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Effective-mass equations for electrons and holes in solids are usually derived by means of the independent-
particle model. It is shown in the present paper that for the case of an extra electron or a hole in an insulator,
or semiconductor, moving under the action of a weak Coulomb field, an effective-mass equation,

,V2 ——F=EF,

can be derived from some very general properties of the entire many-particle system {m*=effective mass,
q=external charge, ~=static dielectric constant). The effects of exchange and correlation are automati-
cally included without approximation. It is suggested that the same type of result can be derived for the
motion of electrons and holes in arbitrary slowly varying and weak electromagnetic fields.

Q*=f(m*). (1 2)

i.e., m is that value which, when introduced into the
free-electron formula, gives agreement with experiment.

From the theoretical side, the effective-mass concept
can be made plausible by the model which treats the
electrons as independent and satisfying a Schrodinger
equation of the form

(1.3)

l. INTRODUCTION

'HE notion of "effective mass" is widely used by
solid state physicists. It offers a convenient and

often suggestive way of describing experimental results:
Suppose a physical quantity Q (specific heat, cyclotron
resonance frequency, etc.) is given by the expression

Q= f(m)

for free electrons (m= electron inass). Then if for some
real solid it is found empirically to have the value Q*,
the corresponding effective mass m* is defined by

With the same model one can then show that, at least
for small values of k, the behavior of the electrons in
solids is equivalent to that of free electr ns with an
altered eRective mass vs*.

Now clearly the usefulness of the concept of effective
mass depends entirely on whether, for a given material,
the same value of m* describes correctly several different
empirical properties. Many instances can be cited where
this is found to be approximately true. I.et us take
one—donor states in silicon.

Consider a perfect crystal of Si at the absolute zero
of temperature. Add a charge +e to one of the nuclei,

converting it into a P nucleus. This extra charge will

produce an additional mean potential

V= e/itr, (1.7)

at large distances, where ~ is the static dielectric con-
stant of Si. Now add an extra electron. This may be
caught in a bound state. If the orbit is large enough
one can show —on the basis of the one-particle model—
that this state can be described by the Schrodinger
equation

where V(r) is an effective periodic potential. The
solutions of this equation are the familiar Bloch waves

(1.8)

lt, (r) = e*"'us (r)

whose eigenvalues are'

Es——Eo+Esk'

(1 4)

(1.5)

where m* is the effective mass of the conduction band. '
But m* can be independently measured by a cyclotron
resonance experiment' where, again on the basis of the
one-particle model, the resonance frequency is given by

for sufIIciently small values of k. Comparison with the
free electron expression for the energy, (k'/2m)k', leads
to the following definition of m*:

co= eB/m*C; (1.9)

k'/2r~s*= Es.

* Supported in part by the OKce of Naval Research.
1' Permanent address: Carnegie Institute of Technology,

Pittsburgh, Pennsylvania.
' For the sake of simplicity we assume here, and in the rest o

this paper, that the solid has cubic symmetry, that the band i
question is nondegenerate, and that there are no spin-dependen
forces,

f 'This type of equation was first obtained by G. H. Wannier,
n Phys. Rev. 52, 191 (1937).
t ~Dresselhaus, Kip, and Kittel, Phys. Rev. 95, 568 (1954l;

B.Lax et al. , Phys. Rev. 93, 1418 (1954).
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here B is the static magnetic field. Also ~ can be
(1.6) independently measured. When these empirical values

of m* and K are used in (1.8) to compute the energy
spectrum of the donors, excellent agreement with
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BA„ 1 BA„

experiment is found for su%ciently large orbits4 —a
success of the effective-mass equation (1.8).

This surprisingly good agreement suggests that the
validity of Eq. (1.8) may be better than the rather
crude independent-particle model by which it is theo-
retically justified. In the present paper we shall in fact
show that this equation can be derived from some very
general properties of the entire many-electron wave
function, without any recourse to the one-particle
picture.

More precisely, we shall derive the following theorem:
Consider a perfect insulating crystal, with nuclei held
rigidly in place, and at T=O. Now introduce a snsall
point charge q and an additional electron into the
crystal. Then all low-lying energy states of the system
are described rigorously by the one-particle equation
(1.8), where rn* is an effective mass and g is the static
dielectric constant. ' In other words, all the complicated
eRects of the interactions of electrons with the nuclei
and with each other are completely represented by the
two phenomenological constants ms* and ~.

The nature of the derivation of this result leads one
to believe that it is a special case of the following more
general theorem: Take again the above-described
insulating crystal. Add one electron and consider the
response of the entire system to an external electro-
magnetic field A„(r,t), which varies slowly in the fol-

lowing senses:

2. EFFECTIVE MASS AND DIELECTRIC CONSTANT

We consider our perfect insulating crystal plus one
electron, a total of /+1 electrons. We choose atomic
units, e, A, and m equal to 1. The Hamiltonian of our
system is

+., K= e'K'14.
, K) (2.3)

where C„K is a strictly periodic function in the sense
that

TA'n, K=4'~, K. (2 4)

The vector I is restricted to lie in the first Brillouin
zone, and &z denotes the set of quantum numbers which,
besides K, specify the state. We denote the eigenvalues
of E1 by E„K.

where R~ and Z~ are the position vector and charge of
the /th nucleus and r; is the position vector of the ith
electron.

This Hamiltonian commutes with the total transla-
tion operators T, which are defined by

2 f(ri, r2, rv~i)
= f(r,+~, r2+~, rial+i+~ ), n=1, 2, 3, (2.2)

where the ~ are the fundamental translation vectors of
the lattice. Hence the (normalized) eigenfunctions of
II can be chosen to be also eigenfunctions of T . It is
convenient to write them in the form

&+a, K = En, K++, K. (2.5)

where a is the lattice parameter and DE is a character-
istic energy of the order of electron volts. For motions
in which the energy of the system is changed from its
unperturbed ground state energy by an amount &&AE,

its response to the field can be rigorously described by
a one-particle equation involving the three phenomeno-

logical constants m*, ~, and y, here y is the static
magnetic susceptibility, and m* and ~ are as defined

above. We hope to come back to this conjecture at a
later time.

The entire situation is completely analogous for the
case of a so-called "hole" where an electron has been
removed from a perfect insulating crystal.

In any actual physical situation the conditions which
we have imposed will be more or less violated. But in

many cases the actual state of affairs differs only very
slightly from our idealized one and our conclusions are
then of real significance. The most important fact is
that our results do not depend on the quite unrealistic
assumption of a weak electron-electron interaction.

4Picus, Burstein, and Henvis, Bull. Am. Phys. Soc. Ser. II,
1, 126 (1956). W. Kohn, Phys. Rev. 98, 1856 (1955). Actually,
in Si, the mass is anisotropic and appropriate modifications have
to be made to interpret the experimental data.

We shall now characterize our system by a certain
property of the energy spectrum E„K.Let us assume
for simplicity that the ground state of our system
corresponds to I= 0 and let us denote the corresponding
n by n=0. ' The property in question is then that

E„p—Ep, p& DE, n/0, (2.6)

where AE is a finite energy, independent of the size of
the crystal, if suSciently large. Figure 1 illustrates the
meaning of (2.6) by means of the one-particle model.
Evidently the usual independent-particle model of an
insulator satisfies (2.6); that of a metal, however, does
not. That a rea/ insulator (with electron-electron inter-
actions) also has this property, is evidenced most
directly by the following empirical fact: When only a
few extra electrons are present, optical radiation, which
causes transitions between states of the same K, is not
absorbed, until the quantum of energy reaches a certain
threshold. ' For our purposes we shall define an insulator

by the requirement tha. t (2.6) is satisfied.

' Actually the ground state has a double degeneracy due to spin.
Hov ever, since v.e have assumed spin-independent forces this is
of no consequence, and we may for definiteness assume that the
z component of the total spin is +~.

Of course, due to imperfections, slight absorption does in fact
take place even for very small photon energies.
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i—= (E'+1) hm (Co, xPo, x ).
K, K'~0
K~K'

(2.10)

INSULATOR

Near K=0, the energy Eo x can be expanded as

Eo, x——Eo, o+n;,K;K,+. . .. (2.7)

Linear terms in E, are absent since Ep p was taken to
be the absolute minimum of energy. For simplicity, we
consider a cubic crystal where by symmetry we may
write (2.7) in the form

Eo, x= Eo, o+ (1/2m*)E'; (2 8)
m* is by definition the effective mass. We plan in a
future publication to show that this m* is what one
measures in a cyclotron resonance experiment.

We now turn to the effective dielectric constant ~*.
Let us consider the inner product

(0'o, xe 'x'~, +o x e 'x"~)= (C'o, zoo, z). (2.9)

For K= K' it has the value 1. One might expect that
for ! K—K'!a«1 (a= lattice parameter), it would have
a value close to 1. This is not so. In the independent-
particle model it has the value (%+1) ', where 1V+1
is the total number of electrons, and when the Coulomb
interaction is treated by perturbation methods (see
Appendix) one finds the value [(%+1)x] ', where g is
the static dielectric constant of the perfect insulator
(X electrons). Clearly, the N dependence of this product
is not altered when the Coulomb interaction is strong.
Also this scalar product must tend to a definite limit
when E and E' are ((u ', so that we are led to introduce
the effective dielectric constant ~* by the equation,

We shall show in Sec. 4 that this ~* is in fact the static
dielectric constant x of the perfect insulator (Nele'c-
trons).

3. IMPURITY STATE PROBLEM

We now introduce into our %+1 electron system a
small point charge q at the origin producing a pertur-
bation potential

i Zi
U= —

q Q —+q Q —.
r; &R)

(3 1)

4= Q A „,x%'„,x, (3.2)

and substitute into the Schrodinger equation

(H+ U E)4=0. —

This gives the system of equations:

(Eo x E)Ao x+Q (0K!U!0K')Ao x.
K'

(3.3)

+Q Q (OK! U!e'K')A„. x.=0, (3.4a)
K' ~'~o

(E„, —E)A„, yP(eK!U!OK')A, „,

yg P (~K!U!~'K')A„.. .=O
K' ng'o

(n 40), (3.4b)

where we have explicitly displayed the terms with as= 0.
Since q is infinitesimal we expect solutions for which

! E Eo o!«AE, and A „x&0only if Ea«1. (3.5)

We can then solve (3.4b) for A „,x to first order in q:

What are the eigenfunctions and eigenvalues of the
new Hamiltonian?

We expand the new eigenfunctions in terms of the
+,K.'

A„,K=
Eo, o

—En, o K'

Substitution into (3.4a) gives

P(nK! U!OK')Ao, x, nAO. (3.6)
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FIG. 1. One-particle spectra of insulators and metals. (a) is the
insulator ground-state with K=O. All excited states with K=O,
such as (b) and (c), exceed it in energy by at least AE. (d) is the
metallic ground state; some excited states, such as (e), exceed
it in energy by infinitesimal amounts.

(Eo, x—E)Ao, x+2 (oK!UIoK')
KI

(0K! U! n,
"K")(n"K"!U! OK')

+Z Z Ap, K~

&ti~p Eo, o
—& ",o

=0. (3.7)

(Ex—E)Ax++(K!U! K')Ax ——0; (3.8)

As the second term in the square bracket is of order g',
it can be neglected in comparison with the first, so that
we finally obtain



512 W. KOHN

here and in what follows we suppress the common
quantum number m=0, to simplify the notation.

We now study the matrix elements of U. By (3.1),
the dia onal elements are

With these matrix elements (3.13), (3.18), and the
definition of our effective mass, (2.8), we now go back
to the Schrodinger equation (3.8) which becomes

(1 ) q4s. 1

1 ) Z~ I
Z' —E* IAK ———P A«. =0, (3.19)

(K) U(K) = —q()V+1)( e«,—e« [+q Q —. (3.9)
E. rg ) ~ R(

where
Let us denote the operation of performing, in an inner
product, all spin sums and all integrations except that
over r& by ( )'; and let us define

E*=E—Eoo—qW. (3.20)

To transform this into a Schrodinger equation in
coordinate space, we define

p« (r,)= (N+1) (C K,C «) '. (3.10)

This is the charge density in the state O'K. Clearly
1

F(r) = Q—A—«e'K'
vk

(3.21)

1
PK(rl) PO(rl)+ P K(rl)

N
(3.11) Multiplying (3.19) by e'K' and summing over K gives

1
I D(r —r')—F(r')dr'=0, (3.22)

r
t'Po(r) l q fp K(r) where

(K~U~K)=q] P— dr (+—
~

dr. (3.12)
4~R( ~ r ) N~ r

1
A(r —r')= —P e'K &' "'.

P K
(3.23)

where po(r&) is the charge density of the perfect insula, tor
~

— P—E* ~F(r)
(N electrons), and (1/N) p«'(rq) is the additional charge
density due to the extra electron. With these definitions
(3.9) becomes

The term in parentheses is the potential at r=0 in the
perfect insulator, independent of K and of the same
order of magnitude as AE, namely, electron volts. Let
us denote it by 8". As the second term vanishes for
large N, we have simply

A(r —r') is a "sprea. d-out 5 function" extending over
dimensions of the order of u. ' Therefore, if F does not
vary appreciably over a lattice spacing —as we can
verify at once—we can replace (3.22) by

For KWK',
(K

~
U

~
K) = qW.

e i(K'—I) r1

(3.13) 1 q y
(F(r) =E*F(r),

2m* r*r)
(3.24)

(K~ U~ K') = —
q pK, K'(ri) dry, (3.14)

where

Since pK K is a completely periodic function of r& it
can be expanded as follows:

which is of course the familiar hydrogen-like eRective-
mass equation.

It remains to verify that the conditions (3.5) under
which these equations were derived are indeed satisfied.
Consider first the negative-energy solutions of (3.24).
For these,

pal«'(r~)=Z PK, K' exp(fK 'r~) (3.16)
m*q' 1 qm*

E*=— —, E& (3.25)

where the K, are the reciprocal lattice vectors. Substi-
tution into (3.14) gives the series

(Kt U~ K') = —4~q p p«, K'"' . (3.17)
~

K' —K+K„~'

For small E and E' we need retain only the term with
v=0 and can replace pK K () by its limiting value for
small E and E', which by (2.10) is just 1/VK*, V being
the volume of the crystal. Thus, finally

q4~ 1
(K~ U~ K') = ———,KwK'. (3.18).* V )K' —K[2'

so that, for small enough q, (3.4) is fulfilled. It remains
fulfilled for positive energy solutions of (3.24) for
which E*&&AE.

It is obvious that an identical derivation leads to an
eRective-mass equation for a hole.

4. DISCUSSION OF DIELECTRIC CONSTANT

As our theory deals with the entire system it is not
surprising that, in contrast to the more elementary
discussions, the eRective dielectric constant ~* is not
introduced through intuitive considerations but rather

~ If the summation in (3.23) were carried out over all K, instead
of the first Brillouin zone only, (3.23) would be a sharp 5 function.
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emerges quite naturally from the equations themselves.
In Eq. (2.10) we defined the effective dielectric constant
by

1—= (N+1) 1im (4 KpK ).
K K, K'~0

K&K'

(4.1)

We shall now show that this ~* is equal to the static
dielectric constant ~ of the medium.

The most natural definition of ~ would refer to the
perfect insulator (N electrons) and be as follows:
Consider two small point charges qj and q2 in the
medium, at a distance R))a from each other. The
energy of the entire system will then contain a term
proportional to q& and q2 of the form

Eql, q2 qlq2/»R. (4.2)

The constant ~ is the dielectric constant. In the ap-
pendix we verify explicitly that, in the case of weak
electron-electron interactions, the constant ~* in Eq.
(4.1) is identical with the static dielectric constant «

defined by Eq. (4.2).
However, when the electron-electron interactions are

not weak, it is difficult to identify the effective dielectric
constant «*, defined by (4.1) in terms of N+1 particle
functions, with the static dielectric constant ~ as defined
in (4.2) in terms of the ¹lectron system. We therefore
use instead of (4.2) the following definition of » which
enables us to prove in general its equality with ~*. We
consider the N+ 1 electron system with two infinitesimal
point charges q~)0 and q2(0 at a large distance R.
This system has discrete energy states (electron bound
to ql). We then expect on physical grounds that the
energy of the system will contain a term falling off as
1/R and given by

where

U2= q2 Q +q2 Q
fr;—R/ i [Rl—R/

(4.7)

+ P AK*AK (VK, U2%'K). (4.8)
K&K'

Now, as in the discussion following (3.8), we find that
(+K,U2%'K) is q2 times the electrostatic potential W(R)
existing at R in the perfect insulator (N electrons).
W(R) is of course a periodic function of R. The first
term in (4.8) is then just q2W(R). It describes the
interaction of q2 with its surroundings in the perfect
insulator (N electrons) and is of no further interest.
We now calculate the second term in (4.8):

1

Q AKAK~

= —q2(N+1) Q AK*AK

1
eiK rr e'K"r

)'fr, —R[
'

(N+1) e—,, R

= —
q2 42r P G(p),

V p~o p'

where

(4.9)

G(p) = P A K@A K (rPKe~K rr er'P r@K,ecK' rr) (4.10)

(We can neglect the term qlq2/R because of its propor-
tionality to ql. ) Therefore

E&"=Q
~
AK ~2(@K,U2+K)

E= (ql —1)q2/«R, (4 3)

where ~ is the same dielectric constant as that defined
by (4.2).2 We may therefore define the dielectric
constant ~ by the following relation:

E + q2/»R, for q—l, —q2~. (4 4)

We shall now show that the «*, Eq. (4.1), is equal to
«as defined by (4.4).

Begin by setting q2
——0 and take q& at R=O. The

wave function of the N+1 electron system is then

For large R, we require Gq ——limG(p):
p-+0

Gq ——lim p A K*A K 5K, p+K (C K +p,C K )~o KgK'
1

=lim Q AK ~p*AK
(N+1)«*

(N+1)»*
(4.11)

%=+ AKVK,
K

(43) Substituting into (4.9) gives, for large R,

where we neglect terms proportional to q~. The first-
order perturbation energy due to q2, located at R, is

q24m e
—'& R

«*V p» p'
(4.12)

E(i) —(+ Uqifr) (4.6)
Thus, finally,

No formal proof for (4.3) has been found so far, except for the
case of weak electron-electron interaction, where the identity of
K and K* can be explicitly demonstrated (see Appendix). However
in the author's opinion, there is no reasonable doubt that (4.3) is
in fact strictly correct. It simply expresses the fact that the
long-range field around the electron trapped by the charge q& is
(qI —1)/KR.

1 l
E =q

i
W(R)-

«*R)
(4.13)

Comparison with (4.4) gives the required equality,
K =K.
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S. CONCLUDING REMARKS

In this paper we have proved the effective mass
equation for a very special case, namely that of a weak
Coulomb field. Evidently generalizations are called for,
e.g. , to the actual motion in excited impurity states,
where the trapped electron moves in a very large orbit
about a fiqiite external charge; or to motions in other
kinds of weak external fields.

But the simple case studied here already exhibits a
characteristic feature. The motion of the electrons is

highly correlated. Loosely speaking we can say that
the conduction band electron carries with itself a
polarization cloud, which partially cancels its charge.
Because of this high degree of correlation, a solution of
the Hartree-Fock equations would lead to qualitatively
wrong results. However, in spite of the complete
inapplicability of this method, which is usually em-

ployed to derive approximate one-particle equations,
we have seen that the low-lying states of our system
are nevertheless strictly described by a single-electron

type of equation.
A brief comment should be made on deviations from

the effective-mass equation. It would seem that they
can be conveniently studied by means of Eq. (3.7),
which for a finite external charge q represents a much
better approximation than the effective-mass equation
(3.24).

APPENDIX. EXPLICIT EVALUATION OF x AND x* FOR
THE CASE OF WEAK ELECTRON-ELECTRON

INTERACTION

In the systems of interest in the present paper, a
weak Coulomb interaction between the electrons can
be treated by perturbation theory, because a finite

energy is required to excite a pair of electrons. This
enables us to verify explicitly, to zeroth and second
order in the charge of the electrons, the equality of ~*,

the effective dielectric constant of Sec. 2, and ~, the
usual static dielectric constant (see Sec. 4).

No Electron-Electron Interaction

Next we calculate ~* according to its definition by
Eq. (2.10). The appropriate eigenfunctions of Hq are
Slater determinants of Bloch waves. Let x(n) be the
normalized determinant describing the perfect insulator
(full bands) with the 7V electrons, other than the nth,
and let fp, x(n) =up x(n) exp(iK r ) be the normalized
Bloch waves in the lowest conduction band. With an
appropriate choice of the phases of y(n), the normalized
wave function %q x of the (1V+1)-electron system is

then

P x(a)uq, x(u) exp(iK r ). (A.3)
(A'+1) '*

By (2.10), we have

1/g*= (iV+1) lim(4p, x,C p, x )

=(iV+1) lim(+q xe 'x "iIq xe 'K''")

=lim[(uq, K(1),uq, x (1))+P'Q(n)Pq, K(u) 'x ",
a, P

where "lim" denotes the limit defined in (2.10) and P'
means tha, t o.=/= 1 is excluded. Clearly the first term
in the square bracket of (A.4) gives 1; the others give
0 by integration over r or rp. This establishes the
required value for z*,

(A.5)

equal to ~.

Weak Electron-Electron Interaction

We now discuss the explicit calculation of ~ and ~*

in the case of the weak electron-electron interactions.
We begin with ~. Let +„,K be the wave functions of the
perfect insulator, with the ground state denoted by
iq,= 0, K= 0. If two point charges qi and g2 are immersed

in the medium, at r=0 and R, respectively, they
produce a perturbation

We begin with the trivial case of no Coulomb inter-
actions between the electrons. For consistency the
potential due to the ions must then also be made short
range. Thus we may consider the following zero-order
Hamiltonian:

U= —qi P —
qq P

r; ' fR —rf
(A.6)

Here the electronic charge e is regarded as small, and
the interaction with the nuclei which is irrelevant for
what follows has been omitted. The second-order
perturbation energy, proportional to q& and q2, is

where 0. is some artificial screening constant.
Since in this approximation the electrons are un-

charged, the static dielectric constant of the medium

is obviously

(A.2)

+qi, q2 = giitq~
n', K'

~oo—&,K

00 i+c.c.

(A.7)
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To evaluate (A.7), let us begin by Fourier analyzing
the partial scalar product (4o, o,%„,x )':

(+0, oy+n', x') &n', x'(ri)e
E

1
=—Q o „.x &"& exp(K„ri)e'x' "

v

(A.S)

1 & 1

~

00 P —e'K' ~=4m P o„,x l"&, (A.9)
~K,+K

~

'

and similarly

1

i

e'K' P 00 i

expL —i(K, +K') R]
=4&r P o'ni, xi~"'&* (A.10)

( K.+K'~'

Therefore (A.7) becomes

where a„,x (ri) is some periodic function of ri which is

Fourier-expanded in the following step. Therefore

We now evaluate p explicitly for the case of weak
Coulomb interactions. As (A.11) contains an explicit
factor e, it is permissible to evaluate the cT„K (') with
the independent-particle eigenfunctions of Hp. Clearly
0-„K () will vanish unless +„,K divers from 0'p p by
the excitation of a single electron from a previously
occupied state, m, k to a previously unoccupied state
m', k'. Neglecting the states near the zone boundary,
which in the limit where E'—+0 play no role, we have
of course k'=k+K', so that for small E'

1
on x' ', (Nm, k|+m', k+x')(p)

V

1 o ( 8
(A.1el

Va-i ( Bk

Therefore, by (A.12)

1 1 1
y=S&rVQ Q

~ &~' (E')'e~, &

—e~. &
V'

Xgl N-, ~, u. , , )i u ., u-. . I E-Ee'

ak.
'

& ak,

&, K, (v)&, K, (v')+

Eoi.ool'& =q,q2o'16ir'
n, 'K' vv' gp p

—++i Ki

( g $ 2

Bki
(A.17)

exp[—i(K.'+K') R]
X +cc. .

/
K„+K'fo

f
K, +K'/'

We shall show below that, for small E',

, (p)~, , (p)*

lim (—SxV) QK'—op ' (E')'(Eo, o
—E,x)

(A.11)

(A.12)

6m', k 6m, k

where ns and m' run, respectively, over the occupied
and unoccupied bands. Cubic symmetry has been used
in the last step.

Next we calculate the eGective dielectric constant f~:*

to second order in e. According to (2.10), it is defined
in terms of the (1V+1)-particle functions 4'o x by

where y is a characteristic constant. Then for large R,
we obtain from (A.11)

—iK'.R iK' -R-4~1 e
'

e
Eoi,oo l =

/&goo 7 2 +
V 2 x' (E')' (E')'

+o, x=+o, x+ &'+o, xi'i+ . (A.19)

where 0'p, K") is a Slater determinant of Bloch waves
and e%p K(" is the first-order perturbation function
due to the perturbation

1/x+= (%+1) lim(%'o, xylo x eilx x'&'~&). (A.1S)

For weak electron-electron interaction, we have

When this is added to the direct Coulomb interaction
between q& and q2, one Ands for the total interaction

energy,

1
o'H'=o' -P'

2 ', & iir; rr~—
Eo, ,q, ——(q, &7,/R) (1—po'),

so that the dielectric constant is

1/~= 1—yo',

where y is defined in (A.12).

(A.14) ~l
(1 en I ~ x&—i) (A

—20)r—

(A.21)

(A.15) Substituting (A.19) into (A.18) gives

1/x*= 1—os*,
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where For such a state, the expansion coefficient of (A.24) is

p*= —(IV+1) limL(+0, K(",&Irp K ("e (K—K') rr)

+ (@ (u gr, (0)pr(K —K') .rl) j
= —2(&+1) lim(+0 K(') +0 K (')e'(K—K')'&) (A.22)

Our object is to show that this p* is equal to the p of
Eq. (A.17).

The function rfrp, K'" is, by (A.3),

C, K=
(4,K,H'4 p, K )

~O, K —~,K

4x 1
(+0, K&N0, K') (2('m'k+K, ' K—&20mk),

v IK' —KI'

1 N+1

+0,K"'= 2 X(~)A, K(~)
(%+1)& m=)

(A.23)

(O'„, KH'4' 0K)
+0, K' Z +r&, K'

O, K —Q, K
(A.24)

To evaluate the matrix elements in (A.24), we Fourier
analyze H'. Apart from an irrelevant additive constant,
we obtain

4m.
O'= P' —(-',—P'e' ( '- &) —P Z,e*p ( ' "&))-

V p .p' ~l 7

1
+p Z ip ~ (r&—R))le

( p2+(22

2x
&&p (r( r&)—

V p &'. r' p'

42r,VZ) exp(iK. r;)

The first-order perturbation function +p, K () can be
evaluated from the usual expression

—2(A+1) hmC„, K (&pp K(2),)pp, K(2))
E 1

X(4' mk(1)&&Pm', k+K' —K(1)&'
' '")

( f)
~-, k I (&0 —&p)

akt)
' )

(
N~ k) +m')k

82r 0 Bk(

V 6m', k 6m, k
(A.23)

Summing over all appropriate m and m' and integrating
over k gives

ppK'+, pm, k 00—K—
, 0m~, k+K&

4~ 1 ~ a q (Z.'—If.)
20m' »Nm kI, (A.26)

V IK —KI'&ak. ) 0 k
—pm, k

where in the last line we have used the fact that E and
E' are small.

The contribution of one such state to y* is, by (A.26),

42riVZ) exp(iK„r,)+ ZZ, (A»)
V & ~ E.2+oP

(
1 ( 4 Bkg

p*=—PP ~dk
m m'J 6~', k Isa, k

(A.24)

where Pp' means that p=0 is omitted;P;, meansthati'; P„' means that p=0 is omitted. The last two
terms in (A.21) represent a periodic potential and do
not contribute to y*. The remaining term causes the
scattering of two electrons. A little consideration shows
that the only states which contribute to p* are those
+„K which differ from +0 K in that one electron has
been scattered from &Pp, K to )Pp, K while another electron
is scattered from P k to &P, k+K K, where 2)2 and 2)2'

denote occupied and unoccupied bands, respectively.

which is identical with y.
This completes the demonstration that up to second

order in e, ~=ft*.

Note added in proof.—A paper by T. I. Liberberg and K. B.
Tolpygo (Zhur. Eksptl. i Teort. Fiz. 26, 35 (1954) has been
brought to my attention, which deals with the impurity state
problem from a many electron point of view. This paper is based
on the approximation of tightly bound polarizable ions and con-
duction electrons which are localizable on a single ion. Exchange
and correlation effects are, of course, only partly included in such
a treatment.


