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An attempt is made to give a phenomenological approach to a unified field theory by imposing four
restrictions based on known experimental and theoretical considerations. The first two criteria, namely,
that for weak electromagnetic fields the unified equations obey the flat space principle of conservation of
energy and that the first-order corrections to Maxwell's equations not violate known experiments con-
cerning the electron, lead to the requirement that a microscopic length appear in the Lagrangian. The
remaining two conditions are a correspondence principle constraint for determining the form of the amenity
and a gauge invariance condition. These four restrictions lead to a Lagrangian. The gauge invariance
requirement forces the existence of a cosmological term. The field equations have been investigated for the
spherically symmetric static solutions around a point electron. They lead to hnite Coulomb energies, the
microscopic length acting as the cut-oR parameter.

1. INTRODUCTION

VER since Einstein's fundamental work in general
' ~ relativity appeared, attempts have been made to

generalize it in order to include, within a single geo-
metrical framework, both electromagnetic and gravita-
tional phenomena. In recent years, approaches have
tended towards broadening the geometrical foundation
of space-time by assuming the existence of asymmetric
afFinities and metric tensors in order that the antisym-
metric 31axwell field be included in a natural fashion.
This is, indeed, the next step in generalizing Riemannian
geometry (though wider generalizations involving pro-
jective geometries may be considered) and we will

restrict ourselves here to theories of this kind. Within
this framework, then, the question arises as to what
general considerations can be imposed to limit the pos-
sibilities available, in this fashion obtaining a pheno-
menological approach to unification.

Before turning to a detailed discussion of these
points, it is perhaps important to ask why one should
attempt to unify two theories which at first glance
appear to have only one feature in common in that they
both deal with macroscopic range (massless) fields.
First, from the viewpoint of general relativity, it is well

known that the general theory is incomplete as it
stands. It derives a geometrical quantity representing
the gravitational phenomena, E„„——,'g„„E, which is pro-
portional to the stress-energy tensor, T„„.The latter is
not determined by the theory and thus when distributed
energy is present in space one does not have a complete
set of equations. On the other hand, for point singu-

larities, the dynamics is completely determined by the
geometry. ' It is natural (though, of course, not logically
necessary) to try to extend the ana1ysis so that both
sides of Einstein s equation are obtained from a geo-

metrical idea when the source term is a field. The inclu-
sion of electromagnetic phenomena is thus a first step
in this direction.

Second, it may be observed that electromagnetic
effects have already entered into the gravitational theory
in that a light ray is assumed to travel along the null

geodesic. Thus the equations of motion for "ray optics"
has already been included within the geometrical ideas
of the general theory. In order to better understand this
assumption, it would again seem reasonable to try to
include "physical optics" within the same framework
as the gravitational phenomena.

As a final point, it may be noted that if the above
arguments suggesting a connection between the Maxwell
field and general relativity are valid, the electromag-
netic field is in the unique position of being coupled both
to the macroscopic gravitational phenomena and the
microscopic charged fields. It has recently been sug-

gested, also, that the inconsistencies discovered in

quantum electrodynamics may be removed when gravi-
tational eBects are included. Since one of the roles of
classical theory in quantum mechanics is to furnish

one with a Lagrangian to be quantized, a deeper study
as to what that Lagrangian is (and how it is modified by
its interaction with the gravitational field) may prove
fruitful.

2. PRELIMINARY THEORY

Recently Gupta and Kraichnan' have given an alter-
nate derivation of general relativity based on Lorentz
covariance rather than general covariance. Briefly, if
one assumes that the gravitational field is represented
by a spin-two particle, one might write down the fol-

lowing Lorentz covariant field equations for free space:

2$yv O . B„k""=Q~ Now at Department of Physics, Syracuse University, Syracuse
10, New York.
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Since the only divergenceless symmetric tensor available
is the stress-energy tensor, T&", the sources of the gravi-
tational field must be T&". Further, since it is the total
energy that must be conserved, any inhomogeneous
term inserted on the right of Eq. (1) must include the
stress-energy of any external fields present plus that
carried by the gravitational field itself. Equation (1)
can be generated by some Lagrangian I.o, from which
one can derive the energy tensor TOI"' representing the
gravitational field. Thus to next order, one amends
Eq. (1) to read

'h»"= T»" (2)

The procedure may now be continued [by finding an
I.i which generates Eq. (2)] and in this way one obtains
an infinite series representation of the Einstein equa-
tions

R„„——,'g„„R=0,

For the usual ChristoA'el affinity, 7 „ is a gradient and
thus R„„does indeed vanish. In order to obtain an anti-

symmetric tensor, this suggests the adding of a con-
tribution to the usual affinity such that F „ is no longer
restricted to being a pure gradient. We therefore assume
that the affinity is given by

where
r .,=c.,+ r,~ .,

aii= 2g (gas8+, g8~a, gass), (9)

where
& "t«D"in]= ~ "~kc'i, ]+8'f.p (10)

(11)

Thus space is flat only when both the gravitational
field and the electromagnetic field, f„„, vanish. The
contracted tensor becomes'

In terms of the new affinity, the curvature tensor
becomes

where'
z„.[r.,„] z„,=[c,„]+f,„=z„,+f.„ (12)

R„„=8-„„.= —r-„„.+r-„., „+r&.„r-„,—r&.,r-„„,
(4)

g» =&«» +/ »i»R= g&'R„„,

and g&" is the Lorentz metric. The basic ingredients that
go into the derivation, thus, are the spin of the field
and conservation of energy.

One may well ask what such an approach leads to
when one considers the combined gravitational and
electromagnetic equations, i.e., when one starts the
analysis with Eq. (1) and

f»" =0 f»"=q"q"iif s f =A

One must now a,ugment Eq. (2) with an extra term of
the form x[ f» f"—&&« ti+—4&r«»'f"f &r«, i«, ii] and even-
tually the entire Lagrangian with the term ——', &~(

—g) «f„„
Xf pg» g"s One thus i.s lead to the field theory equa-
tions:

Equations (6) are, of course, quite well-known repre-
senting the simplest generalizations of Einstein's and
Maxwell's theories according to the principle of equiva-
lence. It is not a unified theory in that a geometrical
interpretation of the electromagnetic field has not been
made. However, one may easily be found in the fol-
lowing fashion. Even with a symmetric affinity, the
contracted curvature tensor is riot necessarily sym-
metric, the antisymmetric part being given by

Rpy F @el& p F yry p,

'The comma denotes ordinary differentiation, A, =8A/8x,
while A, or A~ will be retained for covariant derivatives with
respect to a specified aKnity.

R„„—-', g„„R= —~T„„

xl f.-f sg—'+—lg"f-f-tg g'7, (6a)

(( g) «g"g"'f-~7—=o (6b)

Choosing a Lagrangian density of the form

~=(—g)'g'~- IX'.]—l(—g)'~.-& g""g' (»)
to be varied with respect to g„„and F„one obtains Eqs.
(6) (provided one measures the electromagnetic field,

f„„,in units such that f„„=&i'f»,).'

3. CONDITIONS ON THE CHOICE OF LAGRANGIAN

Though the theory discussed in the preceding section
does not disagree with any of the well-known experi-
mental tests of Maxwell's and Einstein's theories, ' it is
somewhat artificial in construction. In view of the fact,
however, that Eqs. (6) depend mainly on the flat
space concept of conservation of energy, they can act
as a guide to the formulation of a more satisfactory
theory. We thus adopt as our first assumption':

A.—Any theory should reduce to the theory of Eqs.
(6) (perhaps with a cosmological term) to a first
approximation for weak electromagnetic fields.

We have required that Eqs. (6) be satisfied only for
weak fields since the arguments leading to the form of
the electromagnetic stress-energy tensor are based
essentially upon the principle of equivalence and may
not be valid for fields where space is more strongly
curved.

' The second contraction gives nothing new since B—4Rpv.
7 While it has not been shown that the choice of amenity, Eq.

{8),is the only one that will generate Eqs. {6), the simplicity of
these equations make it hard to see how anything more compli-
cated could be used.

For electronic charge and mass, the warping of space causes
deviations at r 10 '4 cm.

That the Einstein-Strauss theory does not satisfy this assump-
tion has been first noted by A. Papapetrou, Proc. Roy. Irish
Acad. A52, 69 (1948).
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Electromagnetic theory has been quite successful, of
course, within its domain of validity. One must there-
fore require that any new unified theory not disturb
this. Coupled with the procedure of quantization this
domain of acceptability of Maxwell's equations seems
to be down to within at least 10 "cm of the electron.
We thus further assume

B.—First-order corrections to the Coulomb field of
the electron should not become appreciable for
r&10 "cm.

Conditions 2 and B do not at first sight seem to be
very restrictive. However, we will try to indicate how
the simultaneous validity of both 3 and B implies the
necessity of a microscopic constant appearing in the
Lagrangian while B alone implies the necessity of
measuring the electromagnetic field in microscopic units
for many schemes.

Let us consider a theory built from an asymmetric
a%nity and metric tensor. Presumably g„„will be related

to the electromagnetic field while g„„will be gravita-
tional potential. One has, according to condition 3,
then, that for weak g„„

aP
+pv(gap) kgpv+(gap) = Tyv(g ~g ) ~ (14a)

pa vP

[( detg-)—'g g g-el (14b)

where T„„is a tensor of the same structure as the bracket
on the right-hand side of Eq. (6a), i.e., quadratic in

g e. If one relates the electromagnetic field f„, to g„„
via the equation"

gatv= i tv)

"It is irrelevant to this argument whether g„, or its dual is the
Maxwell field.

where a is a constant, then clearly u=~. First-order
corrections to Eq. (14b) will arise, perhaps, through
replacing the determinant there by det(g e+g e). For
an almost flat world (g e—rl e), this gives a correction
term of 1+O(g e'), where O(g e') is of order g e'. Thus

the change is roughly given by g„P =af P =~f 2. But
aJ„. is not dimensionless [having dimensions of
(length) '], indicating that either A is violated or a
constant X of dimension (length)' explicitly enters into
the formulas. Such a constant would have to appear in
the Lagrangian. In this eventuality, the first-order
change becomes X~f„,'=q 'f„2, where we have written
X= I/~q. Condition 8, however, requires that for
f„„e/r' (where e is the electronic charge):

g 'e'/ro'(1, ro ——e'/mc' @i=electronic mass, (16)

which can be maintained only for g) mc'/ro', i.e., the
constant appearing in the Lagrangian must be & elec-
tromagnetic energy density on the "surface" of the

d'x~ dx dxt'
+I'v

&
=0

ds' ds ds
(17)

Equation (17) exists without any specification of the
connection between F& p and the metric tensor. For
I'" e=C" e+A, eb" one has

d'x" dx dxt' dA dx~
+C".p +-

ds ds ds ds
=0 (18)

Equation (18) may be reduced to standard form by

electron. If condition 3 were violated, one would still
have to assume that g„, ri &f„„, i.e., the natural unit

to measure field strengths is the microscopic one, g.
The question arises as to the choice of p (a lower

limit only having been found). Assuming the mass, m,
to be available, one must choose a length. If one does
not wish to invent a new length, only the classical elec-
tronic radius or the Schwartzschild electronic radius is
available. In view of the fact that the latter possibility
does not seem to have anything to do with electromag-
netic phenomena (and, further, is so small that the
concept of distance becomes questionable), we shall
provisionally assume that q= inc'/ri' where ri ro

Turning next to the question of a%nity, it may be
noted that even in general relativity the relation
between the afTinity and the ChristoGel symbols is
somewhat arbitrary. A more fundamental approach,
perhaps, is to use the Palatini method and have the
relation determined by one of the field equations. One
thus has only to decide on the symmetry properties to
be assigned to F& p and g„„. For this matter we again
lean on the results of the preceding section and postulate

C.—The aflinity has the form I'& e
——C& e+I'eb&,

where C& p
=C&p and Fp is a vector. Also, the

metric tensor obeys the relation g„„=g„„.

In order to justify, somewhat, the use of C we note
that, according to assumption 3, C is certainly the
appropriate method of introducing the electromagnetic
field when the fields are weak. Whether a more corn-
plicated form for the amenity is needed for stronger
fields remains to be seen. In this respect condition C
plays something of the role of the principle of equiva-
lence in general relativity. For that case (via the ele-
vator experiment, say) one learns that the metric
tensor is related to gravitational fields while here (for
weak fields) one learns that the Maxwell field is related
to I'e (according to Sec. 2). As a further point it should
be noted that it seems difFicult to find a more general
form of F& p which will not also destroy condition A.

If Fp is to be associated with the vector potential,
one must demand that when Fp=A, p, where A is a
scalar, there be no electromagnetic eGects. According to
Eq. (10), the curvature tensor is unchanged in this
situation. However, aside from the field equations,
there exists the geodesic equation for a neutral particle
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making the transformation ds= [expA(x)]ds':

dx dxpd'x"
+C~.p

dS dS dS
(19)

Thus when no electromagnetic field is present, a change
of gauge C& p~C& p+A, p5& implies a change of metric
along the geodesic ds—&[expA(x)]ds, or equivalently

g„,~[exp2A(x)]g„„. Since one expects that the motion
of a neutral particle will still depend upon C& p only,
even when a real electromagnetic field is present, one
postulates"

D.—The Lagrangian must be invariant under the
combined gauge transformation F& p

—+F' p+A, pP
and g„„—&[exp2A(x)]g„„.

Conditions C and D may be viewed in a slightly
diGerent manner in terms of a "gauge-type" argument.
In general, ds'=g„„dx&dx" gives the readings between
two events on the measuring rods and clocks. The
freedom allowed in the transformation ds~[expA(x)]ds
corresponds to the freedom of calibrating one's meas-
uring devices diGerently at each point in space. When
no electromagnetic field is present, a neutral particle
will obey an equation of the form of (19), according to
the general theory. This equation is invariant under a
constant recalibration of one's rods (A=const), i.e. ,

a constant change of measurement standards through-
out all space-time is unobservable. Let us further
assume that a variable recalibration [A=A(x)] will also
produce no observable effects. Now under

ds~[expA (x)]ds,

Eq. (19) turns into Eq. (18), violating the above as-
sumption unless, simultaneously, C" p &C" p+A, p6" .
This last can be achieved if a new field Fp is introduced
into the affinity I'" p=C" p+FpP such that F~Fp
+A p under the recalibration transformation.

The invariance under the combined transformations
of condition D assumes already that C& p is not related
to the metric tensor according to the usual ChristoGel
a%nity,

fL= I d'xP(x) = d4x-', ( —g)i
J

X [o.gR„~Rvpg&"g P+n2(g&"R„v)'], (21)

where ni and o.~ are two constants that will be deter-
rnined below. " Equation (21) is also the most general
bilinear Lagrangian that can be formed from R„„and
R„„as the units for measuring l'„have not yet been

decided upon.
Following Schrodinger' it is convenient to define the

quantity"

Ii =Ã/m„„. (22)

From Fq. (21) one obtains

pv

tl = { g) '*$n—,g"g-"pR.p+n2gv"g. pR.p], (23a)

p, v

{—g)'g" g"'R-p. (23b)

The first set of field equations may be found by
varying Eq. (21) with respect to C „„and F„. From
Eq. (12) one has

8R„„=—8C „., +8C „;„+(8F„„bF„„),,
—

,(24)

where the semicolon refers to covariant differentiation
with respect to the symmetric affinity C „,. This leads
to the equations

pv

A;- —l(A";p~"-+a"p; p~"-) =o, (25)

A, „=0. (26)

Contracting Eq. (25) with respect to v and cy, one
obtains directly [by imposing Eq. (26)]

g p=gp, and the contracted curvature tensor

R„„[Fp„]=R„,[C p +F a p]

Similarly there are two scalar densities: (—g)& and

(—detR„„)'. The only Lagrangian that does not violate
any of the conditions of the preceding section is

C ap ~g g(aa, p+gpvagapv)v, , (20)
(27)

for if Eq. (20) held, it would not follow that I'" p~F" p

+A pP when g„„~[exp2A(x)]g Hence, if one defines

4. LAGRANGIAN AND THE FIELD EQUATIONS

We proceed next to the choice of a Lagrangian which
does not violate assumptions 2 through D. One has
available, in order to form scalars, the metric tensor,

where

PV QV

A =A (—g.)',

g, =detg p, g g„=P„, (28)

"The requirement of invariance under F" p~F" p+A, pb"
(the so-called ) transformation) has also been discussed by A.
Einstein and B. Kaufman, Ann. Math. 62, 128 (1955). See also
P. G. Bergmann, Phys. Rev. 103, 780 (1956).

'2The assumption of Eq. (20) with invariance under g„„~
(exp2A)g„„corresponds essentially to Weyl's theory. H. Weyl,
Space, Time, Matter (Dover Publications, New York, 1950), pp.
282—312,

one obtains
ao

C pv= 2 g (gvv, v+gvv, p givv, v)v {29)

"Other possible terms that might appear, such as n& (—detR p p) ~,

violates condition 8 unless, of course, n3 itself is very small.
'4 German symbols will denote tensor densities.
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and R„„is the usual contracted curvature tensor (as a
function of g ). One also has then R„„= —f„,

Setting f„„=a&f», in Eq. (23b), where a is a constant
and f„, is the electromagnetic field, (26) becomes the
source-free Maxwell equations:

Hence
rr7

g'R-p=(~i+4~2) '(—g) 'A g-

or
OT O'T

R„=~i '( —g) '[A g;g- —~~(~i+4~2) 'g"A g-7. (37)

L( g)'—g" g"'f-p7, =o (30)
Substituting into Eq. (35), one obtains

Equation (30) may alternately be written in the form
pp or pp ar

(A A g~'g~p 2(oi+4~2) A g~pA g«)
ap og—4~".(A A g-:.p —~~(~i+4~2) '(A'g-p)')

=a.i2a ( g) T»„—. (38)

(31)f""i =o f""=g" g"'f-p

where
~

v means covariant differentiation with respect
to a ChristoGel afFinity defined in terms of g p. One thus
has two "metric tensors" occurring in the theory: a
"gravitational" tensor g p and an "electromagnetic"
one g p. This analogy follows through the rest of the
equations. However, the original assumptions imply
that g p defines the metric as measured by rods and
clocks while g p is a derived quantity.

The second set of field equations are obtained by
varying with respect to g&":

Equation (38) does not uniquely determine g p as a
function of g p and f„„since the condition T"„=0 is

identically satisfied by the left member. In fact, if one
has a solution to Eq. (38) of the form g p=s p(g„„),
then another solution is easily seen to be

g.p
= [exp'�(x)7s.p,

where A(x) is any scalar. Since Eqs. (23a), (30), and
(32) are all invariant to the scale of g p, the scale is
not determined by the field equations, this being, of
course, just the statement of the gauge invariance of
the theory.

We now determine the constants n~ and o.2 so that
the theory conforms with conditions A and B. When
no electromagnetic field is present, Eq. (38) has only
the solution

0= ( g)*'P ', ei(R—„g P—R.p
+R „g PRp. ,'g„,R..—g"—g PR,p)

+i~ (2R"g'R-p 2g" (g'—R-p)') 7 (32)

Equation (32) may easily be recast into the form

o= ( g)'L~—iP-g»"g'Rip l~ R—-»g"g'R p)

(39)g-p= LexpA(x)7g. p+~2(R~g""g'R-p l~".(g—PR-p)')7

—&,ii( —g)lT»„, (33) where A(x) is an arbitrary scalar. Equations (37) then
becomes

where TI'„ is the electromagnetic stress-energy tensor R„,= (ui+4n2) 'g„„ (40)

T" = g""g'f-fop+—lf" g"g'f-f p. (34)

Equation (35) resembles Einstein's equations. However,
ap

while g
—appears on the left-hand side, g P occurs in

T"„and (—g)& indicating effects to be found in this
theory that are not contained in Eqs. (6). Also, the
condition TI"„=0 is satisfied identically by the left
hand side (a phenomena resulting from the gauge
invariance of P).

We turn next to the problem of obtaining a relation

between g
—and g p. This may easily be done by again

eliminating R„„ from Eq (35) with. the aid of (23a).
From the latter equation, one has

R"= i '( g) 'LA g"g- —~2( g)'g. g'R.p) —(36)

Equation (33) is quadratic in the curvatures R„.. It
may, however, be linearized in these quantities by
eliminating one of the R's in favor of g

—in .the first
brace by Eq. (23a). One obtains in this fashion

pa ap
A R.. ,'h»„A R.p —~—,a( g)'T»„—(35).

which are Einstein's equations with the cosmological
term

X= (ni+4n. ) '. (41)

Equation (35) leads to a consistent result. "The solution
of Eq. (40) produces a unique determination of g„„
(when some set of coordinate conditions have been
imposed). However, the metric is not determined
uniquely from Eq. (39). Hence C» p is determined, not
in terms of g p, but in terms of g p, a result in accord-

ance with that obtained at the end of Sec. 3.
We turn next to the situation of a weak electromag-

netic field. Rewriting Eq. (38) as

vP pp rr7

{g g"g-g. p
—&2(&i+4&2) 'g g pg g-)

ap or ap
4~ ~(g g g«g~p ~2(~i+4~2) (g g~p) )

=~i'~( g/ g.)T" (g-—p,f-—) (42)
~' If one continues with the association of anything on the

right-hand side of Einstein's equations with a stress-energy tensor
(to first order), one is led to equating P with ~p„c' (where p„ is
the mean density of matter in the universe) and in this way to
the steady state cosmology. However, such an association in the
cosmological domain does not seem to be necessary.
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one may assume a solution of the form

gaP= gap+hap, (43)

yielding
1 1 1 1—(2/Ã)

CX2 =
Kp,c' 1—(1/1V) 4h 1—(1/1V)

(50)
where h p is considered small. The gauge condition may
conveniently be set by

aP
h=0; h= h = g h.p.

To first order in h p, one easily obtains

."ul a(nt+4u2) (ul+2u2) TP (C P f ) (45)

Hence

KP gC
2

&7= 1038

n2 1 1 —(2/sV) I g~ K2P C2

nl+4u2 4 1—(1/n)

&1 =KP gC ) Q'2 —4X.

(51)

From Eq. (37) one may show that, to within quartic
terms in f„„,

pv

4tj R"=(ul+4 2) '(—S.)'=h( —0,)'.

Hence Eq. (35) becomes, to the lowest order,

g R„2b~„g R—P+— hha„=n, aT~„(g p,f„) (46)

indicating that assumption A has been verified and that

ClyG = —K. (47)

One may, in general, rewrite Eq. (35) as

, t'
(—g)' g R„

t. —g)
ap 0'7 aPX[g-g-g..g.p —,(, +4n)-'(g- .g)p']

«( g)'—T".(g—-p, f-), (48)

where the quantity in the square brackets will diBer
from 4X only for strong electromagnetic fields. Equations
(29), (30), (38), and (48) then become the field equa-
tions defining the theory.

Returning to Eq. (45), condition 8 requires that
h„„g„„ 1 only for r &10 " cm. Since for an electron
T„„e'/r4, one has

1 = 2Kul (ul+4n2)/(ul+ 2n2) e'/rl'
= 2Kp4c ul(ul+4u2)/(n1+2n2)

&

(49)

where r, e2/rr4c2 and p,c'—=e'/r, ' is the order of the
energy density on the "surface" of the electron. "
Equations (49) and (41) may be solved for ul and n2

"The sign of Eq. (49) is a priori arbitrary and one is in a
position somewhat analogous to the problem of the choice of
sign of ~ in general relativity. However, with the sign as written,
the spherically symmetric solutions of the next section are non-
singular (except at the origin). Unfortunately, a& now turns out
to be positive and hence f„„=a&f„„imaginary. This diKculty can
be removed, however, by slightly modifying the Lagrangian to read
8 =$ (—g) &(nl (R„R„pg""g P R„R„pg""gap+—nl (g""R„,)2j, the net
eEect being only to change the sign in Eq. (47).

For all practical considerations, terms of order 1/X
may be neglected. '

One might note that if condition D is dropped, there
appears to be one more Lagrangian available:

8= ( g)&(g PR.—P+ ,'n, R„g~"g -PR„p). (52)

or
f,4 f4l (e/r') (f,f4qh——/f2f, ) (56)

"In fact, one could always add terms to the left member of
Eq. (49) of order 1/N (and hence without violating postulate B)
such that the approximate results of Eq. (51) are exact for u1.

Equation (52) leads to results similar to those obtained
here and in the next section (the spherically symmetric
solutions are slightly more complicated, though quali-
tatively the same). The main distinction seems to
involve the lack of a cosmological term. While, of
course, one might add the term h( —g)' to Eq. (52), it
appears that in this theory (as in Weyl's) the only
natural way of introducing a cosmological term is
involved in the gauge invariance of the metric ds.

5. SPHERICALLY SYMMETRIC SOLUTION

We consider next the static spherically symmetric
solution corresponding to the electric field around a
point charged particle. We assume a coordinate frame
such that the "gravitational" metric takes the form
g~~= g~8~y wllel'e

gl(r) = t)(r), g2(r) = —r', g—2(r) = r-'sin'8, —
g4(r) = h (r). (53)

In general it is not possible for both g„„and g„, to have

an r2 dependence for the angular part of the line ele-
ment. However, for this case it will be seen that a
gauge transformation can be made to insure this. We
assume first the general form g„„=g„6„„,where

gl —— r)(r) f, (r)f ', g2(—r) = —r'f2(r) f l,

g2(r) = —r' sin28f2(r) f ', g4(r) =h(r) f4(r)f ',
f'= (flf2fsf4)' (54)

The only surviving Maxwell equation reads:

( f2f2 i '
g4g'( g)'*f14]=— f1—4r2 »n&~ —

~

= 0, (55)
4)r t)r lf,f4qh )
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where e is a constant of integration. Substituting Kqs.
(54) and (56) into Eq. (34), one finds that T&„(g,f)
= T„8"„and

T4 Tl —T2= —T2= ,' (e'/-r')flf4. (57)

2 4 2 1 2 2 1 2 2 1 2

—
4 p(r)f22= o (59b)

where

Thus Eq. (42), which determines the f„, is independent
of g(r) and X(r):

(f'—-'f.&-f-) —
4 (&-f-'—4 (~-f-)')

= —(p,c'-') 'T„. (—58)

Since T&= T4 and T&= T&, the nonsingular spherically
symmetric solutions require that fl= f4, f2 ——f&. Hence
(58) reduces to

(fi' —2Ji(fi+f2)) —
2 f fi'+f2' —

2 (fi+f2)')
+-'ji(r) f22=0, (59a)

where v'= dv(r)/dr, etc. The solution to (64) is given by

2m Ke2 t" fl dr
g '(r) =X(r)=1-

r 2r "o f2 r'

Kpec' 1'" (fl ) ' f2
I

——1
I

r'dr—, (65)
4r ~o (f2 ) fl

where m is the second constant of integration. Since
fl/f2 r' near the origin, the electrical term of Eq. (65)
approach a finite value for small r. Hence a Schwarz-
schild type singularity still occurs though (—g, )& is
always finite.

We now choose the gauge such that the angular com-
ponents of g„„have only an r' radial dependence, i.e.,
set fl 1. One——has then

g (r)= —~ '(r)[1+4 (r)3 ',
g, (r) = —r', g2(r) = r' sin'—g, (66)

g4(r)=l (r)[1+4 (r)j '.
~(r) = (2/p. c') (e'/~).

Similarly, from Eqs. (56) and (57),
60

f .= (e/")[1+p(r)3
T4(—g) &=

2 (e'/r') [1+@(r)) &r' sing.
(67)

f /f. =[1+.()j-~ (61)
Both the electric fieldf, ,4, and the energy density,
T4(—g) &, are finite at the origin. Thus the point. electron
produces finite electromagnetic quantities in the theory.
The fact that the integral of T4( g)4 exists, sugg—ests
the possibility of equating it to ere and thus deter-
mining p, . One has then

Turning to the gravitational equations, Eq. (48)
may be rewritten as

pa aP
g Rp~ 28 g R&P+4~ &[ j= K( g/ gg) P

(62)= —a &TI'„
Ãy

Equation (59b) is equivalent to (59a), the latter
yielding"

where the expression in square brackets is given by

aP aP

L j l '=( g-/ —g).'f—g g g-go '(g—
g-e)')-

(63)
=Kp.c'(fi/f2 1)'f2lfl—

from Eq. (54) (neglecting terms proportional to X).
When one writes 2l(r) = expo (r), X(r) = expv(r) the
nonvanishing components of Eq. (62) are easily seen

to be

mc'= T, ( g) &drdgd p-
ro

drdQr '[1+r 4/r g &, (68)
E8~) ~,

r l' ——e'/(22r p.c')

where we have re-expressed the charge in unrationalized
units. Performing the integral, one obtains r&=0.93ro
=—0.93e'/mc', or

fv' 1~ 1 1 (fl l'f2 K e fl
e-

I
—+—

I

——+-Kp-"I ——1
I

—= ————
(r r ) r 4 (f2 ) fl 2r f2

(v )lv v v 7l ) Kpgc (fi ) f2
+—+ I+

E2 4 4 ur ) 4 &f2 ) fl
Ke' fl

(64)

p,c'= 1.4 (1/22r) mc'/ro'. (69)

It should, of course, be mentioned that even if the
hypothesis that all the electronic mass is electromag-
netic be valid, the above figures will be changed when
one more completely includes the matter field into the
coupling as well as quantum eGects. Thus the result
given in Eq. (69) must be viewed at best as provisional. '

O. CONCLUSIONS
2r4 f2

(o' 1 ) 1 Kp.C' (fi )' f2 K e fl—e-
I

——
I
——,+ I

—1
I
—= ———,—

Er r') r' 4 &f2 ) fl 2r4f2

"We take the positive root in order to preserve the signature
of the metric.

In the preceding sections, an attempt has been made
to build up a unified field theory based on certain

» It is interesting to note that an exact solution of the equations
for a plane monochromatic wave also exists. Of course the super-
position theorem ceases to hold for frequencies such that
T"„~p,cm. Similarly, for high frequencies, the wave does not
travel along the null geodesic.
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general principles (of both experimental and theoretical
origin). Before discussing the results obtained, one
might ask whether a less general Lagrangian than (21)
is compatable with these assumptions. As pointed out
earlier, Eq. (21) is the most general structure quadratic
in R„„and R„„:

P( g)—'gg-"&f s],=0, , (71)

From th0 spherically symmetric solution of Sec. 5 it
is clear that g„. deviates from the Lorentz metric, q„„,
only at extremely small distances. Hence, for all prac-
tical electrodynarnical problems, Eqs. (30) and (38) can
be replaced by

~(x) = l ( g)—'J'.-~ sg""g'+l a( g)—'f.-f C""g'

+ ', ag( -g) l(g—"8„„)'. (70)
(n" 1"g-g ~ 4I"—g sr' g-)

l ~".—(~'n"g-g. u 4(n—'g-~)')
= —(1/p, c') T"„(g,f). (72)

If one drops the third term (sets n2 0)——, Eq. (41) shows
that X=1/ni and hence Eq. (49) (with n2

——0) will

violate condition B. The other possibility of a more
restrictive choice for P(x) stems from limiting a& to
zero (but keeping a&a finite). From Eq. (51) this cor-
responds to limiting p,c to infinity, the theory resulting
being precisely that of Eqs. (6). Thus, aside from this
limiting case (and an issue as to a sign"), the conditions
laid down in Sec. 3 force a finite-electron theory.

As was seen explicitly in Sec. 5, it is not possible by
a coordinate or gauge transformation to make the
"gravitational" metric tensor g„„equal to the true

metric tensor g„„when an electromagnetic field is
present. One would expect, according to some Einstein,
Infeld, and Hoffman type analysis, that g„.governs the

motion of a neutral particle since this is the tensor that
appears in C& p and hence in the gravitational side of
the equations. Thus the measure of length along a
neutral particle's geodesic is given by ds"= g„,dx"dx".
Qn the other hand, it is assumed that the rods and
clocks measure length according to ds-'= g„,dx&dx".

These two quantities will, of course, agree (to within a
gauge recalibration) except at verysmall distances. Since
the neutral geodesic will not be altered significantly

by the presence of the electromagnetic field, the fact
that ds&ds' under these circumstances implies that the
rods and clocks have been influenced by the presence
of electromagnetic energy. In general relativity, it is

always possible to set up a local Lorentz coordinate
system ds'= dr'+c'dP, o—ver a small space-time region,
where dr and dt measure directly the readings on rods
and clocks. The presence of c in the metric indicates
that a consistent electromagnetic definition of time is
available in terms of the distance, cdt, that an electro-
magnetic wave travels between two events. "It would

appear from the above discussion, that the theory pre-
sented here suggests that all rods and clocks are electro-
magnetic in nature. This conclusion is, of course, quite
preliminary since the neutral nuclear fields have not
been included into the formalism.

~ This definition of a clock is also consistent with the require-
ment that the stress-energy carried by the measuring devices
postulated not disturb the local flatness of the space, since the
velocity of light remains constant as the amplitude of the wave
tends to zero.

The major effect of the unification, thus, is the kine-
matical constraint (72) on Maxwell's equations (71).
Since p"" is a Lorentz tensor, these equations are meant
to replace the usual Lorentz-invariant Maxwell equa-
tions.

The approach being followed here is considerably
di8erent from that of Einstein. Einstein hoped to
obtain completely regular solutions of the field equa-
tions to represent particles. "As mentioned earlier, the
viewpoint being adopted in this paper eventually
requires the introduction of extra terms to represent
the matter stress-energy tensor. Thus to describe elec-
trons, one will need an added structure similar to the
Dirac Lagrangian. The question as to whether these
nonlinear interactions can be quantized remains
unanswered.

A preliminary investigation has been unable to dis-
cover any invariances of the Lagrangian aside from
those following from the usual freedom of coordinate
and gauge transformations. Thus the solutions to the
field equations seem to be constrained only to the
amount that they are in general relativity and electro-
magnetic theory separately. This was seen explicitly in
the spherically symmetric solutions of the preceding
section.

As a final point, it might be mentioned that Infeld
and Wallace' have shown that for a theory obeying
Eqs. (6), a charged point particle travels according to
the Dirac equations of motion. "Hence to a first ap-
proximation, the electron will obey the usual classical
equations with radiation reaction. At high energies and
small distances, one would expect factors of the type
appearing in Eq. (67) to enter, a result which might
damp the runaway solutions.
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"This hope does not seem to be born out in the spherically
symmetric static solutions found by W. B. Bonnor, Proc. Roy.
Soc. (London) A210, 427 (1952).~ P. A. M. Dirac, Proc. Roy. Soc. (London) 167, 148 (1938).
One must also assume retarded potentials.


