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Evaluation of Cascade Angular and Radial Distributions from Their Moments
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The amount of information contained in the moments of the angular and radial distribution functions
of an electron-photon cascade is investigated. Methods of reconstructing the distribution functions from
their moments are analyzed. It is shown that under the Landau approximation the moments determine
accurately the angular distribution for all values of E8/E, greater than 0.5, and the radial distribution for
all values of Er/E, greater than 3.

1. PHYSICAL SIGNIFICANCE OF THE MOMENTS

HE evaluation of the radial and angular dis-
tribution functions for the particles in an elec-

tron-photon cascade has proved to be an extremely
dificult problem. Six diferent calculations have been
made of the angular distribution' —' and three of the
radial distribution. "'The performance of these calcu-
lations has required the use of rather severe approxi-
rnations such as highly approximate cascade cross
section and, in all cases except that of reference 6, the
Landau approximation, while the length of the calcu-
lations involved has restricted their application to a
few discrete values of the "age" parameter s. On the
other hand, the calculation of the moments of these
distributions is a straightforward process "when the
only approximations made are the use of the asymptotic
cross sections for bremsstrahlung and pair production
and the assumption that all angles involved are small.

As the moments of the angular and radial distribution
functions can be obtained so very much more easily
than can the functions themselves, and as the use of
fewer approximations enables them to be evaluated to
greater precision than the functions, it is obviously
worthwhile paying considerable attention to the prob-
lem of extracting from the moments as much inforrna-
tion as possible concerning the functions.

The second moments, both angular and radial, have
an immediate significance in that they give us a rough
estimate of the average spread of the shower particles.
It is possible, in principle, to measure the second
moments experimentally, but we must note two difh-
culties here. Firstly, if one wishes to make a measure-
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ment of the second radial moment of the particles in
a shower, without being given any information as to the
shape of the radial distribution, then it is necessary to
spread the measuring equipment over an area many
times greater than the expected mean square spread.
This is because the relatively few particles in the "tail"
of the distribution may make quite a large contribution
to the moment. Secondly, one must measure only those
particles whose energies are an order of magnitude
greater than the characteristic scattering energy E,= 21
Mev, for only at these energies will particles in the
tail of the distribution still satisfy the small-angle
approximation. Obviously these sources of error become
much worse when we try to measure the higher
moments.

Another factor which limits the applicability of the
higher moments of the distributions is that they depend
upon, not only the lower moments, but the higher
moments of the elastic scattering cross section as well,
and these are not at all well known as they depend
quite sensitively upon the charge distribution within
the nucleus. In the Landau approximation these
moments are simply put equal to zero. Therefore the
higher angular and radial moments of the distributions
as calculated for various models such as those of
Moliere, ' Belenky, ' and Kalos and Blatt' under the
Landau approximation have little or no direct physical
significance at all.

Thus we see that the moments are of very little prac-
tical interest in themselves, and their usefulness must
be assessed on their ability to provide us with infor-
mation concerning the distribution functions. It is the
purpose of this paper firstly to discover just how much
information about the distribution functions is con-
tained in the moments, and secondly to find a simple
way of evaluating the functions from their moments.

Where actual numerical values of the moments are
required we shall use values computed under the
Landau approximation. As shown elsewhere, this
approximation is considerably less accurate than has
hitherto been supposed, even at small angles, and it
becomes extremely inaccurate at large angles where, as
we shall see, the moments are most important. How-
ever, as more accurate values of the moments are not
available, we have no choice but to use the Landau
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approximation. It is hoped that this paper will assist in
the assessment of the usefulness of the moments and
will indicate the desirability, or otherwise of repeating
their calculation without the Landau approximation.

f„=)
x'"f(x)xdx,

0

and its Hankel transform

" ( r')"f-—
g(X) =

i
~o(xX)f(x)xdx= E

0 ~ o 4~(g!)i

(2)

(3)

If we are given all the moments f„we can, in principle,
construct the function g(y) from its power series and
invert the transform to find f(x)

f(x) =~~ ~ (xX)g(X)sd~-
0

Firstly, we must note that we cannot simplify this
procedure by inverting the series expansion of g term

by term. Doing this gives us a purely formal expansion
of f(x) in a, series of derivatives of the delta function.

In the rather unlikely case that the series in equation
(3) can be summed analytically we have no trouble in

finding f(x), but otherwise we must consider the re-
striction imposed on this method by the possibility of
this series having only a finite radius of convergence.
The radius of convergence yp is defined by

n+1-

So it is apparent that we must know the asymptotic
behavior of f quite accurately before we can estimate
the radius of convergence. Let us consider some par-
ticular examples.

To find what the radius of convergence would be if
we applied this method to the reconstruction of the
track-length angular distribution of the electron-photon
cascade, we shall use the Tamm-Belenky model. "This

"I.Tamm and S. Belenky, J. Phys. U.S.S.R. 1, 177 (1939).

2. MOMENT GENERATING FUNCTION

The most direct way of recovering the distribution
function from its moments is by use of the moment
generating function, that is, the Hankel transform of
the distribution function (or Fourier transform in the
case of the distribution of projected angles). This
method is of particular interest because it is the only
method which sets out to define the distribution
function completely in terms of its moments alone. In
those cases when it is applicable it also provides a proof
that the rnornents are sufhcient in themselves to
uniquely determine the function.

Consider a function
f(x)xdx,

its even moments

whence
f.= (2~+ 1)!,

yp= |.
(6a)

(7)

Now although the series, Eq. (3), can in principle be
summed for all values of y less than yp, a large number
of terms will be required if y is of the same order of
magnitude as yp. We can, then, say that a calculation
of the Hankel transform g(y) by means of the power
series is feasible only for y much less than yp. The inverse
of this function can therefore be found fairly accurately
for values of x much greater than 1,i'yp. Using the Tamm-
Belenky moments again we see that the track-length
angular distribution can be found only in the range

Eg»E,/2+q, (8)

that is, at values of the angle much greater than the
half-width of the distribution. In other words, only
the tail of the distribution can be found in this way.

If we do not use the Landau approximation, the
higher angular and radial moments are increased. We
can no longer make a simple estimate of the radius of
convergence because it depends upon the asymptotic
form of the higher moments of the elastic scattering
cross section. But as the true moments increase with
e much more rapidly than they do under the Landau
approximation we can be certain that the radius of
convergence will be decreased. Consequently the
minimum value of 0 for which the track-length angular
distribution can be found by this technique will be even
further out in the tail of the distribution.

To consider the possibility of recovering the radial
distribution in this way, we shall use the interpolation
formula for the track-length radial moments given by
Kalos" who has for the eth radial moment

((Er)'")= 1.10(0.09372E ') "L(2n) !]' (9)

The radius of convergence is therefore zero; so this
method can yield us no information at all about the
track-length radial distribution.

This is a result which has important implications.
The fact that this series expansion of the Hankel trans-
forrn of the radial distribution has zero radius of con-
vergence means that this transformed function has a
singularity of some type at the origin which prevents us
from expressing it as a power series. It follows that the
first few terms of such a series do not give even a crude
approximation to the form of this function at the origin.
Now, in his calculation of the radial distribution of the

'2 M. H. Kalos, Ph. D. thesis, University of Illinois, 1952
(unpublished) .

model gives for the track-length angular distribution
under the Landau approximation':

(x) = e-*,
where

x = 2q~E0(E„q = 2.289.

The moments of this distribution are
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electron-photon cascade, Moliere' commenced his
numerical evaluation of the transformed function at
the origin, using the first few terms of the power series
expansion to define it there. This means that this trans-
formed function is completely wrong at the origin,
thereby invalidating his radial distribution at large
values of r. The agreement between his radial distri-
bution and that of Nishimura and Kamata7 at small
values of r indicates that this initial error was sub-
merged in the numerical development of the function
towards smaller values of r.

3. USE OF THE MELLIN TRANSFORM

As the moment-generating-function method, the only
available method which sets out to define the distri-
bution function in terms of its moments alone, is
unsatisfactory for the angular distribution and entirely
useless for the radial distribution, we are forced to
resort to a method which uses, in addition to the
moments, some further knowledge of the behavior of
the function. This additional information normally
consists of a knowledge (or guess) of the general over-all
behavior of the distribution, and is typically expressed
in the form of a "trial function" which is to be suitably
modified to bring it into agreement with the known
moments.

Two different approaches based on this general
pattern are typified by the method suggested by Green
and 3,Iessel"" in which the trial function is brought
into agreement with ~s moments by multiplying it by
a polynomial of degree e, and the method used by
Spencer"" for the problems of electron and x-ray
diffusion in which he uses a series of trial functions each
of the same form and diR'ering only by a scaling factor.
In problems where the general form of the distribution
is well known and the trial function is expected to be
fairly accurate by itself, these methods are quite
suitable. But for our present purpose they suffer from
the disadvantage that they cannot tell us to what
extent the distribution so obtained is dependent upon
the particular choice of trial function or of the method
of modifying it. Hence they cannot help us in our
endeavor to assess the amount of information that is
actually contained in the rnornents.

A method of reconstructing the function from its
moments that is suitable for our purposes must have
the following properties:

(1) There should be no need to postulate a knowledge
of the general behavior of the function, apart, of course,
from the fact that it is continuous and rnonotonically
decreasing. This means that, in so far as a trial function
is required, it should be derivable from the moments
themselves.

' H. S. Green and H. Messel, Phys. Rev. 87, 738 (1952).
'4H. S. Green and H. Messel, Quart. Appl. Math. II, 403

(1954).
'~L. V. Spencer, Phys. Rev. 88, 793 (1952)."L.V. Spencer, Phys. Rev. 98, 1597 (1955).

(2) It should be possible to assess the contribution
made to the distribution function by each individual
moment. This is necessary to enable us to find out how

many moments should be evaluated and to see what
degree of accuracy is required in the calculation of each
moment.

The method about to be described satisfies these
criteria.

Define the Mellin transform

h(s) = x"f(x)xdx,

which has the inverse

& eo+ioti

f(x) =1/(zri) ' x '&'+'&Iz(s)ds.
eo—XzN

For integral values e of s we have

h(zz) =f„, (10a)

so a knowledge of the moments defines the Mellin
transform at positive integral values of its argument.

In order to carry out the inverse transformation,
Eq. (11), it is necessary first to extend our knowledge
of the function to other values of s. We have two choices
of approach here. We can either fit the known values
of the function by the adjustment of suitable parameters
in a function (or series of functions) whose inversion
can be performed analytically, or we can perform a
straight out interpolation of the function between the
integral values and find the inversion by the saddle
point method. The first method is of the type used by
Green and Messel and Spencer which we have already
discussed and classed as unsuitable for the problem in
hand. We shall now see that the saddle point method is
highly satisfactory and is furthermore very informative
as to the actual physical significance of the moments.
The application of this method to cascades is due to
Nishimura and Kamata, ' but they give no discussion
of its accuracy nor of its range of application.

The interpolation that is required for the saddle
point method needs to be done rather accurately as the
distribution function varies inversely as the square root
of the second derivative of the transformed function.
However an accurate interpolation is facilitated by the
fact that interpolation functions, obtained from the
moments themselves, already exist—see Eqs. (6) and
(9). These functions play the same role in this method
that the "trial function" plays in other methods, so we
see that we are essentially using only the moments
alone and are not assuming any additional knowledge
of the behavior of the distribution.

The interesting thing about the saddle point method,
and it is this that makes it peculiarly suitable to our

problem, is that it derives a particular point of the dis-

' J. Nishimura and K. Kamata, Progr. Theoret. Phys. (Japan)
7, 185 (1952).
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tribution from a corresponding point of the Mellin
transformed function, and consequently from a par-
ticular moment. Thus in deriving the function in this
way we automatically discover which of the moments
are the most important ones in determining the function
in any particular range of angles or radii.

We write
h(s) =o.(s)e"o&'& (12)

H'(s) =O. (13a)

If, then, we neglect the derivatives of o.(s) as being
small compared to those of the interpolation function
we have

8Q+ $00

f(x) =1/(m. i) ~ x '&'+"o (s) exp[hp(s) jds
8Q—xoo

with

(2q & x—'&~'&h(s)

(s.) [hp" (s)]&

hp'(s) = 2 lnx.

(14)

(14a)

To perform the calculation we choose integral values
of s, for which h(s) =f, is known, calculate x from Eq.
(14a) and f(x) from Eq. (14). If further values of f(x)
are required we need only interpolate for h(s) to the
same degree of accuracy that is required in f(x). It must
be noted that the accuracy of this method depends
throughout upon the availability of an accurate inter-
polation function.

When the inverse transform of the interpolation
formula can be found analytically the calculation
becomes even simpler. If fp(x) is the inverse transform
of exp[hp(s)], that is, if fp(x) is the distribution function
whose moments are given exactly by the interpolation
formula, then Eq. (14) reduces to

f(x) =fp(x)o (s), (15)

where s and x are still connected by Eq. (14a).
The physical principle underlying the above described

method can be best appreciated by the following
argument. "Suppose we have obtained an approxima-
tion to the distribution function, denoted by fp(x). We
wish to modify this function so as to make its moments
agree with the known values of the true function. Let

' I am indebted to Dr. J. M. Blatt for the suggestion of this
approach.

where exp[hp(s) j is the interpolation function (assumed
given for all s) and o.(s) is the correction function, known

only for integral values of s but assumed to be a slowly
varying continuous function.

Now the saddle point method of evaluating an
integral consists of writing

exp[H (s)]
exp[H(s))ds= (2/m)1, (13)

[H"(s)]'

where s is chosen so that

us use Eq. (15) for this modification, i.e., we wish to
find the function a(s). Let us look at the expression for
the (2')th moment of fp(x).

fp, = x'"fp(x)xdx=exp[hp(e)].
p

(16)

h, '(s) =
~

2 lnxx"fp(x)xdx
G 4O

x"fp(x) xdx. (17)

If the integrand in Eq. (16) has a sharp maximum, then
the integrands in both the numerator and denominator
of Eq. (17) have sharp maxima at very nearly the
same value of x. Hence Eq. (17) reduces to Eq. (14a)
and the two methods are equivalent. The requirement
that the integrand in Eq. (16) have a sharp maximum
is exactly equivalent to the underlying approximation
inherent in the saddle point method, which is that the
integrand should have a sharp minimum along the real
axis. This is a fairly rigorous requirement, but in
practice it does not appear to aBect the accuracy of the
method except for the cases n=0 and, perhaps n= 1,
as we shall see later.

We can now also see what role the moment inter-
polation function [or the equivalent trial function
fp(x)] plays. It determines the relation between s and
x, as seen by Eqs. (14a) a,nd (17).Thus the interpolation
function tells us at what value of x the distribution
makes the most contribution to the (2e) th moment, and
then the moment itself is used to adjust the value of
the function at this point.

We have calculated both the track-length angular and
radial distributions of an electron-photon cascade by
the above method. The projected angular distribution
was chosen because the numerical results of a calcu-
lation of this function by Kalos and Blatt5 were readily
available for comparison. This calculation used "super-
simple"" cross sections so we have used as "exact"
moments the moments of the super-simple model as
calculated by Kalos." For the moment interpolation

"F. L. Friedman, Massachusetts Institute of Technology
Technical Report No. 31, 1949 (unpubIished).

Now fp(x) is a monotonically decreasing function and
x'" is a monotonically increasing function of x, so ideally
we should find that the integrand in Eq. (16) has a
sharp maximum at some value of x, say at x= x„.Then
the magnitude of the (2e)th moment depends almost
entirely upon the value offp(x) at and near the point x„.
Consequently the (2m)th moment of fp(x) can be
adjusted simply by multiplying the function at, and
near, the point x„by the ratio of the true moment and
the moment of fp(x) That . is, we define f(x) by Eq.
(15), with o. (s) defined by Eq. (12), but now instead
of Eq. (14a) we relate s and x by x= x,.

If now we replace n in Eq. (16) by s and then dif-
ferentiate with respect to s, we obtain
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function we have used the formula

exp[ho(n)]= (2n)!/(4q&)",
where

q&
——2.145.

This expression was deduced from the projected
moments of the Tamm-Belenky model (renormalized to
agree with the super-simple model —hence the new
value for the parameter q) which are greater than Eq.
(18) by the factor

2[(n+1)/~]~.

The expression we have used does not give as good a
second moment but yields much more accurate higher
moments. For the variable x we have used

I 0

OI

o.ol

x= EO/E, . (19) o.0ol

The results of this calculation of the projected angular
distribution are given in Table I and Fig. 1. The solid
line in Fig. 1 is the projected track-length angular dis-
tribution calculated by Kalos and Blatt. The values
calculated by us from the moments are entered as
circled dots. It can be seen that our calculation agrees

0 ge
&s

TABLE I. Calculation under the Landau approximation of the
projected track-length angular distribution of the super-simple
model from its moments.

"Exact"
moment

1.000
0.300
0.406
1.191
5.940

Interpolation
formula

1.000
0.233
0.326
1.140
7.440

o (n)

1.00
1.29
1.25
1.04
0.798

Z9/Eg

0.192
0.859
1.539
2.221
2.904

f(~/~. )

0.812
0.160
2.27 X 10~
2-77X10 '
3.06X10 4

~ The distribution is, of course, invalidated by its dependence
on the Landau approximation. By "accuracy" here we mean
that there has been no additional error introduced in its deriva-
tion.

almost exactly with that of Kalos and Blatt. We also
see that these few discrete points, although widely
spaced, are sufhcient to define the angular distribution
at all points except in the region,

Eo/E, &

The remarkably close agreement between the angular
distribution of Kalos and Blatt and our distribution
obtained from the moments provides a verification both
of the accuracy of the Kalos and Blatt distribution"
and of the validity of the method we have used to
recover the distribution from the moments.

This method of reconstructing the distribution
function from its moments must fail at small values of
the variable, because in this region the integrand in the
Mellin transform inversion integral does not have a
sufficiently sharp minimum to allow the saddle point
method to be used.

For the calculation of the track-length radial dis-
tribution (not projected) by this method, we have used

FrG. 1. Calculation under the Landau approximation of the
projected track-length angular distribution of the super-simple
model from its moments. Each circled dot is the value of the
function as calculated from the (2n) th moment with the specified
value of n. The curve is the distribution as calculated by Kalos
and Blatt. '

x= Er/E„ (21)

while for the "exact" moments we have used the
moments of Approximation-A. '" The results of this
calculation are recorded in Table II and Fig. 2. The
full line in Fig. 2 is the track-length radial distribution
as calculated by Eyges and Fernbach' who also used a
method of reconstructing the function from its moments.
It can be seen that our points agree perfectly with their
curve. The broken line is a continuation of the Eyges
and Fernbach curve drawn so as to pass through our
points.

The agreement between our points at v=0 and rI,= 1
with the result of Eyges and Fernbach is certainly

TABLE II. Calculation under the Landau approximation of the
track-length radial distribution of Approximation-A from its
moments.

"Exact"
moment

Interpolation
formula cr (n) Er/E, f(&r/P-, )

1.00
0.72
7.20
4.93X 10
1.38X105
1-04X10s
1.71X10»

1.10
0.41
5.55
4.68X 10'
1.38X10'
1.05X10s

X i0»

0.91
1.76
1.30
1.05
1.00
0.99
1.00

0.096
1.94
6.22

13.0
22.1
33.7
47.8

23.6
2.29X10 ~

743X10 5

4.46X10 7

4 01X10~
4.43X 10
5.32X10 's

for the moment interpolation formula Kalos' expression

exp[ho(n)]= 1.10(0.09372) [(2n)!] (20)
where
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Qm=2

Qn=3

-8

-IO

0 IO 20

Eg

30

FzG. 2. Calculation under the Landau approximation of the
track-length radial distribution of electrons in an electron-photon
cascade from its moments. Each circled dot is the value of the
function as calculated from the (2n)th moment with the specified
value of n. The full line is the distribution as calculated by Eyges
and Fernbach. 4

heatening, but is not suKcient to guarantee the accuracy
of the function in this region. Our value at ~= 0 is very
doubtful because the saddle point method is not at all

accurate here. Furthermore, the rather rapid fluctuation
of the moment correction function 0 (n) bet&veen n=0
and ~&= 1 throws doubt upon the accuracy of both these
points. The agreement with Eyges and Fernbach does
not allay these doubts because their calculation, being
also based upon the moments, is probably open to
similar sources of error. However our calculation is
valid for all values of E&r, 'I', greater than about 3,
although it must be noted that the particle density at
this distance falls to 10 ' of its value at the origin so
t.hat the behavior of the radial distribution at these
large distances is not likely to be of very great, physical
interest. The distance defined by Er/E, =3 is, for an
electron of energy 100 Mev at sea level in air, equal to
175 meters.

It is apparent that this method of obtaining the dis-
tribution function from its moments is not nearly as
successful with the radial distribution as it is with the
angular distribution. Not only is the region of small

values of the variable where the function is not accu-

rately determined much greater in the radial distribu-
tion than it is in the angular distribution, but also the
discrete points at which the distribution is well defined

are much further apart. Note that, in going from one

point to the next, the angular distribution changes by
roughly a factor of 10 whereas the radial distribution
moves in steps of 100 to i.

4. DISCUSSION

We have studied the problem of recovering the
cascade angular and radial distribution functions from
their moments with particular emphasis on finding out
how much information about the functions is actually
contained in the moments. We investigated the use of
the Hankel (or Fourier) transform as the only method
which allows, in principle, of a complete and exact
determination of the function from the moments when
a/l of the moments are known. However it is only
capable of doing this when the power series expansion
of the transformed function has an infinite radius of
convergence. When the radius of convergence is finite,
as in the case of the angular distribution, this method
will yield information of the function only in the "tail"
of the distribution. If the radius of convergence is zero,
as in the case of the cascade radial distribution, the
method fails entirely.

On the other hand, we found that the use of the
closely related Mellin transform gave a very practical
and simple method. It requires a knowledge of a fairly
accurate interpolation function for the moments, but
this is available for both the cascade angular and radial
moments. It is an extremely simple method in its
application and has the advantage that it is not limited,
as is the Hankel transform method, to any particular
class of function. However we find that the same condi-
tions which render the Hankel transform method
useless also limit the applicability of the 3,Iellin trans-
form method to points in the extreme tail of the dis-
tribution.

In the course of our analysis of these methods we
have discovered a true measure of the actual amount of
information about the distribution that is contained in
the moments. We have seen that each moment contains
information about the value of the function only at and
near the value of x at which the maximum contribution
to that moment arises. Thus the higher moments yield
information only about the tail of the distribution. It
follows that as the physical significance of the distribu-
tion fades away as we go further into the tail so must
the importance of the higher moments become less and
less. In other words, only a small number of the moments
are worth calculating.

Analyses of the importance of the moments which
are based entirely upon the Hankel (or Fourier)
transform method tend to yield an opposite conclusion,
namely that as the behavior of the distribution near
the origin depends upon the behavior of the tail of the
transformed function, so must it depend upon the
values of the higher moments. In fact this reasoning
leads one to the conclusion that a knowledge of all the
moments yields a knowledge of the distribution at aO
values of the variable. But we can now see that this
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reasoning only applies when the distribution is of such
a form that the Hankel transformed function has an
infinite radius of convergence. As neither the cascade
angular or radial distributions satisfy this criterion,
we find that there is no reason to belieM that a knowledge

of their moments can ever yield the behavior of the distribu
tions at small valvtes of the variables

The calculations we have performed of the track-
length angular and radial distributions of the electron-
photon cascade under the Landau approximation indi-
cate that the Mellin transform method of reconstructing
a function from its moments can be used for the evalu-
ation of these distributions for all values of the angular
varia. ble EO/E, greater than 0.5 and of the radial
variable Er(E, grea, ter than about 3. As this is a very
simple calculation, it indicates that any future direct

evaluation of the angular or radial distribution functions
need only be carried out for smaller values of the vari-
ables; at the larger values the functions are much more
easily obtained from their moments. However, it must
be pointed out that these estimates were made using
values of the moments calculated under the Landau
approximation. The increase in the higher moments that
will ensue when this approximation is dropped will
increase the minimum angle or radius at which the dis-
tribution can be obtained from its moments. The actual
magnitude of this increase cannot as yet be estimated.

The author wishes to thank Professor H. Messel and
Dr. J. M. Blatt for helpful discussions. He is also
indebted to the Commonwealth Scientific and Indus-
trial Research Organization for the provision of a
research grant.

PHYSICAL REVIEW VOLUME 105, NUM HER 2 JAN UARY 15, 1957

Charged-Pion Production in Lithimmt*

EDWIN K. GATCHELL$

Department of Physics, University of Rochester, Rochester, New I'ork

(Received March 12, 1956; revised version received October 24, 1956)

This article reports the measurement of charged-pion production cross sections in Li' and Li'. The meas-
urements were made on 40- and 52-Mev pions emitted at 90' to a proton beam of 242-Mev energy. The
results show a higher 7t-+/~ ratio for Li than for Li', this observation can be qualitatively explained by
the Pauli exclusion principle.

I. INTRODUCTION

w E have measured the absolute cross sections for
the production of charged pions by 242-Mev

protons on Li' and Li'. The pions were emitted at 90'
to the proton beam and measurements were made at
pion energies of 40 and 52 Mev in the laboratory
system.

The charge-independence prediction' for the produc-
tion of pions by protons on nuclei of isotopic spin 0 is
given by the Watson relation

20'p =o'++0

where 0.0 is the differential production cross section for
neutral pions, and o-+ and a are the corresponding
differential cross sections for positive and negative
pions. Since this experiment determines o.++o. , a meas-
urement of ao at the same proton energy would con-
stitute a test of the charge independence hypothesis.

t This research was assisted by the U. S. Atomic Energy Com-
mission.
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(1952).

This prediction assumes, however, that equivalent final
nucleon states are available for each of the three modes
of meson production. At proton energies not greatly in
excess of threshold, the details of nuclear structure may
obscure the charge-independence prediction. This ex-
periment was undertaken to obtain new data on pion
production in low-Z materials and to explore the utility
of the Watson relation as a test of charge independence
at the energies available with the Rochester synchro-
cyclotron.

II. EXPERIMENTAL ARRANGEMENT

The internal proton beam bombarded a 3 in. )(—,', in.
X) in. Li target located at a radius of 59 in. in the
synchrocyclotron. Pions emitted in the median plane at
90' to the proton beam followed curved trajectories in
the fringing field of the cyclotron. Floating-wire meas-
urements were used to design a channel that defined
the solid angle and energy interval of the emitted pions.
The pions were detected in a scintillation crystal
telescope by using pulse-height analysis to separate the
pions from the background. The proton beam was
measured absolutely using the C"(p,pe)C" reaction
from the carbon in a 2-mil polyethylene foil attached
to the target.


