part
(a) the susceptibility tensor elements are now

4mM( 1 O'F'1
Xll

D (M O0')
El

X —(2+3 sin'0 —7 sin'0)+H+4~M 47rMe . (—15)
M
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4~M I' up 1 q

j~rp=j Irsr =j K=
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D &»T)(2Ei
X1 +H+4~M-4~M~ I,)E. u where D is given by (9).

For rf excitation as in part (a), the expression
I (1+x»)(1+x»)—K']/(1+yss) in (10) becomes
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When the angle C —p=—g becomes small, then to firstEquations (15) and (16 are the Kittel lineup formulas. or er snq

(b) Cubic Crystal-Disk in (010) Plane

The development is very similar to that of part (a).
We now refer to Fig. 2. II lies in the plane of the disk

E i ( 1 sin4$ q
ri=

H' cos(C ' —p) =H —4a-Me.

(23)
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Equation (22) becomes

l(& l fEi
I

—
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=
I
—(2 —»n'20)+H+4~M —4~M~

IE~ ) Fxo. 3. M and H in uniaxial
crystal, disk in plane containing

(Ei symmetry axis. H in plane of disk.
X
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Relations (14) apply and the resonance formula (12) is
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Equations (25) and (24) are the Kittel formulas. (2Ei

X
I

yH+4~M —4~M~ I,
EM )' (31)

X (H+4 M 4M'). —

Equations (30) and (31) are the lineup formulas.

(c) Uniaxial Crystal-Disk Containing
Symmetry Axis [00.1] 2Ei

We now refer to Fig. 3. H lies in the plane of the disk "0=
I I

=
I +H 4irMi's

I

and is inclined to the symmetry axis at the angle P. 2 (p) I M )
M forms the angle 0 with the symmetry axis and is
inclined to the disk plane at the angle P. The free
energy per unit volume is

MH sing —0) =Ei sin20. (27)

Lineup of M to H can occur only for 0 equal to 0
and -,'ir. Corresponding to (6) in part (a), we obtain:

O' F'/O0'= 2Ei cos20+MH' cos g
' —0),

O'F'/OqP =MH' sin0 sing',

O'F'/O0O@ =0,

(28)

where f' is the angle between the symmetry axis and
H'. With reference to axes (1,2,3) selected as in part
(a), the susceptibility elements are given by (8) and
(9). Equations (10), (11), and (12) apply also. When
the quantity f 8= sbecomes s—ma—ll,

E, p1
sin28 I.

MEH j (29)

F=Ei sin'0 —MH(cos0 cosf+sin0 sing cos$)
+-,'X4irM'[e cos'0+ m sin'8 cos'Q+ (1—2e) sin'0 sin'P).

(26)

The equilibrium relations, OF/O0=OF/Op=0, are satis-
fied by &=0 and

O'F'/80' = —2K,+M (H 4rrMn)—
O' F'/8&' =M (H 4rrMe), —

O'F'/808/ =0
"R.M. Bozorth, J. phys. radium 12, 308 (1951).

(33)

(d) Uniaxial Crystal-Disk Perpendicular
to Symmetry Axis

Since none of the tensor elements is zero, the calcula-
tion for the general case cannot be treated by the
simple methods given by Young and Uehling. Observa-
tions of Williams on cobalt reported by Bozorth"
indicate that a simple one-domain structure does not
exist at low magnetic 6elds; the general calculation
therefore will not be attempted. However, if a magnetic
field greater than (2Ei/M)+47rMe is applied in
the plane of the disk, then M can line up with H in
stable equilibrium. Under these conditions the free
energy per unit volume,

F=Ei sin'0 —MH sin0 cosQ
+-', X4~M'[(1—2e) cos'0+m sin'0], (32)

is in equilibrium at &=0 and 0=-', ir. Angles are defined
as in (c) above. The second-order derivatives are
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Fro. 4. Multidomain structure in cubic crystal of negative
anisotropy. H in (011jdirection of disk in (01T) plane.

Relations (20) through (22) apply so that the reso-
nance frequency observed for excitation perpendicular
to H and in the plane of the disk is given by

(te) ( 2El
+H+4n M (1—n) 1(H 4s-Mn—) (34))&&)

III. MULTIDOMAIN ANALYSIS

In Part II we have considered examples in which the
direction of magnetization was constant throughout the
specimen. Such simple structures frequently do not
exist when the applied held is relatively small. Instead,
patterns are found in which the crystal is composed of
many magnetic domains —the direction of magnetiza-
tion varying from domain to domain. As expected, these
multidomain structures correspond to lowerfree energies
than the single-domain structure. Fairly simple multi-
domain structures occur when H is applied along
certain of the principal directions. The theoretical
and experimental situations have been reviewed re-
cently by Stewart. " An earlier review was given

by Kittel. " In many instances the crystal is com-

posed principally of an alternating sequence of just
two varieties of domains. These two domain varieties
correspond to two easy axes of magnetization being
equally close to the direction of H. The ferromagnetic
resonances expected in such structures have been given
for certain nonconducting crystals. Smit and Beljers'
derived the relations for uniaxial BaFe»O». Xagamiya'
considered the case of tetragonal symmetry and applied
his results to observations on Fe304 made by Bickford.
Artman' has applied Smit's method to ferrite crystals
of cubic symmetry. We shall consider the case of
conducting ferromagnetic crystals in this section.

Cubic Crysta1s of Negative Anisotropy

(a) Disk in (011) Plane H in [011)Direcfi—on

When a field 8 of moderate strength is applied in
the [011j direction of a (011) crystal face we would

'~K. H. Stewart, Ferromagnetic Domains (Cambridge Uni-
versity Press, Cambridge, 1954)."C, Kit tel, Revs. Modern Phys. 21, 541 (1949).

The first term represents first-order anisotropy en-

ergy; the second, the magnetostatic interaction; the
third, the demagnetization energy for the average
magnetization on the surfaces of the specimen; and
the fourth, the demagnetization energy of poles on the
domain walls. The angle nomenclature corresponds to
that used previously in Part II. For equilibrium,
BF/881 BF/88s= 8F——/Bgr BF/Bgs 0——These eq——uat. ions
are satisfied by pl=ps=4rs. , 8=8r=s —8s, and

t' El
H=

I

——(3 sin'8 —2)+4n.Mn
I

sin8.
t M

(36)

Since the applied field I and the average magnetiza-
tion are collinear, the internal field B'=H—471-3Ee sin8
= (3 sin. '8 —2)

I
El/M I

To evaluate the higher order derivatives we proceed
as in Part II. II is replaced by H' and derivatives of
the surface demagnetization term are dropped entirely.
The dynamic demagnetizing fields on the domain walls,
however, do contribute to these derivatives. We shall
assume that the static demagnetizing factor E can be
replaced by a dynamic demagnetizing factor Ã'. E'
can be approximated from the static solution for an
ellipsoid whose axes are proportional to domain length,
domain width, and skin depth. Smit' has shown that

expect a magnetic structure to be essentially that of
Fig. 4. The two types of domains correspond to mag-
netizations which tend to lie close to the two nearby
body diagonals in the disk plane. The scale of the
domain pattern is fixed by conditions at the boundaries
of the specimen where the main domain structure is
modified to avoid local demagnetizing fields. As de-
scribed in references 12 and 13 these calculations in-
volve consideration of additional domain wall energy
and magnetostrictive energy terms in the free energy
expression. In the derivations presented in this and
subsequent sections we will regard the domain width
as a fixed parameter. This domain width will be as-
sumed constant throughout the specimen; the domains
will be assumed to be equal in volume. The anisotropy
and magnetostatic contributions of just the major
domains to the free energy will be considered when
calculating equilibrium and resonance conditions. Such
a simplified treatment is adequate in accounting for the
essential features of ferromagnetic resonance observed
in a multidomain structure.

Accordingly, the free energy per unit volme, F, is

F= s El[sin'(281)+ sin'8l sin'(2/1)+ sin'(28s)

+sin'8s sin'(2&s)] —-', MH[sin81 sin(ss. +fr)
+ sin8s sill (~4s+ys) $+-', 7rM'(n (cos8ly cos8s)'

+ (1—2n) [Sin81 COS (sar+ Jr)+ Sin8s COS (s s-+ps) )'
+n[sin81 sin(srs. +fr)+sin8s sin(-„'rr+Ps))'}

+ss M E[sln81 sin(4gl+pr)
—sin8s sin(-,'s-+ps)]'. (35)
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the oscillating charges on the domain walls couple the
gyroscopic precession of the magnetizations in such a
way that two resonant frequencies are found for a given
II. These correspond to microwave excitation parallel
or perpendicular to the domain walls. In our notation,
the formulas of Smit are:

(a&) s 2 (BsF BsF

Ey) ~ M EB8l' B8igg, ) ~H [100]

with

( 2 i (O'F' O'F' i
xI . , II + I, (3v)

&M sin'8) (Opp Ortp&gps)

foii]

Fzo. 5. Multidomain structure in cubic crystal of negative
anisotropy. H in $100j direction oi disk in (01T) plane.

O'F'/88 '=-'E&[2 cos48+sin'8(3 —4 sin'8))

+ ', MH' sin8+—s.M'E' cos'8,

O' F'/ Bgi Ogs=rr3PIP cos'8,

O'F'/Bg p = Eisin48+ ——,'3II'H' sing,

O' F'/ O& iB& ——s 0.

The plus and minus solutions correspond to excitation
parallel and perpendicular to the domain walls. The
susceptibility tensor elements are dehned with refer-
ence to the following coordinate system (1,2,3): (1),
normal to H and in the plane of the disk; (2), per-
pendicular to the plane of the disk; (3) parallel to H.
The nonzero tensor elements are:

where

(rp) '- 2 (O'F' O'F'
+ I+4~M

M sin'8 &Oyp Oy, gy, )

2 (O'F' O'F'
q+ I. (42)

3II E Bgi Ogiggs)

For propagation in direction 2 and excitation along 3,
the cavity perturbation (see Appendix) depends upon
1+xss.

(b) Disk in (011) P/ane Hire [10—0) Directional

4s.M 2 (O'F' O'F' )+ I
sin'8,

D~ M sin'8 (Ogp Bplggs)

AM 2 (O'F' O'F' )

D+ 3f E. Bgg 80+02

AM ( ~oj"»=j"»=j~=
I j +

D, E&

(39)

There are four easy axes of magnetization nearest
the [100) direction of an (011) surface. Two of these
lie in the (011)plane, two in a plane perpendicular to it.
When a su%ciently high field is applied in the [100)
direction, the magnetic structure would be expected to
consist largely of two types of domains in which the
magnetizations lie in the plane of the disk. . See Fig. 5.
Using the same nomenclature as in part (a), the free
energy is

where

4n.M 2 (O'F' O'F'
I
cos'8,

D M sin'8 EBPP Bgiggs)

1 2olp

D.= I

—
I

—
I

—
I + +j

E&) &sTs
(40)

F= s El[sin'(28i)+ sin'gi sin'(2/i)+ sin'(28s)

+sin48s sins (2$s)]—
s MH [cos8i+ cosgs)+ sr sMs

(1—2n) {singi cos (sr sr+pi)+ sing, cos (sr s-+p.,))'
X +e(cosgi+cosg&)'

+e{sing& sin(i~+pi)+sings sin(-„'~+Ps))
+—,'s.APE [cosgi —cosgs)'. (43)

For rf propagation in direction 2 and surface excita-
tion in direction 1, the cavity perturbation is given by
(10). Hence the perturbation of the cavity depends
upon:

(1+xii) (1+xss)—~'

The equilibrium conditions are satisfied by 0&=02=0,
y, =-.'~, y, =5~/4, and

H= —(Xi/M) cosg(2 —3 sin'8)+4vrMe cosg. (44)

The internal field is II'=II—4~Me cos0. The second-
order derivatives are

1+xss
2 ( O'F'

I
+4m M sin'8

M sin'0 EOy,gy, &

(ol 'l (Mp ) 1 2cpp

I
—

I
-I —I+ +i

Ey) ~ & 7) y'Ts 7T

(41)

O'F'/O8P= 'Xi[2 cos48+sin'8(3 —4 sin-'0))

+ ', MH' cosg+~3P1P sin'8, —

O'F'/88iggs —s-M'cV' sin'——g,

B~F /Bpp= El sill 0&

O'F'/O&iB&s =0,
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FIG. 6. Multidomain structure in cubic crystal of positive
anisotropy. H in $1017 direction of disk in (010) plane.

Here, the plus and minus solutions (37) correspond,
respectively, to microwave excitation perpendicular and
parallel to the domain walls. The nonzero tensor ele-
ments are

4m-M 2 (O'F' O'F' )
+11 I

cos'8,
D M sin'8 & Oct P O&,Ops)

Equilibrium is obtained for Hr ——Hs=m/2, p=pr=m/2 —q4
and

Et sin4&
+47rMn cos(-,'m —ct).

2M sin(~r pr —ct)
(50)

The internal field is H'=H —4mMn cos(~~7r —g). The
second-order derivatives are

Fig. 6 is expected for moderate values of H. Using the
nomenclature of II(b),

F= ~~E&I sins(28t)+sin'Ht sin'(2ct t)
+sin'(28p)+ sin'gs sin'(2' s))
——',MHLsing, cos(~~—Q,)+sings cos(-,'~ —Qp))

n(singt cosset+sings costs)'
+-', wM' +n (sing t since t+ sings sinct s)'

+ (1—2n) (cosgt+ cosgs)'

+-,'7rM'EI singt cos(-,'pr —$t)
—sings cos(~r7r —

ct s))'.

4s.M 2 (O'F' O'F' )x»=
D M & OHP OgtOHs)

O'F'/Og~' ——-'Et [2—sin'2p)+ —', MH' cos (47r —P),
O'F'/88rOgs 0, ——

O'F'/OQP=Er cos4$+-', MH' cos(4r~ —Q)
+m.MUr' sin'(4~ —

ct ),
OsP/OgtO&s mM'Ã' ——sin'(-'m. —P)

4m.M( cop 1 ij'»=j'»=j"=
I j +

&T)

47rM 2 (O'F' O'F'
~+ I

stn'0,
D+ M sin'0 &O&p OprO&s)

The plus and minus solutions for (cp/y)', Eq. (37)
correspond, respectively, to excitation parallel and per-
pendicular to the domain walls. The nonzero tensor
elements are

where D~ is given by (40). For rf propagation in direc-
tion 2 and surface excitation along 1, the cavity per-
turbation depends upon 4~M 2 (O'P O'F'

~

,+ I

s' '(-' +4)
D+ M ( OHP OgtOgs)(1+xtt) (1+x»)—s'

1+X22 4~M 2 (O'F' O'F' ~

,+D~ M (Ocjlp OprOps)
2 (O'P O'F' )

47rM —
I

— I+4~M cos'8
.M sin'8 t Oct p OptOps) (52)

4m.M ( cpp 1 )
jlcts=j~sr=jlc=

I j—+ I
sin(-, ~+&),

D, &»T)
(47)
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where

(cd) ' 2 (O'F' OsF' )
I+4 M

M sin'0 (OPP O&tOP, )

(1+Xrt) (1+Xss)

where D~ is given by (40). For propagation in direction
2 and excitation along 1 the cavity perturbation de-

2 (O'F' O'F' ) pends upon
(4g)

M EOHP OgrOHs)

For propagation in direction 2 and excitation along 3,
the cavity perturbation depends upon 1+xps.

Cubic Crystals of Positive Anisotropy

Disk in (010) Plane Hin
I 101)Direction—

Since the
I
100) and I 001) directions are easy direc-

tions of magnetization, a structure sj~jlgg &o that of

1+X22

2 (OsF' OsF' )
4~M —

I + I+4m.M sin (-,'vr+Q)~ E ()01 $01&I92)

(col '
(cope

' 1 2cppI-
I
-I —I+ +j

(~) + ( ~) &sTs

(S3)
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where [OO Il

foI)' 2 fO'F' O'F' )+ I+4 M
Ey) + M EO813 O8IO83)

2 ~BF 8PX, i' +
M sin'8 k OQI' OrtIIOQ&l

For propagation in direction 2 and excitation along 3,
the cavity perturbation depends upon 1+7t33.

H = [(2EI/M)+47rMri] sin8. (56)

The internal field is JI'=H —4+Me sino. The second-
order derivatives are

O'F'/O81' =EIcos28+-',M'H' sin8+ zM'N' cos'8,

O'F'/O81883 IrM'N' cos'8—,—
O'F'/Oqhts = ',MH' sin8, —

O F'/8@ IOrtis =0.

(57)

The plus and minus values of (oI/y)', Eq. (37), corre-
spond, respectively, to ex'citation parallel and perpen-
dicular to the domain walls. The tensor elements and
the cavity perturbation relations follow from (39)
through (42).

RY AXIS

QoIj

Uniaxial Crystals

(a) Disk iI3 Plane Coritairsirig [00 1j Axis H il T—his
Plane arid Normal to [00 1]Axis

As indicated in Fig. 7, a simple multidomain structure
may be expected under these circumstances. If angles
are defined as in II(c), the free energy per unit volume is

F= sEI[sln 81+S11183j
—-', MII[sin81 cosIt I+sin83 cosp,j
+—,'z-M'[Is(cos81+ cos83)'+ri (sin81 coster

+Sin83 COStt 3)'+ (1—233) (Sin81 Sin/I
+sin83 sings)'7+ ,'IrM'N-

X [sin81 cos&I—sin83 cosmos]'. (55)

Equilibrium is achieved for 8=81 ——z.—83, &I——ps ——0, and

Fzo. 8. Multidomain structure in uniaxial crystal. Disk
and H in (00.1) plane.

(b) Disk aIsd H iri (00 1) Plarse

The domains will be assumed to be thin sheets whose
planes are perpendicular to H. This structure, depicted
in Fig. 8, is the same as that proposed by Smit and
Beljers' for BaFe»O» under similar experimental con-
ditions. If 8~ and 02 are the inclination of the magnetiza-
tions measured from the symmetry axis and &I and ps
are the azimuths measured from the direction of 8,
the free energy is

F= 3+1[sin 81+Sill 83]
——',MH[sin81 COSQI+Sln83 Cospsj

Is (sin81 sin&i+ sin83 sings)'
+ IsirM' +ri(sin81 cospt+sin83 cosmos)'

+ (1—2rI) (cos81+cos83)'
+-', IIM'N[sin8I costi —sin83 cosmos]'.

Equilibrium exists for 8=81——Ir —83, $1=$3=0 and H
given by (55). The internal field H'=H47rMn sin8.

' —
The energy derivatives are given by (56). The (oI/y)~'
solutions, (37), correspond, respectively, to excitation
parallel and perpendicular to the domain walls. The
tensor components and cavity perturbation formulas
follow from Eqs. (52), (53), and (54).

IV. EXPERIMENTAL RESULTS

The magnetic structure in the (010) face of iron, a
positive anisotropy crystal, has been studied exten-
sively. Domain patterns in Fe single crystals have been
examined with powder pattern techniques by Williams,
Bozorth, and Shockley" and by Bates and collabora-
tors."A theoretical analysis of the expected patterns
has been given by Keel." Ferromagnetic resonance
observations at 23.675 and 9.260 kMC/sec were made
on a (010) face of a Si-Fe crystal by Kip and Arnold. '
They found the angular variation of resonance 6eld at
23.675 kMC/sec to correspond to the Kittel formula.
At the lower frequency, deviations from the expected
angular variation and an additional resonance peak
were noted. See Figs. 9 and 10. This secondary reso-

Mg

FIG. 7. Multidomain structure in uniaxial crystal. Disk in
plane containing f00 1j axis. H in this plane and normal to
$00 1) axis.

I4 Williams, Bozorth, snd Shockley, Phys. Rev. 75, 155 (1949).
"L.F. Bates and F. E. Neale, Proc. Phys. Soc. {London) A63,

374 {1950);L. F. Bates and C. D. Mee, Proc. Phys. Soc. (London)
A64, 129 (1952)."L. Noel, J. phys. radium 5, 241, 265 (1944).
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nance was observed when the field was along a L101]
direction.

At the higher frequency, the relations given in Sec.
II(b) apply. The value of H in relation to Ei/M is
such that the angle between M and H is at most two
degrees. Equations (23) and (24) can be used; no sig-
nificant deviations from the Kittel formulas are ex-
pected. The 9.260-kMc/sec data are much more inter-
esting. From the resonance field at qb equal to zero, the
main resonance field point at &=45', and the value of
3I1=1575 gauss/cm' the following crystal parameters
are derived:

Itr/~= 193 oe, Ei ——3.04)(10 ergs/cm', g= 2.18.

CQ
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The angular variation of resonance fieM predicted by
(22) and these parameters is in accord with the experi-
mental observations in Fig. 9. The explanation given by
Kip and Arnold for the field deviation is essentially
equivalent to this except that the distinction between
H and H' and 4 and 4' is not always clearly drawn.

The multidomain analysis of Sec. III provides a
satisfactory explanation for the secondary resonance.
From the experimental data and relations (50) and
(54) Q is found to be 19'11', and A"' is 4.59&&10 '. If
the domain length L is much greater than the domain
width m and microwave skin depth 8, 2V' is expected to
equal 8/(8+to). The skin depth 5 is given by

2 ) * 1

E oiso.les i [(p,""+p,")-'+fr, "]-'*

where p, ' and p,
" are the real and imaginary parts of

(53). Using a DH of 400 oersteds, fr," at resonance is
found to be 270, 8 is 1.67)&10 ' cm and the value for
m is then 3.47)&10 ' cm. The magnitude of the second-
ary resonance peak relative to the primary is about
one-half the expected value. (See Fig. 10.) This can be
accounted for by a spread in domain spacing of &30%
about the center value 3.47&(10 4 cm, a not unlikely
result. The value of z predicted by Neel's formula in
the central portion of the disk is about one-seventh the
microwave value. This is not too disturbing since

80
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w 400r
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FIG. 9. Resonance magnetic field vs angle between applied
field and L100) direction in Fe crystal, where frequency is 9.260
kMc/sec —adapted from Kip and Arnold, reference 8.

Fro. 10. Resonance absorption curve at 9.260 kMc/sec showing
double peak which occurs when C is near 45' —adapted from
Kip and Arnold, reference 8.

powder-pattern observations"" have only confirmed
Neel's theory qualitatively. Apparently it is very
dificult to obtain a specimen fulfilling the ideal condi-
tions considered by weel. Williams et al. ,

"for instance,
observed spacings five times as large as expected.
Bates and Neale" observed spacings in closer agree-
ment with the theory, but did not find the spacings to
be proportional to L' as predicted by Neel. Bates and
Mee" found the L' formula to be valid but, found the
domain widths to be four times larger than anticipated.
The theoretical formula was derived for a rectangular
specimen; the domains of closure at the edges of the
circular sample used by Kip and Arnold may be
modified sufficiently to account for the observed dis-
crepancies. Finally, Kip and Arnold give evidence
indicating that the crystal surface was strained. They
felt that the e8ects of strain played a minor role in the
resonances, this may not be true in the multidomain
region. In summary, the Kip and Arnold data are in
reasonable agreement with the concepts presented in
this paper. Curves of resonance frequency vs magnetic
field for the single and multidomain regions are shown
in Fig. 11. The numerical data correspond to that of
Figs. 9 and 10.

Powder-pattern domain observations on (011) sur-
faces of negative anisotropy crystals have been made
by Bozorth and Walker, '~ Williams and Walker, "and
by Bates and Wilson. " Bozorth and Walker investi-
gated the patterns found when H was applied along a
[011]direction of a 60—40 Co-Ni crystal. Williams and
Walker saw similar patterns in a pure Ni specimen,
reporting spacings of the order of 10 ' cm. Microwave
investigations of these particular structures have not
been reported. Bates and Wilson" found spacings of
the order of 10 ' cm when H was applied along the
L100] direction of an (011) Ni specimen. Bates and

'~ R. M. Bozorth and J. G. Walker, Phys. Rev. 79, 888 (1950).' H. J. Williams and J. G. Walker, Phys. Rev. 83, 634 (1951).
'9L. F. Bates and G. W. Wilson, Proc. Phys. Soc. (London)

A66, 819 (1953).
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Wilson suggested that the Ni domain structure corre-
sponded closely to that proposed by Neel for (010) Fe
specimens but did not attempt domain width calcula-
tions. Reich' has recently investigated ferromagnetic
resonance in (011) plane nickel specimens at tempera-
tures ranging down to 77'K at 9.00 kMc/sec and 4.2'K
at 24.30 kMc/sec. At 9.00 kMc/sec Reich observed
secondary resonances in the L100] direction at low
temperatures. The specimens used at 9.00 kMc/sec
were in the form of strip-line resonators. The crystal
orientations of these strips and the design of the ap-
paratus did not permit resonance observations in the
(011] direction. Interpretation of the secondary reso-
nance data is difficult since the [100]direction was not
parallel to the axis of any of the strips. Calculations
made from Reich's 130'K observations suggest a
domain spacing of 5&&10 ' cm but this must be re-
garded as highly speculative.

Ohtsuka" has reported on ferromagnetic resonance
absorption at 24.00 kMc/sec in magnetically uniaxial
Co at temperatures ranging from 180' to 380'C. The
dc magnetic field was applied parallel to the long axis
of the rectangular specimens used. Since the crystal
symmetry axis was not parallel to the specimen axis in

any of the samples, Ohtsuka's data must be corrected
for the inclination of M to II in a manner similar to that

24

of Sec. II(c). These calculations are extremely tedious
and have not been attempted. The anisotropy constants
and g values reported by Ohtsuka may require signifi-
cant correction. Ohtsuka did not report any second-
ary resonance peaks. Other than those observed by
Williams, " no Co domain patterns have been reported
in the literature.

Smit and Beljers, in their work on BaFe»O», ' ob-
served ferromagnetic resonance in a multidomain
structure when the microwave 6eld was perpeeChcular
to the domain walls. No such resonance has yet been
observed in any other ferromagnetic substance. As can
be ascertained from the example of Fig. 11, these
resonances occur at frequencies often far below those
for which the microwave field lies parallel to the domain
walls. Many of these ferromagnetic resonances are, in
addition, very broad —this would make detection of the
perpendicular field resonance difficult.

P 11
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APPENDIX

Consider a medium specified by the microwave
susceptibility tensor (2). The corresponding perme-
ability tensor is obtained by adding unity to the
diagonal elements, yielding
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For single-domain analysis, the coordinate system is
defined as follows: (1), normal to M and in the plane
of the disk; (2), perpendicular to the plane of disk;
(3), parallel to M. For the simple types of multi-
domain structure considered in this paper, M is re-
placed by H in the above definitions. The microwave
quantities b and h are then related as follows:

6]=p] phd
—JK]2h2

~2 j&21hl+ti22tt2

63=p33h3.

(60)

I

For plane-wave solutions of Maxwell's equations for
a highly conductive medium, one has

VX e= —(1/c)Bb/Bt, V'X h= (4ra/c) e, (61)

b= bp exp[jpit —P(n. r)],
h= hp expL jpit —P(n. r)],
e= ep expLjpit —P(n. r)],

aild

I, I I

2 5 4 5
H FIELD IN UNITS OF Kt/M

where

lI, bp ——P'[n(n. hp) —hp],
) cep= —jpiPLhpX n],

X= —jco4ira./c'.

(63)

Fio. 11. Resonance frequency es magnetic 6eld curves at C =45'
computed from Kip and Arnold data. For propagation into the metal, e~=e3=0, e2= 1.
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Two solutions are found from (63):
(1) Parallel excitation:

e2
——e3——hi= h2= 0,

(1~
) GOp

cavity perturbation is

P„'=—A,@3',

e, /ha= joiP„/Ac.

(64) C2

4' GOpo

(Pl sin n+P~ cos'tr) hp'ds, (66)

(2) Perpendicular excitation: where hl, is the normalized unperturbed field for the
mode h in which the cavity is oscillating. If 1/Qp is the
real part of (66) when @11=+22= ass = 1, K12= K21 =0, then

h2 j (K21/822) hl

Pl = X (+11@22 K12K21)/+22)
(65) ( 1) Ao1p 1 c

(Pl sinsn+P„cosset). (67)
LQ) Cpp Qp (22lo1pp')'

es/hi —— j~P,/7 c—.
The above analysis is an extension of that given by

For rf excitation at the angle 0. to direction 3, the Young and Uehling.
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Triple Acceptors in GeIlllanium

H. H. WooDBURY AND W. W. TYLER
General Electric Research Laboratory, Schenectady, Eem Fork

(Received September 28, 1956)
/

Both copper and gold introduce three acceptor levels in the forbidden band of germanium. In addition to
the levels at 0.04 ev and 0.32 ev from the valence band, Cu introduces a third acceptor level at 0.26 ev
from the conduction band. Identification of these levels has been made for a series of samples in which the
Cu concentration was varied from 10" cm ' to 2)&10" cm . Evidence is presented confirming Dunlap's
observations that Au introduces a donor level 0.05 ev from the valence band and acceptor levels 0.15 ev
from the valence band and 0.20 ev from the conduction band. In addition to these, Au also introduces a
third acceptor level 0.04 ev from the conduction band. Studies of charged impurity scattering indicate that
both Cu and Au sites may be triply charged by compensation. The observation that impurities with an s'
configuration are triple acceptors is consistent with the hypothesis that the tendency to form tetrahedral
bonds determines the acceptor action of impurities in Ge.

I. INTRODUCTION

'LEMENTS of the third column of the periodic
~ table with a ssp' configuration act as single ac-

ceptors in germanium introducing the familiar hydro-
gen-like states 0.01 ev from the valence band. Recent
work on "deep level" impurities' has shown that
elements with an s' configuration act as double-acceptor
impurities in germanium. The assumption that such
impurities are substitutional leads to the generalization
that their acceptor action is determined by the tendency
to complete the tetrahedral bonding arrangement with
the four nearest neighbor germanium atoms. An exten-
sion of this generalization suggests that elements with
an s' configuration might act as triple-acceptor im-

purities in germanium. Two impurity elements with an
s' con6guration, copper and gold, have been studied
by several workers. However, published results show
some disagreement and incompleteness.

' See W. W. Tyler and H. H. Woodbury, Phys. Rev. 102, 647
{1956),and references quoted therein.

Early experiments' showed that copper diffuses
rapidly in germanium, that it acts as an acceptor, and
that it can account for many effects of heat treatment.
An energy level associated with copper was observed
at approximately 0.04 ev above the valence band in
germanium. ' ' The existence of a deeper level was
deduced from measurements of the lifetime of minority
carriers in copper-doped germanium. ' The presence of
such a level, near the center of the forbidden band, has
been indicated by several workers employing various
techniques. "' Battey and Baum clearly demonstrated
the existence of this second acceptor level and located

' C. S. Fuller a,nd J. D. Struthers, Phys. Rev. 87, 526 (1952);
W. P. Slichter and E. P. Kolb, Phys. Rev. 87, 527 (1952).' F. J. Morin and J. P. Maita, Phys. Rev. 90, 337(A) (1933l.

4 W. C. Dunlap, Jr., Phys. Rev. 96, 40 (1954).
5 Burstein, Davisson, Bell, Turner, and Lipson, Phys. Rev. 93,

65 (1954); W. Kaiser and H. Y. Fan, Phys. Rev. 93, 977 (1954).
'Burton, Hull, Morin, and Severiens, J. Phys. Chem. 5?, 853

(1954).
7 H. B. Briggs, reported in reference 6. See also D. H. Rank

and D. C. Cronemeyer, Phys. Rev. 90, 202 (1953) for studies of
"thermiated" germanium.


