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Vibration frequencies have been calculated for finite one-dimensional lattices in which the point masses
alternately have the values m and mp, m (mp. Only nearest neighbor Hooke's law interactions are con-
sidered. The end atoms are assumed to interact only with their nearest neighbors on the interior of the
lattice and are otherwise free. If the numbers of atoms having masses m and mp are equal, there exists a
single mode whose frequency squared lies at the middle of the "forbidden" gap between the optical and
acoustical branches. For this "surface" mode the displacements of the atoms from their equilibrium positions
decrease roughly exponentially from the end having the lighter atom. For the case of N atoms of mass mp
and N+1 atoms of mass m~ there exist two modes whose frequencies lie in the "forbidden" gap provided
(m /mp)(N/(N+1)1 These .modes correspond to symmetric and antisymmetric displacements. The dis-
placements are largest for the end atoms and decrease roughly exponentially toward the center of the lattice.

I. INTRODUCTION The vibration frequencies of a diatomic one-dimen-
sional lattice with free ends and nearest neighbor
Hooke's law interactions have been studied by Born. '
The number of point masses —i.e. , atoms —having the
lighter mass v as taken to be the same as the number
having the heavier mass. The atoms v ere arranged in
an alternating array. According to Born all modes are
wave-like in character with frequencies in either the
optical branch or the acoustical branch. However, it
appears that two of the solutions —i.e., those for which
the variable p has the value ~—are trivial with the
atomic displacements all zero. One of these solutions
may be replaced by the solution having zero frequency
corresponding to translation of the lattice. The nature
of the remaining solution forms part of the subject
matter of the present paper. Aside from a possible set
of frequencies of measure zero, the frequency distribu-
tion function in the limit of infinitely many atoms is
the same as that obtained using the cyclic boundary
condition.

The present paper is a report on calculations of the
vibration frequencies of finite one-dimensional lattices.
The atoms composing a given lattice may have either
of two different masses and are arranged in an alter-
nating array. Only nearest neighbor Hooke's law inter-
actions are considered. The cyclic boundary condition
is not used. It is assumed that the end atoms interact
only with their nearest neighbors on the interior of the
lattice and are otherwise free. The end atoms constitute
what may be called the "surface" of the lattice. Only
longitudinal vibrations are considered; i.e., the dis-

placements of the atoms are parallel to the axis of the
lattice. Two lattices are considered, one v ith end atoms
not alike and one with end atoms alike.

HE calculation of the vibration frequencies of
crystal lattices has generally made use of the so-

called "cyclic" or "periodic" boundary condition. The
cyclic condition has the advantage that it introduces
considerable simplification into the calculations of the
vibration frequencies. Born' has investigated two types
of one-dimensional lattice and has concluded that one
obtains the same frequency distribution function, g(v),
using the cyclic condition as one obtains by assuming
the lattices to have free ends. Accordingly it appears
that the cyclic condition leads to correct results for
properties determined by the frequency distribution
such as the specific heat of large crystals.

The cyclic condition has the disadvantage that its
use prevents one from investigating surface effects. In
addition it has recently been shown by Rosenstock'
that the details of the infrared absorption spectrum of
an ionic lattice may not be correctly given when the
cyclic condition is used. This discrepancy appears to
arise from differences in the phases of the atomic dis-
placements for a cyclic lattice compared to a lattice
with free ends.

The vibration frequencies of monatomic one-dimen-
sional lattices with free ends and nearest neighbor
Hooke's law interactions have been discussed by Born'
and by Halford. ' All modes of vibration are wave-like in
character, and all frequencies lie in a single band.
Approximately one-half the frequencies have exactly
the same values as those found when the cyclic condi-
tion is used. The remaining frequencies have values
smaller by a quantity of order ~1/'cV from the values
given by the cyclic condition where N is the number of
point masses in the lattice. The limiting frequency
distribution function as N—+~ is the same for both
cyclic and free boundaries.

* The major part of the work reported in this paper was done
while the author was at the Applied Physics Laboratory o
The Johns Hopkins University and was supported by the Burea
of Ordnance, Department of the Navy.' M. Born, Proc. Phys. Soc. (London) 54, 362 (1942).

2 H, B. Rosenstock, J. Chem. Phys. 23, 2415 (1955).' J. O. Halford, J. Chem. Phys. 19, 1375 (1951).

II. FINITE DIATOMIC LATTICE W'ITH END
ATOMS NOT ALIKE

In this section we consider the vibration frequencies
of a diatomic one-dimensional lattice consisting of N
atoms of mass m and N atoms of mass mp, with
m (mp. The atoms are assumed to be arranged in an
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EFFECT OF FREE ENDS ON VIBRATION FREQUENCIES 54i

alternating array so that the end atoms have diferent
masses. The nearest neighbor Hooke's law force con-
stant is denoted by k.

The equations of motion for the atoms of the lattice
are given by

m.d'$i/dt'= k ($2—fi),

mpd'$2, /dt'= —k($2j $2j—1)+k(4j +& $2i)&
1&j&iV—1, (1.2j)

m d'&2, i/dt = —k($2j 1$2j—2)+—k(5' t22—1)&

2&j&X, (1.2j—1)
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where $ is the displacement of an atom from its equi-
librium position and the subscripts 2j—i and 2j specify
the positions of light and heavy atoms, respectively, in
the lattice. If one makes the substitutions

The relationship between the frequency co and the
variable 8 can be found by substituting Eqs. (4.2) and
(4.3) into Eq. (5.1) and solving for cu'. The result is

i= A g& i exp(zGdt),

g„=A2; exp(i(ut),

(2.2j—1)

(2.2j) where

cu'= 0.(1&(cos'8+ e' sin'8) '), (6 1)

D2~(u, 'v) =0, (3)

the equations of motion are transformed to a system of
linear homogeneous algebraic equations. If q =k/m
and qp=k/mp, the secular equation can be written in
the form

0 = cta+gp, (6 2)

p= (mp —m.)/(mp+m. ). (6 3)

The solutions to Eq. (5.3) which yield independent
values of cu are given by

where

D2~(u, v) =

u+1 1

i v i
1 I

(4.1)

8= uv. /2)V, 1&n& X—1, (7 1)

where n is an integer. There are 2iV —2 frequency values
specified by Eqs. (6.1) and (7.1).

The solutions of Eq. (5.4) are

i v 1

i n i
1 v+1 p~,

u= (cu'/q )—2,

v= (~'/V p)
—2,

(4.2)

(4.3)

and the subscript 2A denotes the size of the deter-
minant.

The evaluation of the determinant D2~(u, v) has been
given by Rutherford. ' ' If one introduces the quantity 8
de6ned by

(uv)*'= —2 cos8,

the determinant D~v(u, v) can be written as

(5.1)

sin2tV8/sin28= 0,

uv+u+ v = 0.

(5 3)

(5.4)

4 D. E. Rutherford, Proc. Roy.
(I947).

'D. E. Rutherford, Proc. Roy.
(195&).

Soc. (Edinburgh) A62, 229

Soc. (Edinburgh) A63, 232

D~~(u, v) = (uv+u+v) sin2N8/sin28. (5.2)

Solutions to the secular equation, Eq. (3), may then
be obtained from the solutions to the equations

co =0

CO = 0'.

(7.2)

(7.3)

The zero frequency corresponds to translation of the
lattice. The frequency given by Eq. (7.3) lies in the
region between the acoustical and optical branches
which contains no frequencies if the cyclic condition is
used. The value of 8 corresponding to Eq. (7.3) is
complex and is given by

where

8= (~/2)+i sinh '(p/2),

p'= (mp —m )'/m. mp.

(7 4)

(7.5)

It will be seen later that the mode with frequency given
by Eq. (7.3) is a "surface" mode; i.e. , the maximum
displacements of the atoms decrease roughly exponen-
tially from the end having the lighter atom. All other
modes are wave-like in character with the parameter 8

playing the role of a reciprocal wavelength.
The frequencies for the 2.V degrees of freedom have

now been accounted for. In Fig. i the square of the
frequency measured in units of 0. is plotted as a function
of 8 for a mass ratio m /mp ———', and 1V=5. The extended
zone scheme is used in this figure so that the acoustical
branch corresponds to 0&n& X—1 and the optical
branch to 1V+1&u&2X—1. The boundaries of the
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exponentially from the end having the lighter atom.
It seems reasonable, therefore, to designate this mode as
a surface mode. In the limit as the mass ratio tends to
unity the magnitudes of the displacements become
equal, and the surface mode passes into a wave-like
mode. The monatomic lattice accordingly has no surface
mode in agreement with previous results.
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FIG. 2. The maximum atomic displacement as a function of
position in the lattice for the surface mode when the end atoms
are not alike.

gap between the acoustical and optical branches are
specified by (o2/o. = 1+e and (o2/o = 1—e. The frequency
squared. for the surface mode is indicated by a dashed
line because the 0 value is complex. Alternate fre-
quencies starting with the zero frequency have values
identical with those given by the cyclic condition. The
remaining frequencies in the acoustical and optical
branches are smaller by a quantity ~1/N than their
counterparts for the cyclic lattice. The frequency for
the surface mode passes into the optical branch when
one imposes the cyclic condition.

It may be verified by substitution into the equations
of motion that the maximum displacements for the
mode with frequency in the "forbidden" gap between
the optical and acoustical branches are given by

A.; 1
——c'(—1)j—'(m /nz))) j—',

A 2, ——c'(—1) '(m. /nzo) ',

(8.1)

(8.2)

where the normalization constant c' satisfies the equa-
tion

P (m.A2, 1'+nzj)A2, ')=1,
j=l

and is given by

c'= ([m m)2/(nz)) —m )]L1—(m /nzj))2N]) &. (10)

In Fig. 2 the maximum displacements specified by
Eqs. (8.1) and (8.2) with c'= 1 are plotted as a function
of position of the atoms in the lattice for m /mj)

———', and
X=5. It is to be emphasized. that this figure is a graph
and not a physical diagram. The actual displacements
are parallel to the axis of the lattice. The displacernent
of the lighter end atom is relatively large. The adjacent
heavy atom has a displacement smaller in the inverse
ratio of the masses. Certain pairs of adjacent light and
heavy atoms have the same displacement so that no
force acts between such atoms during the motion. The
displacements of atoms having a given mass decrease

A a j 2 [A 2j—1+A 2(N—j+2)—1]~

Ai)j+= 2 LA 2j+A 2(N j+1)])—
'1 a j 2 [A 2j 1A 2(—N j+2) 13—)-
~ j)j 2 [A 2j A2(N —j+1)]y

for 1&j&N/2, and
A~,.+=Ay, . l

(12.1j)
(12.2j)
(12.3j)
(12.4j)

(12.5)

for j= (N/2)+1. The quantities A,+ and Aj)j+ remain
unchanged on inversion at the center of symmetry,
while the quantities A; and Ap,= change sign. One
finds that the A;+ and Ap, + satisfy a set of linear
homogeneous algebraic equations involving only the
A,+ and Ap, + as variables. The solutions to this set
of equations lead to a set of vibrational modes v hich
will be called symmetric. The quantities A, and Ap,
similarly satisfy a set of equations involving only A,
and Ap, . The corresponding solutions lead to a set
of modes which will be called antisymmetric.

Using the methods of Rutherford4 ' one can write the
secular equation for the symmetric modes in the rather
simple form

where
X=Y,

X= (zz/2)) & cos(N+1) 8,

Y= cosNO,

(i3.i)

(13.2)

(i3.3)

III. FINITE DIATOMIC LATTICE WITH END
ATOMS ALIKE

The case in which the end atoms are alike and have
the lighter of the two masses will now be considered.
The number of atoms with ma, ss m is N+1; the
number with mass mp is N. The equations of motion for
interior atoms of the lattice are given by Eqs. (1.2j)
with 1&j&N and Eqs. (1.2j—1) with 2&j &iV The.
equations of motion for the end atoms are

md-'$ 1/d&'= k($2—$,),

m d2$2N~)/dk'= —k ($2N~) —$2N) . (11 .2iV+ 1 )

We consider first the case in which N is even so that
the central atom is light.

In solving the secular equation it is convenient to
make use of the presence of a center of symmetry in the
lattice under consideration. Inversion at the center of
symmetry is accomplished mathematically by replacing

j by 2') —j+2 and j'1 —j+1 in the qua, ntities 2j—1 and
2j, respectively, which appear as subscripts on ( and .1.
This operation leaves the equations of motion invariant. .
Let us introduce the symmetry displacements defined by
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and 8 is defined in Eq. (5.1). The positive value of
(u/v)' in Eq. (13.2) is appropriate to the extended zone
scheme in which the acoustical branch corresponds to
0&8&v./2 and the optical branch to v./2&8& v..

The solutions to Eq. (13.1) can be obtained graphi-
cally. One finds in generalt. hat there are (iV/2)+1 real
values of 8 is the range 0(8&7r/2 which satisfy Eq.
(13.1) provided the mass ra, tio m /mp satisfies the
condition

1V/(A+1) &m )my& I. (14.1)

These (1V/2)+1 solutions correspond to the symmetric
modes of the acoustical branch. If the mass ratio does
not satisfy Eq. (14.1) so that

0&m /mv &A/(1V+1), (14.2)

~ =k(-' ~ —')
m~ mp
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FrG. 3. The square of the frequency as a function of 8 for mass
ratio one-half with ten heavy atoms and eleven light atoms.

one finds that there are only N, /'2 real values of 0 in the
acoustical branch which satisfy Eq. (13.1).

For the case where the numbers of light and heavy
atoms are equal, a solution to the secular equation
exists having 0 complex. This suggests that a solution
to Eq. (13.1) with 8 complex may exist when the mass
ratio satisfies Eq. (14.2). One finds that this is indeed
the case. For 8 having the form 8= (7r)2)+i/, a solution
to Eq. (13.1) exists if the mass ratio satisfies Eq. (14.2)
but not if it satisfies Eq. (14.1).

For the optical branch, Eq. (13.1) possesses 1V/2
solutions with real values of 8 in the range 7r/2&8&v.
for all mass ratios between zero and unity. These
solutions correspond to the symmetric modes of the
optical branch.

We now turn to the antisymmetric solutions which
are obtained from the equations specifying the quanti-
ties A; and Att, . Using the results of Rutherford, 4'
one can rewrite the secular equation as

(15.1)
where

X'= (v/u) I (sinlV8)/(sin8), (15.2)

I"= [sin (1V+ I)8])(sin8). (15.3)

The positive value of (v/u) in Eq. (15.2) is appropriate
for the extended zone scheme.
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The solutions to Eq. (15.1) may be found graphically.
In the acoustical branch with 8 a real number in the
range 0&8&v/2, there are 1V/2 solutions for any mass
ratio between zero and unity. These solutions corre-
spond to the antisymmetric modes of the acoustical
branch.

In the optical branch with 8 real in the range v/2
&8&v-, Eq. (15.1) possesses 1V/2 solutions provided the
mass ratio satisfies Eq. (14.1). These solutions corre-
spond to the antisymmetric modes in the optical branch.
All 21V+1 modes of vibration have now been accounted
for when the mass ratio is greater than or equal to the
critical value 1V/(1V+1).

When the mass ratio is less than the critical value
.~V/(1V+1), Eq. (15.1) possesses only (A'/2) —1 solutions
in the optical branch for real values of 8. The remaining
solution to Eq. (15.1) corresponds to a complex value
of 8 of the form 8= (v/2) —iP

In Fig. 3 the square of the frequency in units of 0. is
plotted as a function of 8 for m /ma= —', with eleven

light atoms and ten heavy atoms. All modes except two
are wave-like in character and have frequencies in
either the acoustical or optical branches.

The two modes with complex values of 8 have fre-
quencies lying in the "forbidden" gap between the
optical and acoustical branches. These modes are sur-
face modes, one being symmetric and the other anti-
symmetric.

In Fig. 4 the square of the frequency in units of 0- is
plotted as a, function of 8 for m )ma= 11/12 with eleven

light atoms and ten heavy atoms. The mass ratio for
this case does not satisfy the criterion for the existence
of surface modes given by Eq. (14.2). All modes are
wave-like in character with frequencies in either the
acoustical or optical branch. The gap between the
optical and acoustical branches is quite narrow and in

fact vanishes for mass ratio unity.
For the case under discussion in which both end atoms

have the lighter mass and in which the number of heavy
atoms is even, the symmetry displacements defined by
Eqs. (12) may be taken proportional to the cofactors of
the corresponding elements in the first row of the



R I CHAR D F. WALL I S

Na *11 N ~10
lP —„P 2 A 2j-I

A gj

05—

0—
I

I

1

1

I

05

I

I

I

1

I

1

l 1 1 1 I I I I 1 l

I 3 5 7 9 II l3 I5 17 l9 2I 2j-1
I I I I ! I I I I I

2 4 6 8 10 l2 l4 16 I8 20 23

Fzo. 5. The maximum atomic displacement as a function of
position in the lattice for the symmetric surface mode when the
end atoms are alike.

appropriate secular determinant. For the symmetric
modes the quantities A; and A p; are all zero, while
for the antisyrnmetric modes the quantities A;+ and
Ap,+ are all zero.

One finds that the maximum displacements A2; ~

and A~; for the symmetric wave-like modes are given
by the equations

I,Q—

—~ — Na ~ 11
ma 11

mp 12 Ng &1Q A Rj-I

A 2j

Q5~

Expressions for the maximum displacements for the
symmetric surface mode may be obtained by replacing 0

by (7r/2)+if in Eqs. (16.1), (16.2), and (16.4). Simi-
larly, the maximum displacements for the antisym-
metric surface mode can be obtained by replacing 9 by
(ir/2) —iP in Eqs. (17.1), (17.2), and (17.3).

In Fig. 5 the maximum displacements are plotted as
a function of positions of the atoms in the lattice for
the symmetric surface mode when m /'mp = —'„ the
number of light atoms is eleven and the number of
heavy atoms is ten. The normalization constant was
chosen so that A~=1. The end atoms, which are light,
have very large relative displacements. As one proceeds
toward the center of the lattice from either end, the
maximum displacements decrease roughly exponentially.
Adjacent light and heavy atoms do not have equal dis-
placements in contrast to the case where the end atoms
have diferent masses.

For the case in which m /ma ——11/12, with eleven
light atoms and ten heavy atoms, the rnaximurn dis-

A2, i ——c,[cos(iV—2j+2)0]/I cosiV0], (16.1)

A2;=c, I cos(X—2j+1)0]/t cos(iV+1)0], (16.2)

where the normalization constant c, is chosen so that
Q.5

N+'i N

Q m.A2, i'+Q mpAg, ' ——1,

and is given by

(16.3) 1.5 I I I I I I I I I I I

I 3 5 7 9 ll l3 I5 l7 l9 2l 2j 1

I 1 I I I

4 6 8 IQ l2 l4 l6 l8 2Q 2j

c, =~2 t

I cos'iV0

sin2 (iV+ 1)0
(iV+1)+

sin20

FIG. 6. The maximum atomic displacement as a function of
position in the lattice for the symmetric mode with the highest
frequency in the acoustical branch when no surface modes exist.

my sin2.VO+,$7+
cos'(.V+1)0 sin20

(16.4)

ma
c,=42 — (.V+1)—

sin'iVO

sin2(.V+1)0

sin20

sin'(/V+ 1)0

sin 2.~X0

(17.3)
sin20 . I

For the antisymmetric wave-like modes the maximum
displacements A» & and A»- are given by

A2; i=c,I sin(X —2j+2)0]/[sinÃ0], (17.1)

A2, =c Lsin(X —2j+1)0]/I sin(%+1)0], (17.2)

where the normalization constant is again chosen so
that Eq. (16.3) is satisfied and is given by

placements are plotted in Fig. 6 as a function of posi-
tions of the atoms for the symmetric mode with the
highest frequency in the acoustical branch. This mode
passes into the mode shown in Fig. 5 when the mass
ratio changes froin 11/12 to 1/2. In Fig. 6 the displace-
ments of the light atoms increase slightly as one
approaches the center of the lattice from either end.
Accordingly, for ma. ss ratio 11/12, this mode is not
conveniently described as a surface mode.

The discussion so far given in this section has been
restricted to the case in which the number of heavy
atoms is an even integer. If the number of heavy atoms
is odd, so that the central atom is heavy, one finds that
for a mass ratio satisfying Eq. (14.1) all modes are v ave-
like in character with frequencies in either the acoustical
or optics, l branches. If the mass ratio satisfies Eq. (14.2),
two modes are surface modes having frequencies in the
"forbidden" gap between the acoustical and optical
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branches. The situation is illustrated in Fig. 7 which
indicates the frequencies and the symmetries of the
modes. When surface modes exist, the surface modes of
lower and higher frequencies are, respectively, anti-
symmetric and symmetric in contrast with the case
where the number of heavy atoms is even.

If both end atoms are heavy so that the number of
heavy atoms exceeds the number of light atoms by one,
all modes are found to be wave-like and no surface
modes exist.
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FIG. 7. Frequencies and symmetries of the normal modes when the
end atoms are both light and the central atom is heavy.

the number of surface modes is equal to the number of
ends of the lattice which have light atoms.

When one end atom is light and the other heavy, the
criterion for the existence of surface modes is satisfied
for any mass ratio less than unity. When both end
atoms are light. , the criterion is satisfied only if the
mass ratio is less than the number of heavy atoms
divided by the number of light atoms. When both end
atoms are heavy, the criterion is not satisfied for any
mass ratio.

The surface modes of vibration are in some respects
similar to the "localized" modes in lattices containing
defects which have been investigated by Montroll and

IV. DISCUSSION

The principal result contained in the present paper
is that an alternating diatomic one-dimensional lattice
with nearest neighbor Hooke's law interactions and
free ends may possess surface modes of vibration with
frequencies in the "forbidden" gap between the optical
and acoustical branches. A rather general criterion can
be given for the existence of surface modes; namely, the
total mass of the light atoms must be less than the
total mass of the heavy atoms. If surface modes exist,

Potts and by Mazur, Montroll, and Potts. These
authors have found that under proper conditions lattices
containing defects may possess vibrational modes
having frequencies in ranges not ordinarily permitted.
In addition, the displacements of the atoms decrease
exponentially as the distance from the defect increases.

The surface of a crystal can in fact be regarded as a
special type of defect. Consider, for example, the
alternating diatomic lattice with equal numbers of
light and heavy atoms and with the cyclic boundary
condition imposed. By letting one force constant go to
zero, this case is converted into an alternating diatomic
lattice with free ends. The zero force constant con-
stitutes the defect. .

A general discussion of surface modes of vibration of
lattices has been given by Lifshitz and Pekar. ' These
authors appear to use a Green's function method similar
to that developed by 3~Iontroll and Potts. Lifshitz and
Pekar conclude that under suitable conditions surface
vibrational modes, having frequencies not lying in the
acoustical or optical branches, exist for two- and three-
dimensional lattices as well as one-dimensional lattices.

The surface modes discussed in the present paper
are analogous to the electronic surface states in crystals
investigated by Tamm' and by Goodwin. "An electron
in a surface state is localized near the surface of the
crystal and has an energy lying in a "forbidden" band.

The differences in the modes of vibration obtained
when one uses the free boundary condition rather than
the cyclic condition may manifest themselves in a
number of ways. The specific heat of very finely
powdered crystals may show deviations from the corre-
sponding value for a large crystal. Preliminary calcu-
lations indicate that the surface mode may lead to an
observable though very small peak in the infrared
absorption of finely powdered ionic crystals. The surface
modes may be of interest in the theoretical investigation
of surface phenomena such as adsorption and hetero-
geneous catalysis.
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