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A new study has been made of the viscous component in liquid
HeII, using the experimental method of Andronikashvili. The
hydrodynamic equations for disks oscillating in a viscous medium
have been derived from 6rst principles in a form amenable to
experimental test of the necessary approximations. Associated
studies with several ordinary liquids have yielded an empirical
constant for the liquid dragged by the disk corner. The 6nal semi-
empirical equations of motion appear to provide a signi6cantly
better approximation than those previously published. The new
formulas have been applied to a combined study of density and
viscosity of pure He liquid from 1.2'K to the lambda point,
2.1735'K. Re6nements in experimental technique include larger
oscillating systems, improved temperature regulation and meas-
urement, and precision chronometry. The theoretical roton
temperature dependence of Landau and of Feynman provides a
good description of the density between 1.2' and 2.0'K. The

empirical value of the roton excitation energy is found to be
A/h= 10.60'K. Detailed investigation in the region of the lambda
point shows an accelerated rise in the normal Quid density above
2.0'K; the temperature derivative of density tends toward
in6nity at Tz. Our data con6rm the measurements made earlier
by Andronikashvili over the entire temperature range. At tern-
peratures below 1.5'K the torsion pendulum results lie sig-
ni6cantly lower than those derived from second sound and specific
heat data. Viscosities of the normal Quid are in substantial
agreement with the earlier results of Andronikashvili and with the
viscometer values of Heikkila and Hallett down to 1.5'K. Dis-
crepancies between the oscillating disk and viscometer data below
1.5'K have not been resolved. The temperature dependence of the
viscosity near the lambda point indicates that Tp is a point of
strong singularity for both viscosity and normal Quid density.

I. INTRODUCTION

"'N terms of present theories of HeII, a complete
~' description of the hydrodynamics of the liquid
requires the speci6cation of the normal Quid density p,
the normal Quid viscosity p, the critical velocity e„and
supercritical resistance to the Qow of the superQuid. '
These properties are functions of the temperature and
of He' isotope concentration; critical velocity phe-
nomena appear to depend also upon the experimental
liquid dimensions. This complex of Qow properties may
be studied by means of the torsion pendulum, which
has been applied to the measurement of viscosity since
Coulomb's inception of the method in 1784. With some
modifications, it is particularly applicable to the study
of liquid helium and has been so applied by several
investigators. ' ' It is the technique adopted by the
authors in the research reported here.

In spite of considerable interest in the problem, it has
not been possible to obtain an exact solution for the
torsional oscillations of a right circular cylinder in a
viscous Quid. Nevertheless, this geometry is an experi-

*A preliminary report on this research was presented at the
National Science Foundation Conference on Low Temperature
Physics and Chemistry, December 28-30, 1955, at Louisiana
State University.
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(Interscience Publishers, Inc. , New York, 1955).
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mentally desirable one and has been employed in the
present work. Since previous publications are in dis-
agreement in the analysis of the problem, we have
undertaken a new theoretical study of the hydro-
dynamics. Associated experiments with several New-
tonian Quids indicate that the new analysis provides an
improved approximation.

The formulas derived here have been applied to a
systematic investigation of He II to obtain p„, q, e„
and supercritical resistance as functions of the tem-
perature, He concentration, and liquid dimensions.
The present paper reports the study of p and p in pure
He' in the temperature range 1.2'K to the lambda
point.

II. THEORY OF OSCILLATING DISKS

Statement of the Problem

A right circular cylinder of radius e, height d, and
moment of inertia I is suspended from a Aber of tprsipn
constant I. and oscillates slowly about its symmetry
axis according to

Z(d(J/dt)+E:e+ IJt= 0,

where 8 is the angular displacement of the disk frpm
its equilibrium position, and e =de/dt. Terms in 8—' and
8, and higher orders are neglected. The implicit solutjpn
of the differential equation represents damped harmonic
motion,

0=8p expnt; a= (2w/r) (i—8),

where i=+ 1, r is th—e period of osci11ation, and 2sr8

is the logarithmic decrement of amplitude. The rela-
tionship between the observables 8, v, and the complex
damping coeKcient E is obtained by substituting Eq.
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(2) in Eq. (1): one-dimensional equations,

Re E=2~IgI (r'/rps)+1gr '

Im E=2rrI[(7'/rps) 1j—r ', (3) Edge:
d'J' 3 dR

+— —p'R=O,
dr' r dr

(9a)

where we have substituted I.=4rrI//rp', 7p being the
natural period of the pendulum in vacuum. Terms in 6'

are neglected.
The medium considered is a Quid whose viscosity g

is well behaved and is not subject to slip, i.e., for a
relative velocity component v„parallel to a solid
boundary at x=O,

f„= rt(d—e„/dx), =p, (e„).=p ——0, (4)

%e assume that the Quid rotates about the symmetry
axis of the disk with no radial or axial velocity com-

ponents. DeQning ip(r, z, t) as the angular displacernent

field, we have @=re, where iP=BQ/Bt Equation . (5)
reduces to the scalar equation in cylindrical coordinates';

+ + ———=0.
gr2 r Br Bs~ g 83

(6)

If we assume that iP is of the form iP(r, s, t) = y(r, z) T(t),
then Eq. (6) yields

and

T(t) = exp(nt+y) =const exp(nt)

~P
+— + p p=O

Br2 r Br Bs~

(7)

where p'= pn/rt.

Independent Radial and Axial Solutions

In this approximation, motion of the Quid is treated

as if induced by the plane faces and the cylindrical

edge acting independently. If we assume, therefore,
that q(r, s)=R(r)+Z(s), Eq. (8) is reduced to two

M. Brillouin, Lemons sur le Viscosite des Liquides et des Guz
(Gauthier-Villars, Paris, 1907),Vol. I, p. 88. This treatise contains
an excellent critical review of early experimental and theoretical
researches on viscous laminar How.

where f„ is the tangential force per unit area. In the
present application, the medium is subjected to purely
shearing stresses. Since a Quid is characterized by the
complete absence of rigidity for slow motions, the shear
distortions do not introduce Quctuations in the density,
whether or not the Quid is considered to be "compres-
sible" in the usual sense. According to the equation of
continuity of mass, the constancy of p implies that
V v=O. We assume laminar Qow and zero pressure
gradient along the streamlines. The velocity field is
described by the simpli6ed Navier-Stokes equation,

p (dv/dt) rtV'v =0. —

Faces:

The general solutions are

—p'Z= 0.
ds

Z= e+&', 2=H, &'& (ipr)/r, H&&" (ipr)/r, ', (»)
p = L(1—5) i+i(1+6)-'*j/X; X= (rrt/harp) **,

where H&'&, H&'~ are Hankel functions of the first and
second kind. ) is the "boundary layer" thickness or
"penetration depth" of viscous shear waves, the distance
in which the disturbance in the Quid falls off to 1/e
(only approximately in the case of the radial solution)
of its value at the solid boundary.

Case A. Infirtite medium

Applying the boundary conditions

2=00 at r=a; E=O at r= ~,
Z=op at s=+d/2; Z=O at s=&~,

we obtain
&=gp[aHt "&(ipr)/rH, &'& (ipa)$,

g ~0—00gu(sd —&) ~ g —g gy(~gtj+~) (12)

The torque exerted by the independent liquid motions
against the two faces and the edge of the disk is,
according to Eqs. (4), (7), and (12),

(aE)f= (Ke)liquid = 2m' drtT(t)
~

& ar).
(BZ$

4rrT (t) I
rs

~

—
( dr (13)

~p E as) gt,

(BR)= —2vra'drtue '~
~

+rra4rtpe
I ar).

In order to obtain a convenient analytic fo~ for the
radial term, the Hankel function is expressed as the
asymptotic expansion for large argument';

(2 i-*'3 15
Ht&'&(ipse) = —

~ )
e-" 1+ — +

pr) . 8pr 128p'r'
(14)

Differentiating the radial solution Fq. (11), we obtain
the radial displacement gradient at the edge of the disk,

(BRq —
3 3

I
= —p+ +-,. . . 0' (15)—

( Br), 2a 8pa'
~ E. Jahnke and F. Ernde, Tables of tiunctions (Dover Publi-

cations, New York, 1945), fourth edition, pp. 137—8.
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In almost all liquid helium work on torsion pendulums,

i pi &5/a, a-1. The neglect of all terms in the expan-
sion beyond the first two will therefore introduce an
error in (BR/Br), of the order of 8% or less. Further-
more, the drag on the edges of the relatively thin disks
actually studied is usually less than 25% of the total.
We will accordingly neglect the contributions due to
higher order terms in the expansion with a consequent
error no greater than 2%. With this simplification the
liquid torque Eq. (13) becomes

2d 3d
(EO)ljqujd =2ra 2lP 1+ + 8.

a pa
(16)

Substituting for p, we obtain the real and imaginary
torques due to the liquid, which are equated to the
corresponding components in Eq. (3) to yield

2IB(r'/r p2+1)
Re [(2lP)lj= (17a)

a4[2cr (1—b)]l(1+2d/a+3Rd/a2)

2I (r2/rp2 —1)
Im [(2lP)l]=

a4[m.r (1+8)]*' (1+2d/a)
(17b)

—yz y (z—L)e —e

Case B.Soleded medilm

The disk is assumed to be centered in a cylindrical
volume of Quid of radius b and height h. When we apply
the proper boundary conditions, the face and edge
solutions for the liquid motion are

edge:

(M~ &Mq )My —'

E Bf ) bounded ( Br) E Br )

e= (t2—d)/P, o = (b —a)/X, (20)

where (b—a)((a. For small e, o, Eq. (20) approaches
the case of steady rotation, as demonstrated by ex-
panding cothe and cotha',

—Q~ —2e—2 l 2'4 —a& I (19a)

f BZ) (BZ) (BZ)
E BS ) bounded 0 CIS ) 44 ( ClS ) to

=+,=2e—2lua —@)l (19b)

Thus it is necessary to provide a ratio (b—a)/&)4 in
order to reduce the effect of the container walls to less
than 1%.

Case 8-Z. Almost sready ro/aloe. —When the pene-
tration depth becomes comparable to or larger than the
distance between the disk and the stationary container,
the velocity distribution in the liquid approaches that
of a steady state condition; the inertial terms due to
acceleration of the liquid become much smaller than
those due to viscosity. The damping tends to become
almost solely dependent on the viscosity, rather than on
the product of viscosity and density. Evaluating the
torques on the faces and the edge from Eq. (18), we
obtain

(2IBi ( d
ii cothe+-cotho i,

Ea2rz) ( a )

wliere

~.)0=00

a~0 +2b+1 II1b+2
R=

)
r Hg, H2b —BgbH2

(18a)

(18b)

t' a
ll 1+— +

.apr kh —d) ( 3 45 )

( d $ f a o
+i ii1+— + i . (»)

lb a) ( 3 —45 )
Hi, =Hi ' (iPr), H2„=Hi" (iPr), etc.

We treat separately the two limiting cases of an "almost
infinite" volume which has as its asymptotic solution
Case A, and the strongly confined condition which
approaches the case of steady rotation of the disk.

Case B-I. "Almost imgriite" medium. —The liquid
torque, and hence the computed quantity (p2l) l, is
proportional to the velocity gradient. We may then
derive a criterion for the error in (p2l) ' by comparing
the gradientS (B&/Br)bounded, (BZ/BS)bounded frOm Eq.
(18) with the gradients (BR/Br)„, (BZ/Bs)„given by
the infinite medium. Approximating the Hankel
functions by the 6rst terms of their asymptotic expan-
sions, we obtain similar expressions for the approximate
percentage errors in the gradients at the faces and the

Corner Correction

We have been treating the motion of the Quid as if
it were stirred by the independent action of two faces
and the edge of the disk. This simpli6cation permitted
a reduction of the two-dimensional Navier-Stokes
equation which has a singularity at the intersection of
the face and edge surfaces, to two one-dimensional
equations, which are regular everywhere. This method
of approximation is equivalent to determining the liquid
velocity distribution in the s direction produced by the
torsional oscillations of a disk of in6nite radius and
then the drag of the liquid upon a central circular
(radius a) section of the infinite disk. The radial solution
was correspondingly equivalent to taking a short length
d of an in6nitely long cylinder of radius a. The pieces
of the in6nite surfaces were then added together to
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"CLINGING LAYER"

LIQUID "CORNER"

/rB!2///////~ /

DISK
'/~

/~Y~!'/////h
FLUID

Fro. i. Schematic rep-
sentation of boundary
layer in the neighbor-
hood of the disk corner.

ph~a4(1+2d/a) Ii,

4I 2
(23)

where I& is the moment of inertia of the "clinging layer"
determined above. Referring now to Fig. 1, we have
attempted to pictorialize the "clinging layer" in the
neighborhood of the disk corner. The diagram shows a
Quid region that was completely neglected in the
infinite surface section approximation. According to
this simple picture, the "neglected corner" extends
radially ~X/2 beyond the disk radius and also axially
~X/2 above the plane surface of the disk. The corner
then has a cross-sectional area proportional to X'; we

let its cross section be equal to vt', where v is the
"corner parameter. "The upper and lower liquid corners
therefore have a moment of inertia I,=4xu'pvX'.

Assuming that the corners exert an inQuence upon the
disk. in a manner similar to that of the Quid adjacent
to the plane and circular surfaces, the total moment of
inertia added by the Quid becomes

I(p'/r '—1)=Ig+I„ (24)

and the total decrement

8= (Ii,+I,)/2I. (25)

Finally, retracing the steps by which we arrived at
these simple representations and restoring the cor-
rection terms, we obtain the "corrected" equations
corresponding to Eqs. (17a, b);

2' (r'/ rp'+1)
Re [(gp)']= 7

a4[~ (1—S)]'(1+2d/~+3rd/~'+Svs/~)
(26a)

(26b)
2I (rP/r pP —1)

Im [(gp)-*']=
a4fgr r (1+4)]&(1+2d/a+ St/u)

represent a finite disk. %e shall presently show that this

approximation suffers froD| at least one important
defect and then describe a semiempirical method for
removing it.

By approximating (1+8)&=1, Eq. (17b) can be
interpreted as stating that the moment of inertia of
the disk is increased by an amount equivalent to a
Quid layer X/2 thick that clings to the disk surface;

I(7'/T p 1)=p (—X/2) pra'(1+ 2d/8') =Ii,. (22)

Rearranging terms in Eq. (17a) and approximating

(1—5)1=1, 3Rd/a'=0, r'jrp'+1=2, we obtain

The calculation just carried out is not rigorous, for
the eRect of the corner must perturb the velocity
profile some finite distance into the previously calcu-
lated plane and cylindrical surface regions. The calcu-
lation does, however, oRer a tractable functional de-
pendence for the eRect of the corner, which is expressed
in terms of the parameter v. Furthermore, it is possible
to obtain an experimental determination of the eRect.
Oscillating-disk studies in a medium whose viscosity
and density are known (the viscosity having been
measured by diRerent, and presumably less theoretically
difficult methods) will yield data that may be solved
for v directly. Dilute gases are well suited for such a
calibration, for their viscosities are quite independent
of density over a wide range, and the penetration depth
can be varied by changing the pressure. The parameter
may also be determined by comparing the results
obtained from two diRerent torsion pendulum studies
of the same Quid. Either the disk radii or the oscillation
periods should be significantly diRerent in order to
compare the Quid viscosities derived from systems
having different ratios X/a.

Constancy of the parameter v over a wide range of
X should indicate that one has a satisfactory functional
dependence for the effect of the neglected corner.

Re [(pn)']=
2II &( '/ o'+1)—2~o' / o]

84[7r7. (1—8) '(1+2dja+.2d'G"/a4
X (3Rd ~i')+3Rd'u"/a'+SA/a)

(27)

In6uence of the Suspension

%e now extend the problem of an idealized pendulum
to take account of the dissipative terms beyond those
due to the disk alone.

ln common practice the disk is attached to a sti8
rod which hangs from a torsion fiber; the disk and the
lower portion of the rod are immersed in the liquid,
while the upper portion of the rod is surrounded by
vapor at the equilibrium vapor pressure of the liquid.
The upper portion of the rod carries a plane mirror for
the purpose of determining the periods and deQection
angles. The torsion fiber has some measurable internal
friction. The total "nuisance damping" decrement $p

results from all these dissipative terms, but experi-
mental determinations of 6p are usually carried out with
the pendulum in high vacuum, a procedure which can
only measure the eRect of the fiber friction. Unless it
is possible to establish that the rod and mirror terms
are negligible, this practice may cause appreciable
errors in the liquid helium data at low temperatures,
where the 8 due to the liquid around the disk is small.

The torque due to the liquid around the lower portion
of the rod is given by the previously calculated drag on
the cylindrical edge of the disk, if the rod radius a' and
immersion depth d' are substituted for u and d. Defining
bp' as the nuisance decrement due to all torques other
than those of the liquid, we obtain, after Eq. (26a),
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Comparison between the results of two different disks
attached alternately to the same suspension and oscil-
lating in the same Quid can yield an experimental
measurement of bo'. The disks should be designed to
have signi6cantly different decrements in the Quid; if
the viscosity and density of the liquid are known, the
right-hand sides of Eq. (27) (with the appropriate
values pertinent to the two disks and the suspension)
can be equated, and bp solved directly.

Finned Rotor

Although a single disk experiment will not in itself.
yield the values of p and p individually, the single disk
may be replaced by a rotor whose interaction with the
liquid has a markedly diferent dependence on the
penetration depth. Simultaneous solutions of the equa-
tions proper to the two oscillating systems may then
yield p and p separately. An analytically simple second-
ary rotor satisfying the requirements is a coaxial array
of closely-spaced plane disks which are made to oscillate
as a unit.

We consider IV+1 plane circular disks, each of
radius a~ and thickness d, separated normal to their

planes by washers of radius a2 and thickness 2s. The
total moment of the assembly is I. The solution of the
hydrodynamic equation for the exposed top and bottom
faces and the 1V+1 edges is given by the single disk
formulas. The motion of the liquid laminae between
the plates is obtained by applying the new boundary
conditions to the general axial solution, Eq. (12). For
an origin midway between two plates, we have

Z= coshps/coshps.

Calculating the corresponding torque in the conven-
tional way, the X liquid laminae contribute a torque,

(&e)laminae = (al up )[(1—8)~+i(1+8)&]

sinh[2s (1—h) &/X]+ i sin [2s (1+8)&/g]
X (28)

cosh[2s(1 —8) '/X]+ cos[2s (1+5)'*/) ]
Adding the torque due to the laminae to that due to
the exposed surfaces, and approximating (1+h)&=1,
we obtain the real and imaginary equations

where

2I r'/r p' 1—
Im [(pq)']=—

(prr) l X(u~' ap')F p+2—(%+1)daP+Sv(1V +1)XaP+a~4

sinh (2s/X)+ sin(2s/X)F)— F2 ——--
cosh(2s/X) —cos(2s/X) cosh(2s/X)+cos(2s/X)

sinh (2s/X) —sin (2s/X)

2I 8 (r'/r p'+1) 28pr/r p-«[(~n)']=-
(7rr) ' 1V(ay —ap )FI+ay +2(X+1)daP+Sv(X+1)Rag+3(1V+1)XdaP

(29a)

(29b)

Equations (29) become incorrect when X &~s, due to
an overestimate of the corner correction, since the cal-
culated liquid corners of adjacent plates begin to
overlap. It is apparent that the real rotor cannot drag

more liquid than if the entire assembly of plates were
enclosed in a thin smooth sheath. We then impose such
a condition as an upper limit on the radial boundary
layer effect, obtaining for the case of X& s,

8(r /rp +1) 2ppr/rp—2I« [(~~):]=
(~r) ~ E(ui' ap')Fi+ag4+2P—aP+Svhag+3EDaP

2I r'/rp' —1
Im [(pg) &]=-

(7rr) l 1V (ui' ap')F p+ay4+2BaP+—8Aag'

(30a)

(30b)

where Z=2JVs+(N+1)d is the t'otal height of the
assembly. As the penetration depth increases further,
F&—+0 and Fp +2s/X. In this lim—it, the damping Eq.
(30a) is equivalent to that of a single disk of thickness

H, while the imaginary, Eq. (30b) states that the
moment of the rotor is increased by the total moment
of the liquid contained between the plates plus the
layer clinging to the outside surface, for Eq. (30b) can
be rewritten in the form,

$(rP/r —1)= pm'p[2slV(a~' —ap')

+X(ag'+2HaP+SvXag')]. (31)

"b"(1—~)]-:8 2d 3Xdi
P= —

i
1+—+

SX 2I[5(r /rpP+1) —28pr/rp] ( g a )

Observations of the period and decrement of oscillations

Experimental Determination of Corner Correction

We have measured the corner parameter v over a
wide range of experimental conditions, according to a
procedure outlined in a preceding section. Solving the
single disk Eq. (27) for v, we obtain
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TABLE I. Experimental corner parameters.

Fluid

He gas, 75 K

g micro-
s.0 sec poise

6.775 79

p gjcm' X/a v

0.605X10 4 0.674 0.33
1.31 0.458 0.33
2.41 0.337 0.30
4.96 0.234 0.32

Air, 22'C 42.07
6.775

182.4 9.21X10 ' 0.652 0.31
9.28 0.255 0.29

¹ vapor, 75' K 6.775 52.4 5.51X10 ' 0.202 0.28
11.78 0.124 0.43
22.4 0.0896 0.34
35.3 0.0716 0.37

%ater, room temp. 14.669 9185
9.900 9081
5.095 9336

0.9973 0.0394 0.31
0.9972 0.0320 0.37
0.9975 0.0234 0.46

Average, P =0.34 &0.04

"J.A. Bearden, Phys. Rev. 56, 1023 (1939).
» H. L. Johnston and E. R. Grilly, J. Phys. Chem. 46, 948

(1942).
"H. L. Johnston and K. E. McCloskey, J. Phys. Chem. 44,

1038 (1940).

of a disk in a medium of known viscosity and density
directly yield the value of the parameter.

The 6rst series of measurements were carried out
with the thin Dural disk described in Sec. III of this
paper. The erst medium studied was dry air, whose
viscosity has been determined by Bearden" by means
of a rotating cylinder viscometer. Our studies in air
were carried out at two oscillation periods, obtained by
suspending the pendulum alternately from 25-cm
lengths of 0.0076-cm diameter platinum wire, and
0.0025-cm diameter tantalum wire. These fibers gave
vacuum periods of 6.775 and 42.07 seconds, respectively,
and in air yielded penetration depths of one-quarter to
more than one-half of the disk radius. Although the
values v=0.29, 0.31 for the two periods agree closely,
these X/a ratios were too large to form the basis for a
conclusion about the value of v for much smaller ),/a.
Furthermore, it was desirable to measure p in media
having different viscosities and densities. Accordingly,
we determined the corner e8ect with the Dural disk in

N& and He vapors at 75'K. The viscosity of He gas
was obtained by extrapolating the measurements of
Johnston and Grilly, "whose studies of a thin disk oscil-
lating between closely-spaced stators extended down to
80'K. The density was calculated as that of an ideal
gas and was varied by changing the pressure. The value
of the corner parameter given by the He at four
pressures was v=0.32&0.01, for a X/a range of 0.23-
0.67. Measurements in N2 vapor were based upon the
viscosity extrapolated from the data of Johnston and
McCloskey, " whose studies ranged from 90—300'K.
The density was calculated using the second virial

coeScient. '~ Measurements at four pressures yielded
v=0.35&0.05, for a X/a range of 0.07—0.20.

The second series of measurements were made with
a large disk in water. The disk was turned from a
single block of stainless steel (p=7.8948 g/cms) to a
radius of 5.2984 cm and a thickness of 1.2085 cm. It was
soldered to a 30-cm length of 0.238-cm diameter steel
rod and suspended by various lengths of 0.041-cm
diameter steel music wire. The moment of inertia of
the pendulum was computed to be 1.1812)&10' g cm'.
Although it was not possible to measure the nuisance
decrement, the observations in air gave a decrement of
2.4X10 ', approximately 2% of the decrement in water.
The nuisance decrement could therefore be ignored.
Similarly, the vacuum period was taken as the period
of the disk in air. The disk was immersed in degassed
distilled water contained in a cylindrical glass reservoir
of 29-cm internal diameter. The temperature of the
water was measured to 0.1'C with a mercury ther-
mometer. Viscosity values of the water were tak.en from
a study of Poiseuille flow by Bingham and Jackson. "
Measurements at three oscillation periods yielded an
average v=0.38&0.06 over a X/a range of 0.023—0.032.

There is no signi6cant trend of v with any of the
parameters )I,/a, p, or r). Although the viscosity of water
is probably known to the highest accuracy of the four
Quids studied, the water measurements show the
greatest mean deviation, demonstrating the loss in
experimental sensitivity when the correction term 8v) /a
is small. The determination in air, on the other hand,
suffers to some extent due to the large magnitude of the
correction, since the moment of inertia of the "neglected
corner" was originally assumed to be that of a thin ring.
Finally, the viscosities of the He and N2 are extra-
polations of measured values. YVe have taken the arith-
metical average of the set as the best value of v. The
same average v=0.34+0.04 is obtained with equal
weight on each of the 13 separate determinations or
with equal weight to the average of each of the 4 Quids.
Data for the individual determinations are given in
Table I.

Review of Theory

Modern studies of "nearly infinite" viscous media by
means of the torsion pendulum have been based upon
M eyer's'5 analytic solutions of the right circular
cylinder. Since these solutions lead to a correction term
that is diGerent from the "corner eGect, " we shall
discuss Meyer's theory. Starting with the Navier-
Stokes equation and the same assumptions of the liquid
Qow pattern as adopted here, Meyer obtained a radial
distribution equation in agreement with Eq. (9a). His

~3A. S, Friedman, dissertation, Ohio State University, 1950
(unpublished).' E. C. Bingham and R. F. Jackson, J. Research Natl. Bur.
Standards 14, 59 (1918).

rs O. K. Meyer, Ann. Physik 32, 642 (1887).
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equation for the axial distribution, however, is given as

d'Z 4 p dpi
+-]

f

—p z=0,
ds' g(dr) „

which differs from Eq. (9b) by the inclusion of the
second term. It originates from Meyer's consideration
of the motion of the Quid within the region r &u as if
composed of disk-like laminae of infinitesimal thickness,
and the evaluation of torques on the laminae. " The
drag on each Quid plate was given as the sum of torques
on the upper and bottom faces, and on the cylindrical
edges, as if the Quid disk. were solid. The contribution
due to the faces appears to be valid for the case of
infinitesimal thickness, but the assumption of a torque
due to the disk edge does not appear to be justified. The
lamina cannot support a shearing stress without rapid
attenuation in a distance of the order of the penetration
depth, which is presumed to be smaller than the disk
radius. (Although it is obvious that the Quid laminae
must suGer angular shearing distortion in the region
r(a, this has been neglected in the present approxi-
mation. The apparent constancy of the empirical corner
parameter seems to justify the present approach. ) The
addition of the hypothetical "edge torque" of Meyer
results in the second term of the above diGerential
equation. Calculation of the resulting equations of
motion of a single oscillating disk leads to formulas
similar to those given in this paper, such as Eq. (27),
with the exception of the term 2X/a, which replaces the
corner correction 8iX/a. Although the functional de-
pendence is the same for both, our experimental value
of the parameter yields a coeQicient 8i 2.7, about 35%
higher than that given by Meyer.

Meyer's differential equations have apparently
formed the basis of analysis of the oscillating disk inves-
tigations of liquid helium that were performed by
Keesom and MacWood, ' Andronikashvili, ' ' de Troyer,
van Itterbeek and van den Berg, ' and Hallett. ~ The
first authors used equations derived by MacWood;
mistakes in intermediate steps resulted in formulas
quite different from those derived in the present paper.
Hallett has presented a brief discussion of these errors.
The latter three groups of investigators have used
essentially the same disk formulas, derived independ-
ently. Of these papers, only Hallett has published a
derivation. The anal equations contain the "Meyer
term" 2X/a, and do not include the term 3lh, d/a', which
arises from the derivative of the radial velocity distri-
bution. It is apparent that both terms tend to become
unimportant when X/a is sufFiciently small. They are not
insignilcant in the liquid helium work; furthermore,
there is a measurable eGect caused by replacing Meyer's
coeKcient with our empirical correction. For example,

' R. D. Glauz (private communication). The authors are
indebted to Dr. Glauz for drawing our attention to the source
of Meyer's error.

typical values encountered in the single disk studies are
ratios X/a 0.015 at the lambda point (~=10 sec,
p=0.145 g/cm', g=28 micropoise, a=2); at lower tem-
peratures the decreased normal Quid density causes X/u
to increase by a factor of about three at 1.2'K. At the
lambda point, the product pg calculated on the basis
of the Meyer correction is approximately 2% higher
than if one uses the empirical coe%cient. The dis-
crepancy rises to 6% at the lower temperature. Under
certain circumstances, the error can be considerably
larger. Hallett obtained his "disk constant" 412/ma8

by a calibration procedure in air at room temperature.
He used the Meyer correction and neglected the radial
term 3M/a'. The calibration value of the disk constant
thus obtained is 28% lower than that calculated directly
from the density, thickness, and radius of the disk.
A recalculation of the air calibration, using Eq. (27)
and the empirical corner parameter, reduces the dis-
agreement to about 6%.

Certain motions that deviate from the idealized Qow
pattern have not been considered. In addition to the
already mentioned angular shear in the region r&a, we
have neglected velocity terms of higher order than the
6rst, of which centrifugal Qow is a result, and eGects
due to the failure of the disk to execute purely torsional
oscillations in its own plane. Higher order velocity
terms become more important as the velocity of the
disk is increased, and cause the oscillations to decay
with an exponent that is a function of the amplitude.
Hence, the applicability of the equations may be tested
by observing the oscillations over an amplitude range
suKciently large to detect a significant variation in the
decrement. Nonideal motion of the disk system, caused
by an angular or translational displacement of the
rotation axis, dissipates energy by compression waves
transmitted to the liquid. These unwanted motions may
be detected by visual observation.

III. EXPERIMENTAL DETAILS

Cryostat and Thermometry

The experiments on pure He4 were carried out in a
large cryostat which is shown schematically in Fig. 2.
The He Dewar 8 has an internal diameter of 93 mm
and a vacuum-jacketed internal length of 800 mm.
During the greater part of this investigation, the liquid
nitrogen Dewar was supported on a thrust bearing, so
that it could be rotated until the unsilvered vertical
stripe of the inner Dewar was well shielded from room
temperature radiation. The torsion head assembly
consists of a 4~-in. long section of 3-in o.d.X~-in. wall
cylindrical Lucite tubing t/V, a section of brass tubing
of the same diameter, and a vacuum-tight 4-in. diam-
eter shaft "0-ring" seal S. The He Dewar and the
torsion head are assembled at the joints J with bolted
"0-ring" seals, which permit rapid removal and instal-
lation of di6erent oscillating systems. The pendulum
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we discuss some helium measurements carried out by
other investigators; their published temperatures have
been converted to the "1955 E" scale. Temperatures
of the liquid helium are stabilized by an electronic
regulator's to within 0.2-mm oil, the accuracy to which
the manometers are read. This corresponds to tem-
perature uncertainties of about 2X10 4'K near the
lambda point, and 2&(10 ' 'K at 1.2'K.

= PUMPS
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FIG. 2. Schematic of the
]experimental apparatus.

consists of an inertial body I, which is suspended from
a stiG rod R and a torsion fiber Ii. The radiation shield
consists of three sections C~, C2, C3 of thin-walled
stainless steel tubing of 62-mm diameter. It is provided
with radiation bafIIes in the annular space adjacent to
the Dewar wall and an internal removable shield which
has a central 16-mm hole to permit passage of R. The
apparatus was carefully shielded from mechanical
vibrations.

Vapor pressure of the liquid helium is measured by
mercury and butyl sebacate manometers connected to
the cryostat at P& and P2. In order to obtain high sen-
sitivity and accuracy in the pressure measurements, we
conducted a density determination of degassed butyl
sebacate at several temperatures between 22'C and
26 C; the sample used in the manometers has a density
of 0.93190L1+0.000835(25—t)] g/cm', where t is the
centigrade temperature. Oil manometer measurements
are converted to mercury level differences, using a factor
composed of the density of mercury at 20'C, the density
of the buty1. sebacate, and the gravitational accelera-
tions at Los Alamos and at sea level. Temperatures of
the liquid helium are given according to the "1955 E"
vapor pressure scale." In later sections of this paper

» Clement, Logan, and Gaffney, Phys Rev. 100, 743. (1955);
see their "Note added in proof. "

Measurement of Period and Amplitude

Optical Lever

Angular position of the pendulum is determined by a
light beam reflected from the mirror M on to an
engraved cellulose acetate scale held in a circular arc
of approximately 26-cm radius with its center at 3f.
The light source is a battery powered General Electric
Company 835 lamp, which has a straight single filament
of approximately 0.05-mm diameter wire. The reQected
image of the filament is focused through a small aperture
lens upon the curved scale. Magni6cation of the lamp
system is approximately 7; the width of the projected
filament image is about 0.5 mm.

The system is set into torsional oscillations by im-
parting a temporary angular defiection to the shaft.
The pendulum's angular position at rest is maintained
by a lever clamped to the upper part of the torsion
head shaft, and a mechanical stop. The rest position of
the pendulum reproducibly coincides with the zero
mark on the scale to within the angular width of the
filament image. Alignment of the pendulum components
is in all cases adequate to preclude any evidence of
eccentric oscillations or of a gravitational pendulum.
Since the mirror was concentric with the window, there
were no corrections for refraction of the light beam.

Chronometry

Determination of the oscillation periods is performed
with the aid of a photosensitive detector placed at the
rest position of the light beam on the scale, and an
electronic chronograph. The photosensitive detector is
a Western Electric Company Model 1740 p-e junction
germanium photodiode having a sensitive aperture
measuring 0.5 mm wide by 1.0 mm high and a sensitivity
of 10 microamperes/millilumen. The narrow light beam
sweeping across the face of the diode produces a
transient increase in conductivity. This conduction
pulse is converted by a stable dc bridge and amplifier
into a strong voltage pulse which is fed to a chrono-
graph. The timing circuit of the chronograph is con-
trolled by a 100-kc crystal oscillator. Four sealer strips
and a digital register display elapsed time with a pre-
cision of 0.1 millisecond. The sealer strips are started
by a bi-stable multivibrator, or Rip-Bop circuit, actuated
by a 7-volt pulse from the detector amplifier, and are
stopped by a pulse supplied to the other side of the

's H. S. Sommers, Jr., Rev. Sci. Instr. 25, 793 (1954).
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Qip-Qop circuit. In typical operation, periods are timed
by closing the switch leading to the "start" side of the
Qip-Qop circuit shortly before a transit of the light beam
across the detector. When the beam crosses the
detector, the resulting pulse starts the chronograph; as
long as the switch is in the "start" position, the timing
circuits continue to run. The number of transits of the
beam across the photodiode is indicated by a separate
digital register. After the pendulum has performed a
suitable number of cycles, the switch is thrown to the
"stop" position and the next transit of the beam
provides a pulse to the side of the Qip-Qop circuit that
halts the choronograph. Final display of the timing
measurement therefore includes the total elapsed time,
to 0.1 millisecond, for the recorded number of half-
cycles. Measurements are made only for an even
number of half-cycles.

Frequency of the crystal controlling the chronograph
and its drift during warmup are determined by com-
parison with a standard crystal oscillator which has
been calibrated to within 3 parts in 10' with signals
from the National Bureau of Standards broadcasting
station 8'8'V. The warmup drift is approximately 10
cps during the first three hours after which the frequency
does not vary by more than 0.5 cps. During density
measurements, the chronograph is continuously com-
pared with the standard oscillator by means of a
Hewlett-Packard Frequency Counter, and periods of
the pendulum are corrected for deviations of the
chronograph from a reference frequency of 100 035 cps.

Tinzieg CorrectiorIs and Fiber Characteristics

The finite width of the light beam causes a systematic
error in the triggering of the chronograph. Taking the
peak of the voltage pulse as the true zero of the pen-
dulum, the chronograph is turned on and off too early,
by an interval corresponding to the transit time of the
half width of the electrical pulse. Although the "pretrig-
gering" error at the start of a timing run tends to cancel
the error at the end, the lower amplitude of oscillation,
and hence, beam transit velocity, at the end of the run
causes the "stop" pulse error to be larger. The error is
reduced considerably by a dc bias applied to the output
of the amplifier, so that the chronograph is turned on
and o8 only near the peak of the pulse. A fast oscil-
lograph inspection of the amplifier output showed that
biasing reduces the effective electrical pulse width to
about 0.1 mm. The pretriggering effect causes errors in
the same direction as those due to the failure of the
fiber to obey Hooke's law. In order to determine the
combined effects of pretriggering and deviations from
Hooke's law, we studied the variation of period with
amplitude for tantalum fibers. The coefficient of am-
plitude dependence was found to be (1/r) (dr/d8) = 1.85
X10 ' rad ' up to an amplitude of 0.3 radian, which
was the upper limit of amplitudes employed in the
He II studies. The finite damping of oscillations causes
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Pro. 3. Variation of rotor period due to temperature dependence
of the torsion constant of the tantalum suspension hber.

an increase in period over the undamped value by an
amount Ar/r P/2. Maximum damping of the pen-
dulum occurs in the neighborhood of the lambda point,
where 6~10—'. The combined eGects of finite pulse
width, anharmonicity of the fiber, and damping of
oscillations upon the period cause errors which do not
exceed 3 milliseconds in the present studies. The data
are not corrected for these eGects.

In the case of the finned rotors suspended from
tantalum fibers, variations in room temperature caused
noticeable changes in the measured periods. An inves-
tigation of this dependence yielded a linear coefficient
(1/~)(dr/dt)=4. 6X10 ' ('F) ' between 65 and 75'F,
as shown in Fig. 3. Since the rotor was shielded from
temperature Quctuations by a good vacuum in the
inner Dewar during this investigation, the coefficient
was ascribed to the temperature dependence of the
torsion constant of the tantalum fiber. Published meas-
urements of the temperature coeKcient of the elastic
modulus of tantalum" quote a value within 20% of that
derived from our study. All rotor periods were therefore
corrected, by means of the above coefficient and a ther-
mometer in contact with the torsion head, to a constant
fiber temperature.

'9 V. W. Koster, Z. Metallkunde 39, 1 (1948).

Oscillating Disk Systems

A. This Single Disk

A thin circular disk (L) of Duralumin, shown sche-
matically in Fig. 4A, was studied in order to obtain the
principal data for a calculation of the product pg in
pure He', according to Eq. (27). The disk was turned
from a rod of Duralumin, whose density was determined
by measurements of the dimensions and mass of a large
sample length cut from the same rod. The measured
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FiG. 4. Design of
the oscillating disk
systems.

characteristics of the disk are: density, 2.796 g/cms;
disk radius u, 2.5006 crn; disk thickness d, 0.05004 cm;
stem radius u', 0.0824 cm; and stem length d', 2.54 cm.
The computed moment of inertia of Disk (L) is 8.821

g cm' at room temperature.
The disk was cemented to the lower end of a solid

fused quartz rod of 0.9-mm diameter and 108-cm
length. The torsion fiber was a 25-cm length of 0.0076-
cm diameter hard-drawn platinum wire, clamped at its
upper end to the shaft S, and cemented at its lower end
to the quartz rod. The mirror was a front-surface-
aluminized piece of 0.03-mm thick microscope cover
glass, measuring 12 rnm high and 4 mm wide. Rod and
mirror had a computed moment of inertia of 0.0302 g
crn . The disk was suspended on the axis of the Dewar
and approximately 10 cm above the bottom of the
Dewar. The liquid region extended away from the disk
at least 2 cm in each direction.

During experiments with Disk (L), the tubing shield
consisted of Sec. C2 only.

B.Firn, ed Rotors

In order to obtain the principal data for calculation
of density according to Eq. (30b), a finned rotor (L1),
shown schematically in Fig. 4B was constructed in a
design similar to that used previously. ' 4' One hundred
circular disks of Dural of nominally 0.001-in. thickness
and. 2-in. diameter were interleaved with 99 aluminum
washers 0.008-in. thick and 1-in. in diameter on a
Dural mandrel passing through a center hole in each
disk, and clamped in a rigid stack by a sliding collar
and Dural pin through the collar and mandrel. The
Dural disks and the aluminum washers were turned,

drilled, and bored while compressed in stacks of 50—150
sheets. Average densities and thicknesses were deter-
mined by weighing and measuring the completed stacks.
This procedure insured the cancellation of errors due to
fluctuations of density and thickness for a calculation
of moments of inertia. Dimensions of the Dural disks
are outer radius, 2.5381 cm; inner radius, 0.3175 cm;
thickness, 0.002777 cm; and moment (100 disks),
49.480 g cm2. Dimensions of the aluminum washers are
outer radius, 1.271 cm; inner radius, 0.3188 cm; thick-
ness, 0.1971 cm; and moment (99 washers), 21.519 g
cm'. Measured mass of the assembled rotor is 46.752 g.
Average separation between disks was determined by
measuring the total height of the disks and washers
after 6nal assembly, to be 0.02001 cm. The moments of
the collar and mandrel are 0.7150 g cm' and 0.8895 g
cm', respectively.

The suspension rod was a 108-cm length of Monel
tube of 0.16 cm o.d. and 0.0076-cm wall thickness, at
the lower end of which was soldered a 0—80 screw which
fitted a tapped hole in the mandrel. The calculated
moment of the rod, fiber clamp, and mirror was 0.2251
g cm'. The suspension 6ber was 0.005-cm tantalum, 26
crn long.

Since the accumulation of small errors in measure-
ment of the dimensions of the components could lead
to an appreciable error in the calculated moment of the
rotor, we determined the moment by a comparison
method. A thick single disk of very nearly the same
moment and mass of Rotor (L1) was turned from a
single block of Dural of measured density. Its period of
oscillation in vacuum at room temperature when
attached to the same rod and fiber was compared with
the period of the rotor. The moment of Rotor (L1) was
thus determined to be 72.336 g cm', which disagrees by
0.37% with the value obtained by summing the con-
tributions of the rotor components. Since the moment
of the "standard" thick disk was calculated from only
four dimensions and one mass and since the measured
periods of the standard disk and of the rotor had mean
deviations of less than 2 parts in 10', the comparison
value of the rotor moment is more reliable. We therefore
take as the moment of Rotor (L1) and suspension at
room temperature, the value 72.561 g cm'.

Initial studies with Rotor (L1) were carried out with
radiation shield C2, as used in the Disk (L) work. This
particular assembly of Rotor (L1), suspension fiber,
and radiation shield is designated as Rotor (L1A), and
experimental results obtained with Rotor (L1A) are
labeled accordingly.

Experiments carried out with Rotor (L1A) in the
low vapor pressure range of liquid helium indicated
that motion of vapor toward the pumping line exerted
a significant effect on the pendulum periods and the
rest position. This effect was verified by introducing a
source of gas into the cryostat at room temperature in
order to simulate the efQux of vapor to the pump. A



OSCILLATING D ISKS I N VISCOUS FLUI DS

simple analysis and the simulated eGect showed that
the interaction between the moving vapor and the
suspension is greatest at low pressure, for constant
mass Qow rate of gas. At pressures above that corre-
sponding to 1.5'K, the eRect was too small to be sig-
ni6cant. Accordingly, the experiments with Rotor
(L1A) were repeated with the Rotor (I.1) and the
shield C~, C2, C3, which insured that the suspension was
surrounded with a static gas column. In addition,
modi6cations in the suspension clamp and mirror, and
use of a new tantalum fiber require us to designate this
second pendulum assembly as Rotor (L18). The total
moment of inertia in this case was 72.353 g cm2.

The design of Rotor (I.1), involving thin disks and
narrow gaps between the disks, was necessitated by the
requirements of negligible slippage of viscous Quid and
relatively low moment of inertia. The separation
between plates was sufficient to cause 99.9%%uq of the
fluid to be dragged at the lambda point, as discussed
later. The thin vanes of the rotor were, however, slightly
warped; when viewed on edge, some of the disks touched
adjacent ones at the periphery. The oscillations of
Rotor (L1) were therefore not purely shear vibrations,
and could set a small portion of superfluid into motion.
The eRect of the imperfect motion was to cause a
fictitious increase in deduced values of viscous Quid

density, the increase being proportional to the density
of superfluid. A Rotor (L2) was constructed specifically
for studies in the region of low normal Quid density.
Its design was based upon the known increase of
kinematic viscosity of He II at low temperatures, per-
mitting the use of larger plate separations. Thickness
and separation between disks were roughly five times
those of Rotor (L1); the number of plates was re-
duced to 21. In order to minimize warpage, the disks
were turned from Qat, stress-relieved Dural. The as-
sembled stack was installed in a closely 6tted thin-
walled cylindrical sheath, which eliminated the necessity
for estimating the smoothness of the cylindrical bound-
ary layer. Other construction details were similar to the
original rotor. Specifications of the major components
are: disks of 2.5400-cm radius, 0.0135 cm thick; washers
of 1.270-cm radius 0.08009 cm thick; cylindrical sleeve
of 1.915-cm height, 2.540-cm internal radius, 0.00553-cm
wall thickness. The regularity of the assembled rotor
was examined by rotating it in a lathe before adding
the sheath; the disks appeared to be plane to within
0.003 cm. Total moment of inertia of the Rotor (L2),
sheath and suspension was computed to be 79.322 g
cm'. It was installed in the cryostat in conjunction
with radiation shield and bafge C~ and C2.

Measurement of Vacuum Periods and Decrements

The vacuum periods rs of Rotors (I.1A) and (L18)
at liquid He temperatures were not measured directly.
They were obtained by measurements of the vacuum
periods at room temperature and at 75'K, and an
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FxG. 5. Determinations of rotor period in vacuum
at liquid nitrogen temperature.

"Altman, Rubin, and Johnston, Ohio State University (un-
published).

extrapolation to liquid He temperature using the fol-
lowing procedure. In order to insure that the rotor
reached liquid nitrogen temperature, He gas was
admitted to the inner Dewar space and to its annular
jacket, and the outer Dewar was filled with liquid
nitrogen. Since the He gas in the inner Dewar was
required for thermal equilibrium but made an unwanted
contribution to the period of the rotor, we measured
periods as a function of gas pressure over the range
55—2 mm Hg. These periods, plotted eersls pressure,
fell on a smooth curve and were extrapolated to the
value at zero pressure, as shown in Fig. 5. The change
from the value in high vacuum at room temperature
yielded a fractional effect hr/r(294 75 I)=3.78—
&&10 '. This ratio is equal to the total contraction coef-
ficient of the rotor material: d,r/r=d, r/r= Jrs"'ndT,
where n is the diRerential thermal coefficient of expan-
sion. Independent measurements" of the n of pure
aluminum yield the integrated coefficient hr/r=3. 81
&(10—' for the same temperature change, and 0.2)&10 '
for the residual coefficient from 75'K to 4'K. In view
of the excellent agreement between these data for the
range 294—75'K, we accepted the value for the residual
change as representative of the contraction of the Dural
rotor and disk from liquid nitrogen to liquid helium
temperature. The corresponding reduction in the period
of the rotor was about 7 milliseconds below that at
75'K. We thus obtained for the vacuum periods at 4'K:
Rotor (L1A), 37.002 sec; and Rotor (L18), 36.750 sec.
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This indirect procedure was devised after the failure
of attempts to measure the vacuum periods of Rotors
(L1A) and (L18) at liquid helium temperature. These
attempts consisted of period measurements after the
bath level had fallen below the bottom of the rotor,
which then oscillated above the liquid in cold helium

gas at low pressure. " Periods under these conditions
indicated that some liquid remained between the plates
for several hours after losing contact with the bath,
for the periods were higher than had been measured at
75'K, and decreased slowly with time. The periods
tended to reach the 75'K value approximately, but
soon after began to increase, indicating that the now

dry rotor was warming.
In the case of Rotor (L2), improved radiation shield-

ing and prolonged observation gave a successful direct
measurement of ro at liquid helium temperature. After
contact between the rotor and bath was broken, drops
of liquid fell from the rotor for two to three hours, while

the period generally decreased. The period eventually
reached a minimum of 40.041 sec and remained at this
value for over 12 hours more. The bath vapor pressure
at this time was less than 0.05 mm Hg. The period of
Rotor (L2) at 75'K was measured to be 11 milliseconds
greater, whereas the increase computed from the ex-
pansion coefficient is only 8 milliseconds. The uncer-
tainties in the ro (4'K) of Rotors (L1A) and (L18)
are therefore estimated at 3 milliseconds. The measured
value ro 40 041 s——ec fo.r (L2) has an estimated uncer-
tainty of 1 millisecond.

The vacuum decrements of both rotors were less
than 2)&10 '.

The vacuum decrement of Disk (L) was obtained

by pumping the empty cryostat over night and then
filling the outer Dewar with liquid nitrogen in order to
trap out the residual air (the annular space of the He
Dewar was in this case charged with He gas to a few
mm pressure); Dewar space vacuum was ~10 ' mm

Hg. The resulting vacuum decrement was 80=4.13
)&10 '. The Disk (L) vacuum period ro 6 298 sec a——t.
liquid helium temperatures was the average of 175
oscillations while the liquid He bath, at a level 3 cm
below the disk, was maintained at 0.22-mm pressure.

IV. EXPERIMENTAL RESULTS

Measurements in Liquid Helium

Single Disk

At the beginning of each liquid helium run, the
cryostat was filled to a level of approximately 50-cm
depth above the disk. Upon pumping the liquid to.
below the lambda point, the liquid level was reduced
to approximately 30 cm. Temperatures at which the
liquid was to be studied were achieved by setting the
bridge circuit of the electronic bath regulator for the

"E.L. Andronikashvili (private communication). This pro-
cedure was similar to that carried out by Andronikashvili.

appropriate carbon thermometer resistance and then
throttling pumping valves until the regulator controlled
at approximately 10 ' watt input to the bath heater.
An equilibration time of approximately 5 minutes was
usually required for each new temperature setting after
which there was no significant change in the vapor
pressure of the bath.

After checking the rest position of the light beam,
the pendulum was set into oscillation at an initial
amplitude of 0.1—0.5 radian. Successive amplitudes
during the decay of oscillations were recorded directly
on semilogarithmic graph paper. We verified the original
observation of Hallett' that an unusual dissipative
mechanism appears at sufficiently high amplitudes.
This paper is concerned solely with the subcritical
velocity region; consequently, our interest was limited
to the low-amplitude range of constant logarithmic
decrement. In this range we observed at least 30 suc-
cessive swings, until the amplitudes decreased by a
factor of 3—5. The logarithmic decrement was deter-
mined from the slope of the best visual fit of straight
line through the data. At least two complete decay
curves, from the "critical amplitude" down to about
0.02 radian, were observed at each temperature; the
disagreement between the decrements of the individuaj
decay curves for each temperature was not greater than
1 percent. We obtained the Disk (L) period r at each
temperature from the average of at least two sets of ten
oscillations each. The averages of each set were in
agreement to within 2 milliseconds. During each ex-
perimental day, decrements were obtained in a pattern
so as to provide at least two transits of the accessible
temperature range, a procedure which demonstrated
that there was no perceptible effect due to variations
in bath height. Succeeding runs were carried out at
temperatures between points previously obtained. Xo
systematic displacements could be perceived.

Experimental values of 8 for Disk (L) are tabulated
in Table II and shown graphically in Fig. 6.

Iiierled Rotors

Measurements were carried out with Rotors (L1)
and (L2) according to a procedure similar to that
employed during the Disk. (L) studies. In this case,
however, the most important information was the
period of oscillations. At least three sets of ten oscilla-
tions each yielded an average period at each tempera-
ture; mean deviations in the average period were within
3 milliseconds, giving an uncertainty within 8 parts in
10'. Occasional observations of the logarithmic decre-
ment were obtained in order to insure that period meas-
urements were conducted over the subcritical amplitude
region. In cases where a semilog plot was not made,
decrements were obtained from the initial and final
amplitude readings taken during the period measure-
ments.

The periods showed no significant trend with am-
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TAnLE II. Decrernents of single Disk (L).
IQ—

T 'K

2.1236
2.0433
1.306
1.461
1.8898
2.1658
1.682
2.1691
2.1579
2.0931
1.8572
1.689
1.492
1.320

10g8

8.56&0.03
6.84&0.02
2.50&0.01
2.97w0.03
5.22~0.04
9.98&0.07
3.53%0.03

10.17&0.06
9.60&0.03
7.70&0.03
4.88&0.01
3.90~0.02
3.00&0.01
2.39~0.03

T'K

1.287
1.392
1.594
1.7978
1.9311
2.0042
2.1442
2.1727
2.1669
2.1409
1.063

Bp

2.53~0.01
2.72~0.02
3.47+0.01
4.42~0.02
5.50~0.01
6.28~0.03
9.12~0.00

10.41~0.06
10.13~0.05
8.94~0.06
1.96

0.413

40

O

2 — 4

plitude in the subcritical region. The rest position of the
optical lever shifted by (0.001 radian over the acces-
sible temperature range; this shift was possibly due to
a distortion of the torsion head due to the change in
pressure. There was no perceptible change of period
with bath height.

0.06089 8[(r/rs)'+ I]—1.302)&10—'r '
P'9 =

r (1—8) 1+1.269K
(32)

Penetration depths encountered in the Rotor (II)
studies were 2—8 times the spacing between the disks;
the assumption that the peripheral boundary is a
smooth cylinder in a hydrodynamic sense appears to
be justified. Therefore, the formula applicable to the
motion of the finned rotors is Eq. (30b). However, the
simpler Eq. (31) may be used when the slippage of
liquid contained between plates is negligible. A pre-
liminary estimate of the "fraction of slip, " defined as
1—Fs(2s/X) ', gave a maximum figure of about 0.1%
in a gap equal to the mean disk spacing. A direct check
of the estimate is afforded by the damping Eq. (30a).
It can be seen that in the case of zero slip, the rotor
behaves like a single disk of thickness equal to the total
height of the stack. This condition is approached only
asymptotically. Although the fraction of slip may be
reduced to a small value for the purpose of determining
the liquid density from period measurements, the
"internal friction" due to the residual slip is enhanced

Calculation Scheme

The equations of motion of the oscillating bodies are
obtained from the individual moments of inertia and
dimensions corrected for thermal contraction, the
periods and decrements, and the pertinent equations
derived in Sec. II of this paper. Estimated effect of
liquid and vapor damping on the sti6 rod showed that
this contribution to the nuisance damping was insig-
nificant in our case; we accordingly use the vacuum
decrement. We also employ the experimental corner
parameter P =0.34.

The Disk (L) formula, after Eq. (27) is thus

I
I I I 1 I I I I I

I.O L I l, 2 I.3 1.4 I.5 I.6 I.7 l.8 l.cl 2.Q 2.I

T oK

FIG. 6. DecrenMnts of Disk (L) in He II.

0.60428[(.*/»')' —1$
Rotor (L1A): p= (33a)

1+1.50)I,*+057K'

0.60254[(r*/»~)' —1j
Rotor (L18): p= (33b)

1+1.50K*+0.57&'

The equation applied to Rotor (L2) was, after Eq.
(30b),

0.11468[(r*/re*)'—1$
(per*)'=

Fs+0.1375+0.0576K*
(33c)

with 2s= 0.0805 cm. The periods and penetration
depths belonging to the rotors are starred in order to
avoid confusion with the corresponding characteristics
of the single disk. .

by the large surface area of the many disk faces over
which the drag acts, causing a large contribution to the
decrement. This magnification of the e8ect upon the
experimental decrement prevents one from obtaining
reliable pp measurements with a finned rotor from Kq.
(30a). Equation (30a) and the observed decrement may
be safely employed, however, to obtain an experimental
measurement of slippage by solving for the function F&.

Thus, we employed the measured excess of damping of
Rotor (L1A) above that of a solid disk in the neighbor-
hood of the lambda point to obtain an experimental
value for the "internal damping factor" Fi of Eq. (30a).
The experimental value of Ii ~ corresponds to a slippage
of 0.113%at Ti„ in. agreement with the value estimated
directly from the average disk spacing and the pene-
tration depth. Since the penetration depth increases
monotonically from the lambda point to lower tem-
peratures, the liquid between the disks is set into
motion with an efficiency no lower than 99.89%, and
we may use Eq. (31) with corresponding accuracy in
the computed liquid density.

The equations pertinent to the Rotor (L1) are
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ToK 7+ sec 103 V 103 8
y micro-

poise p~ g/cma

2.1467
2.0942
2.1326
2.1680
2.0189
1.9610
1.8960
1.7979
1.701
1.601
2.0692
2.1187
2.1725
2.1720
2.1710
2.1699
2.1638
2.1075
2.1528
2.0467
1.9931
1.9359
1.8461
1.7501
1.649
2.1581
2.1717

Rotor
40.940
40.346
40.755
41.299
39.734
39.355
38.992
38.548
38.195
37.913
40.122
40.591
41.457
41.425
41.381
41.342
41.205
40.472
41.025
39.935
39.551
39.205
38.750
38.356
38.030
41.114
41.446

(L1A)
9.62
8.31
9.28

10.42
7.00
6.16
5.35
4.43
3.84
3.47
8.05
8.60

10.62
10.87
10.61
10.49
10.20
8.65
9.65
7.33
6.65
5.6
4.79
4.10
3.46
9.78

11.

gle DiskSin
6.381
6.371
6.378
6.386
6.363
6.359
6.355
6.350
6.346
6.344
6.368
6.375
6.387
6.387
6.387
6.387
6.385
6.373
6.382
6.366
6362
6.357
6.352
6.348
6.345
6.383
6.387

9.160
7.740
8.705

10.140
6.465
5.800
5.190
4.460
3.940
3.500
7.270
8.325

10.395
10.365
10.305
10.250
9.850
8.025
9.400
6.880
6.145
5.540
4.795
4.185
3.700
9.590

10.350

23.02
19.25
21.78
25.94
16.34
15.26
14.46
13.82
14.23
15.20
18.17
20.81
26.26
26.31
26.28
26.25
25.00
19.96
23.76
17.28
15.82
14.88
14.08
14.01
14.82
24.19
26.09

0.12538
0.10496
0.11900
0.13772
0.08403
0.07108
0.05878
0.04387
0.03206
0.02275
0.09727
0.11335
0.14339
0.14221
0.14063
0.13922
0.13458
0.10928
0.12827
0.09087
0.07776
0.06599
0.05063
0.03743
0.02659
0.13139
0.14303

2.0473
2.0025
1.652
1.502
1.400
1.9365
1.140
1.132
2.0499
1.287
1.255
1.221
1 ~ 218
1.354
1.8505
1.452
1.598
1.651
1.7473
1.8974
2.1724
1.8002
1.6975
1.S53
1.327

Rotor
39.689
39.358
37.789
37.428
37.253
38.967
37.000
36.988
39.708
37.113
37.084
37.050
37.045
37.190
38.530
37.334
37.645
37.791
38.094
38.756
41.219
38.315
37.943
37.543
37.156

(I.18)
7.95
7.4
39
4.1
4.3
7.0

8.1
4.6
4.9
5.4
7.0
4.2
5.3
4.0
3.5
4.2
6.1

10.8

4.4
3.1

6.367
6.363
6.345
6.341
6.339
6.357
6.335
6.335
6.367
6.337
6.336
6.336
6.336
6.339
6.352
6.340
6.344
6,345
6.348
6.355
6.387
6.350
6.346
6.342
6.337

6.890
6.250
3.715
3.095
2.740
5.550
2.105
2.085
6.935
2.425
2.345
2.275
2.265
2.605
4.825
2.915
3.480
3.710
4.170
5.205

10.380
4.475
3.925
3.295
2.525

17.22
15.93
14.67

14.75

17.33

13.91

14.59
13.95
14.35
25.96
1.3.64
14.03

0.09153
0.08018
0.02710
0.01524
0.00959
0.06683
0.00159
0.00121
0.09218
0.00512
0.00421
0.00313
0.00296
0.00757
0.05199
0.01220
0.02235
0.02719
0.03729
0.05964
0.14466
0.04476
0.03226
0.01901
0.00649

1.597
1.500
1.406
1.309
1.212
1 172
1.700
1.793
1.382
1.453
1.549
1.649
1.748
1.268

Rotor
40.674
40.498
40.359
40.250
40.170
40, 149
40.903
41.146
40.325
40.418
40.580
40.784
41.019
40.207

{I2)
5.01
3.27
2.54
2.26
1.92
2.18
7.25

10.0
2.82
3.84
3.86
5.65
8.42
2.29

6.344
6.341
6.339
6.337
6.336
6.335
6.346
6.350
6.339
6.340
6.342
6.345
6.348
6.336

3.480
3.080
2.760
2.480
2.255
2.170
3.930
4.430
2.685
2.920
3.280
3.700
4.165
2.380

15.07
16.18
18.50
22.71
31.36
35.27
14.06
13.74
19.61
17.59
15.67
14.51
13.84
26.70

0.02231
0.01536
0.01004
0.00596
0.00302
0.00229
0.03202
0.04326
0.00874
0.01225
0.01855
0.02687
0.03725
0.00435

TABLE III. Experimental values of density p„and viscosity p
in liquid He II, together with values of v*, v, and 8 from which
they were computed.

Values of the liquid density and viscosity are obtained
from the experimental r, 5, and 7.* at each temperature,
by simultaneous solution of Eq. (32) and Eq. (33).
Although the same range of temperatures was studied
with the disk and the rotors, the fixed temperatures in
the diferent studies did not precisely correspond. The
values of 8 and ~ of the disk appropriate to the tem-
peratures studied with the rotors were therefore ob-
tained by interpolation of the disk data. Large plots of
the experimental Disk (L) data were fitted with smooth
curves, from which the necessary information was
obtained. Mean deviation of the data points about the
smooth curve is about 1%%uo.

p and q were computed at each temperature on an
IBM 701 computer, using the method of successive
approximations. Iterations were carried out until frac-
tional changes in the kinematic viscosity q/p were less

than 0.01'%%uo

Comparison between the densities given by Rotors
(L1) and (L2) at temperatures 1.2'—1.8'K showed the

(L1) values to be larger by an amount corresponding to
the systematic excitation of 3.4% of the superfluid

present. This discrepancy is consistent with the ob-
served mechanical defects of the more delicate system.
Ke therefore applied the indicated correction to all

densities and viscosities obtained from iterations of the
Rotor (L1) data. This correction varied from zero at
Ti, to almost 8% at 1.8'K, the highest temperature for
which (L2) data is given.

Experimental values of the density and viscosity are
given in Table III, together with ~~, 7, and 6 from which

they were computed.

Discussion of Errors

Dimensions of Disk (I.) were measured at room tem-

perature with calibrated micrometers, to an accuracy
of about SX10 4 cm. Density of the disk material was

measured to 0.1%. The calculated disk coefficient
4I'/~a' is thus known to approximately 2%. The
moment of inertia of Rotor (L1), measured by the

comparison method described in Sec. III, is accurate
to 0.3%. Uncertainties in the measured dimensions of

the rotor, together with the discrepancy in the moment,

lead to a possible error in p„of 0.5%. Corrections due to
thermal contraction amount to about 1.6% in p„g and

0.8% in p„; these corrections are determined to an

accuracy of better than 5%.
Reproducibility of the measured decrements of Disk

(L) was in general better than 1%; corresponding

uncertainty in p„z is 2% at the lambda point and up
to 4% at 1.2 K. Uncertainties in the periods of Disk

(L) cause negligible errors.
As discussed in Sec. III, errors in the technique of

rotor period measurement amount to no more than 5

milliseconds. Periods in He II were reproducible to

5 milliseconds. The uncertainty in p„due to the above

timing errors is 3X 10 ' g/cm' at all temperatures.
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The corner parameter is the principal source of error
in the hydrodynamic equations. Experimental scatter
in i causes an uncertainty in Disk (L) p„g values of
0.3% near the lamdba point and 1.5% at the lowest
temperatures. Corresponding uncertainty in p„ is within
0.2%. Neglect of squared and higher order terms in X

introduce errors no greater than 0.3%. Slippage of the
viscous Quid between the rotor plates of (L1) never
exceeds 0.1%, in agreement with the theoretical esti-
mate. Slippage was accounted for in the equation
applied to Rotor (L2).

Errors in the machine computations of p„and q are
insigni6cant.

Hence, the total nonsystematic error in p„ is 1% at
high temperatures and 6% at 1.2'K. Maximum random
eror in q is 5% at the lambda point and 9% at low
temperatures.

V. DISCUSSION

Normal Fluid Density

The behavior of p„ in the neighborhood of the lambda
point has been investigated in detail. Data for this
region are given graphically in Fig. 7. Several experi-
mental points taken within 5 millidegrees of Tq show
a satisfactory approach to the pycnometer value" of
pq at 2.1735'K, the transition temperature determined
earlier in a diferent apparatus. "A particularly inter-
esting feature of Fig. 7 is the sharp upturn within
0.01'K of Tq, we found, in fact, that in this region the
rotor period was a more sensitive indicator of tem-
perature variations than the manometer levels.

The unusual behavior of the density near the lambda
point can be seen also in the nature of the temperature
derivative p„'dp„/dT. Th—is coefficient has a form
resembling an ordinary thermal expansion coe%cient
n= p'dp/dT; ig—noring the difference in sign, we
define o„=p„'dp„/dT as the "thermal coeflicient of the
normal Quid. "Its experimental behavior, obtained from
tangents drawn to large smooth curves through the
data, is shown in Fig. 8. The coefEcient is cl.osely pro-
portional to 1/T from 1.2' to 2.0'K; deviation from
the inverse temperature dependence begins at about
2.0'K. The marked rise in n„as Tq is approached is
most striking; it increases by a factor of two for a
change of 1 millidegree at 2.1725'K. Although it was
not possible to measure n„exactly at T&, the behavior
at lower temperatures suggests that n„(Tq) is inQnite.
Recent measurements by Atkins'4 indicate that the
expansion coeKcient —a of the whole liquid tends to
infinity at the lambda point. It has a shape similar to
n„ in the neighborhood of the transition, but magnitudes
no greater than 0.5% of n„at all temperatures measured
below Tq.

The inverse temperature dependence of a„below

's E. C. Kerr (to be published)."J.G. Dash and R. Dean Taylor, Phys. Rev. 99, 598 (1955).
'4 K. R. Atkins and M. H. Edwards, Phys. Rev. 97, 1429 (1955).

QI4

0,12

0,'10

0.08
2.06 2.IO

T'K

I

2.14

I

2.18

FxG. 7. Normal fluid density in the region of the lambda point.
~ Rotor (L1); ~ total density at Ti, (reference 22).

2.0'K corresponds to the theoretical behavior predicted
by Landau" and by Feynman. ' According to Landau,
the temperature function of the roton contribution to
the normal Quid density is

p„/p=AT 'e also, A=constant, (34)

where 6/k represents the minimum energy required to
excite a roton. At all temperatures investigated here,

28

26-

22-

20-

0

12-

10-

8-

2-

0
1.2

I

1.4
I

1,8

FIG. 8, Thermal coeKcient of normal fluid, p 'dp jdT. ~ Ex-
perimental; ——derived from roton contribution, n/k = 10.60'K;
———derived from power law (T/Ty)"'.

~~ L. Landau, J. Phys. (U.S.S.R.) 5, 72 (1941);8, 1 (1944); 11,
9t (1947).

~6 R. P. Feynman, Phys. Rev. 91, 1291, 1301 (1953).
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FIG. 9. Percentage of normal iluid from 1.15'K to the lambda point. p Rotor (L1A); P Rotor (L1B); z Rotor (L2);
+ Andronikashvili; X derived from second sound and heat capacity; —roton contribution, 6/k=10. 60'K.

the contribution to p„due to phonons is estimated to
be less than 0.2% of the measured values. The density
data are directly compared with the form of Eq. (34)
in Fig. 9. We neglect the 0.8% variation in the total
density p over the temperature range by taking the
ratio of p to the value of p at Tq."The experimental
points below 2.0'K are well described by the theoretical
curve corresponding to the parameters A = 1.486
X10'('K)'*, A/k=10. 60'K. As expected for the region
of high roton concentration, the equation provides an
increasingly poorer description of the density as the
lambda point is approached; furthermore, the param-
eters chosen to represent the colder region place the
point at which p„=p at the wrong temperature, 2.313 K.
The coe%cient n„calculated from the above formula is
compared with the measured values in Fig. 8. Devia-
tions of the p„equation from our smoothed data are
given in Fig. 10; agreement averages better than 1.5%
between 1.2—2.0'K, and the maximum discrepancy is
3.4% at 2.0'K. Feynman and Cohen" have recently
recalculated A/k from atomic and x-ray data as 11.5'K.
Normalization to our data at 1.5' yields the coefficient
A =2.75X10'. The resulting values of p„/p are approxi-
mately 14% above our data at 2.0' and 11% below at

sr R. P. Feynman and M. Cohen, Phys. Rev. 102, 11g9 (1956).

1.2'K, in good agreement for a A/k value calculated
from first principles.

In contrast to the correspondence obtained with Eq.
(34), the alternative semitheoretical formula's

p„/p= (T/Tq)", r= constant, (35)

provides a much poorer description. A rough approxima-
tion to the data over the entire range is given by
r=6.38; its logarithmic derivative is compared with e„
in Fig. 8. Deviations of this equation from the data are
shown in Fig. 10; the average discrepancy below 2.0'
is 5.5% and reaches 16%at 1.2'K. Only slightly better
agreement is obtained when Eq. (35) is treated as a
two-constant equation by choosing a better paraineter
for T~ than the actual value. "

Normal Quid density measurements by other inves-
tigators are also included in Fig. 9. The first such study
was made by Andronikashvili, ' 4 using the same experi-
mental approach reported here. Methods of period
measurement and calculation were cruder in this

2'F. London, SNperguids (John Wiley and Sons, Inc. , New
York, 1954), Vol. II.

"A two-constant equation of this form was given in our pre-
liminary report at the Louisiana State University conference.
Normal density values corresponding to this equation were based
upon results obtained with Rotor (Li) only and were therefore
considerably in error at the lowest temperatures.
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TABLE IV. Smoothed data at regular temperature intervals. 20

T'K p /p% ('K) 1 sJ IJP T K: p.yp y ('X)-1

2.1735
2.1730
2.1720
2.171
2.170
2.169
2, 168
2.167
2, 166
2.165

2.160
2.150
2.140
2.130
2.120
2.110
2.100
2.090
2.080
2.070
2.060
2.050

100.00
98.86
97.22
96.12
95.28
94.54
93.93
93.36
92.83
92.30

90.13
86.55
83.37
80.38
77.67
75.20
72.82
70.59
68.51
66.56
64.65
62.77

25.8
12.1
9.75
7.56 26.1
6.80
6.38
5.84
5.47
4.80 25.2

4.35 24.49
3.83 23.31
3,67 22.34
3.49 21.51
3.29 20.78
3.23 20.14
3.10 19.56
3.03 19.04
2.93 18.57
2.91 18.14
2.91 17.75
2.92 17.38

2.000 54.20 2.89 15.96
1.950 46.97 2.84 15.00
1.900 40.68 2.89 14.39
1.850 35.13 2.98 14.04
1.800 30.07 3.10 13.88
1.750 25.60 3.09 13.92
1.700 21.85 3.30 14.14
1.650 18.35 3.44 14.51
1.600 15.40 3.63 15.01
1.550 12.70 3.95 15.64
1.500 10.31 4.23 16.46
1.450 8.28 4.42 17.5
1.400 6.56 4.78 18.9
1.350 5.09 5.42 21.0
1.300 3.83 6.25 23.9
1.250 2.78 6.69 28
1.200 1.95 7.49 33

z Io —'l

0
i~

bJ

K
LLI
CL -10—

-20-
1.2

I

1.6
T'K

I

1.8
I

2.0 2.2

FIG. 10. Deviations of theoretical normal Quid density behavior
from experimental data. —roton contribution, 6/4=10.60'K;

(7'/Tx) 6.38

Viscosity

pioneer work, and are evidenced by the larger scatter
of Andronikashvili s data. Within these random varia-
tions, however, we are in agreement over the entire
range common to both studies. Indirect determination
of p„/p may be obtained from the heat capacity C, the
entropy 5, and second sound velocity U~i, through the
use of the theoretical relation"

(36)

Noting that some 10% discrepancy exists between
independent measurements of the heat capacity, "3' we

have included in Fig. 9 the p„concentrations calculated
from thermaP' and second sound velocity" data. These
calculated concentrations lie systematically higher than
the torsion pendulum values at aH temperatures and
deviate increasingly at lower temperatures. Disagree-
ment at 1.2'K is 45%, approximately 3 times the
combined uncertainty of the different experiments.
Previous authors have observed that 6/k determina-
tions given directly by speci6c heat data and by the
second sound data with Eq. (36) are not consistent";
these data yield 6/k varying in magnitude from about
8 to 9.6'K.

In Table IV we have listed smoothed values of
normal Quid concentration and thermal coefficient at
several temperatures.

"Kramers, Wasscher, and Gorter, Physica 1S, 329 (1952).
@ G. R. Hercus and J. Wilks, Phil. Mag. 45, 1163 (1954).
"V.Peshkov, J. Phys. (U.S.S.R.) 10, 389 (1946); Lane, Fair-

bank, and Fairbank, Phys. Rev. 71, 600 (1947); J. R. Pellam,
Phys. Rev. 75, 1183 (1949);R. D. Maurer and M. A. Herlin, Phys.
Rev. 76, 948 (1949).

The behavior of the viscosity of He II is shown in
Fig. 11, in which we compare our results with those
published by Andronikashvili' and Heikkila and
Hallett. " Andronikashvili employed the single oscil-
lating disk method, as in the present research. Certain
approximations and the use of the "Meyer" edge cor-
rection suggest that his values shouM be increased by
about 8%. This increase is sufficient to bring the two
sets of data into agreement to within the combined
experimental uncertainties. Heikkila and Hallett have
recently measured the viscosity in a more direct way
by means of a rotating cylinder viscometer, a method
that does not require knowledge of p„. Their data
parallel our results between Tq and 1.5'K, but are lower

by about 9%.The effect of thermal contraction on their
apparatus was neglected; the viscometer results should
therefore be raised by an estimated 4%.ss The viscom-
eter and single-disk data are consequently in agreement
between T~ and 1.5'K. Below 1.5', however, the vis-
cometer results deviate systematically from the single-
disk measurements; at 1.2'K, Heikkila and Hallett
report 19.6 micropoise, while we find a value of about
33 micropoise. The discrepancy is much larger than can
be expected from the uncertainty in our p„values,
especially since a mechanically imperfect rotor tends to
yield p„values too large, and hence erroneously decreases
the calculated viscosity. The reported instability of
the viscometer suggests that results obtained from it
are less reliable at lower temperatures, but we cannot
estimate the uncertainty of the results. Should Disk (I.)
be slightly warped, however, the viscosity would be
unnaturally increased principally at the lowest tem-
peratures. Through its inQuence on the penetration
depth, errors in the viscosity cause corresponding but
smaller errors in the calculated values of p„. A decrease

33 W. J. Heikkila and A. C. Hollis Hallett, Can. J. Phys. BB,
420 (1955).
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FIG. 11. Viscosity of normal fluid. ~ Rotor (L1A); 0 Rotor
(L18); ~ Rotor (L2); + Andronikashvili; X Heikkila and
Hallett.

in tf corresponding to the discrepancy of some 50% at
1.2'K would, for instance, cause an increase in p„of
12% at the same temperature. The effect on p„of
changes in p decreases quickly at higher temperatures;
a 50% change in ti at 1.3'K influences the computed p„
by only 7%. Although no eccentricity of Disk (L) was
visible, we cannot rule out the possibility of some slight
imperfection in its motion.

The viscosity appears to exhibit a temperature
dependence similar to that of p„at temperatures ap-
proaching Tz. A more detailed study of the viscosity in
He I and He II in the neighborhood of the lambda point
will be published in a subsequent paper.

Smoothed values of q below 2.170'K are listed in
Table IV.

VI. SUMMARY AND CONCLUSIONS

These measurements, based upon the hydrodynamic
equations derived in Sec. II, have yielded data on the
viscosity and density of the viscous fraction of He II.
Although at no point in the experiment or calculation

has it been necessary to attribute any particular quali-
ties to the liquid other than the presence of a classical
viscosity, the procedure has obviously measured the
density and viscosity of the "normal Quid" only. In
this respect, the analysis in no way depends upon any
of the proposed theoretical models of He II.

At temperatures below 2.0'K, the quantum-me-
chanical liquid model of Landau and of Feynman agrees
with the observed behavior of p„,. the experimental
excitation temperature 6/k=10. 6' is closer to the
calculated value of 11.5' than has been derived from
thermal and second sound data. The lack of agreement
between the torsion pendulum results and those calcu-
lated from less direct methods appears to be beyond
the experimental uncertainties involved.

Theory has not succeeded in describing the properties
of He II in the neighborhood of the lambda point; the
character of the coefficient o.„near Tq suggests that the
He I—He II transition is a stronger singularity than
previously supposed. In addition, the viscosity and
normal Quid density are similar functions of the tem-
perature in the highly anomalous region, indicating that
these properties are equally bound to the fundamental
nature of the transition. This high-temperature range
of He II is apparently quite different in nature from
the region below 2.0'K; the difference is shown both
in the variations of o.„and in the kinematic viscosity.
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