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A classical Boltzmann model of cyclotron resonance with an energy-independent collision time is devel-
oped. An approximate solution of the Boltzmann equation is obtained by expanding the perturbed dis-
tribution function ®(p,0,¢), in a Fourier series in ¢, where the spherical coordinates are defined with the
polar axis along the magnetic field direction. The solution yields a fundamental cyclotron resonance ab-
sorption line, which shows line shape anisotropy, as well as a shift in resonance peak with magnetic field
direction. The theory also indicates resonance absorption at harmonics of the fundamental cyclotron reso-
nance frequency, due to the warping of the constant-energy surfaces. The results are applied to a calculation
of line shapes and harmonic intensities for heavy holes in silicon and germanium.

INTRODUCTION

YCLOTRON resonance experiments in semicon-
ductors'~7 have indicated that a classical descrip-
tion of most of the observed phenomena is reasonable.
Electrons in the conduction bands of germanium and
silicon can be treated as particles moving in classical
orbits, described by constant energy surfaces consisting
of ellipsoids of revolution.?*® Two kinds of holes occur
for the valence bands of both germanium and silicon.
Each kind of hole can be treated as a classical particle,
whose motion can be described in. terms of warped
spherical constant energy surfaces.®® These models for
the energy surfaces have been used to calculate the
frequencies of cyclotron resonance motion in a dc mag-
netic field. By fitting the theoretical expressions for the
frequencies to the experimental results, the shapes of
the constant-energy surfaces for carriers in germanium
and silicon have been determined.’~”

In this paper, we shall consider a perturbation treat-
ment of the classical model of cyclotron resonance for
warped surfaces, using the Boltzmann transport equa-
tion. The application of the Boltzmann equation to dc
galvanomagnetic effects in metals and semiconductors
has a long history.? Jones and Zener,® Blochinzev and
Nordheim,!® Davis,'! and others have discussed the
theory of magnetoresistance and Hall effect for ellip-
soidal energy surfaces. Jones!? and Blackman® have

* The research reported in this document was supported jointly
by the U. S. Army, Navy, and Air Force under contract with the
Massachusetts Institute of Technology.

t Now at the Physics Department of the University of Wis-
consin, Madison, Wisconsin.

1 Dresselhaus, Kip, and Kittel, Phys. Rev. 92, 827 (1953).

2 Lax, Zeiger, Dexter, and Rosenblum, Phys. Rev. 93, 1418

1954).
( 3 Dexter, Zeiger, and Lax, Phys. Rev. 95, 557 (1954).

4 Lax, Zeiger, and Dexter, Physica 20, 818 (1954).

5 R. N. Dexter and B. Lax, Phys. Rev. 96, 223 (1954).

6 Dexter, Lax, Kip, and Dresselhaus, Phys. Rev. 96, 222 (1954).

7 Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).

8 A. H. Wilson, The Theory of Metals (Cambridge University
Press, Cambridge, 1953), second edition, p. 249.

9 H. Jones and C. Zener, Proc. Roy. Soc. (London) A145, 268

1934).
( 10 B, Blochinzev and L. Nordheim, Z. Physik 84, 168 (1933).

111, Davis, Phys. Rev. 56, 93 (1939).

12H, Jones, Proc. Roy. Soc. (London) Al5S5, 653 (1936).

13 M. Blackman, Proc. Roy. Soc. (London) A166, 1 (1938).

used such calculations to explain the anisotropy of the
de Haas-Van Alphen effect in bismuth. More recently,
Meiboom and Abeles'* and Shibuya!® used an ellip-
soidal model to explain the anisotropy of dc Hall effect
and magnetoresistance in #-type germanium.

Margenau,'® Allis,'” and others have developed the
general Boltzmann theory of rf conductivity and applied
it to ionized gases. London,'* Pippard,”® and Reuter
and Sondheimer® have developed Boltzmann theories
of rf conductivity for superconductors and metals.
More recently, Luttinger and Goodman?® and McClure??
have considered the general theory of conductivity for
warped surfaces. We shall discuss a Boltzmann treat-
ment of cyclotron resonant absorption of energy, for
slightly warped spherical energy surfaces, assuming an
energy-independent collision time. The expressions ob-
tained will be applied to the valence bands of ger-
manium and silicon. The results have been compared
with experimental data in a previous paper.?

I. BOLTZMANN EQUATION

The Boltzmann equation is written in a slightly
modified version of the notation of Wilson?:

LeE4 (e/c)vyXH]V o f4-v-V, f4df/dt=— (f—fo)/7. (1)

Here, f is the distribution function, f(p,r,;; H,E), nor-
malized so that S fdp=n, the number of carriers per
cc; V, and V, are, respectively, the gradients in mo-
mentum space and coordinate space; v=V,8(p); and
fo is the distribution function in the absence of E and
H. 7 is the collision time, which may in general be a
function of &.
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We will assume a uniform distribution of carriers in
coordinate space, so that V,.f=0. H is assumed constant,
fis written in the form f= fo—®- (dfo/d8), and E and
& are assumed to have an e¢7“* dependence.

If these are substituted in Eq. (1), and a term of
order E[®(dfo/d8)] is neglected compared to one of
order E[ fq], we obtain

reE-v—1(e/c) (vXH) -V, @2— (14 jur)®=0. (2)

The assumption that the perturbed part of the dis-
tribution function, ®(df0/d8), is small compared to fq,
holds only if E is small. This means, physically, that
Eq. (2) holds at resonance, only if carriers gain little
energy between collisions, and remain on essentially
the same constant-energy surface in momentum space.

The current due to the perturbed distribution func-
tion is given by an integral over momentum space :

J=effvdp=—ef(afo/aé’)fbvdp. 3)

Equations (2) and (3) form the basis for the discussion
of cyclotron resonance for warped spherical constant-
energy surfaces.

II. WARPED SURFACES

The energy-momentum relation for a warped con-
stant-energy surface is taken to be of the form

&= (p*/2m)[1+¢(p/p)], (4)

where m is an average effective mass, and g(p/p) is a
small, nonspherical term, which is a function of angle
only. We introduce spherical coordinates (p,0,4) in
momentum space, with the direction of H as the z
direction. If we now assume 7 independent of energy,
and write ®=x(0,p)per/m, then substitution into
Eq. (2) yields

u-E+o"7[(1+R)Dy+QDe Ix— (1+jur)x=0, (5)
where

u(0,¢)= (m/p)V,E= (m/p)v, «'=eH/mc,
w(0,¢)=u—p=[gp+3pVsg], Ds=3/0¢,

0(0,¢) = (w. sinp—w, cosg) (1/sin®),
De=sin0(sin®+cos®9/90),

R(0,0)= (w, cosp+w, sing) (1/sin®), p=p/p.

An approximate solution of Eq. (5) is obtained, by
expanding x in a Fourier series in ¢, as

x=2_ xn(0©) cosng+x_n(O) sinné.

This leads to a set of linear equations, in which only
X~ and x—, are coupled, to first order in g. Substitution
of x into Eq. (3) gives the current, and an approximate
expression for the power absorption per unit volume:
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P=1Re(J-E)
3Ne

= -7

&8 m n

’ f(H_ij) (Saua+S_,u_,) sin@de
(14 jwr)? 4 [1° (14 Ry) Jtr2

where IV is the number of carriers per cc, and

}-E, (6)

1 —1
Szu(1+g)‘5/2[4~ f (1+g? sin@ddqs] .
T

In this expression, the subscripts (#) and (—#) refer,
respectively, to cosng and sinné harmonic components,
and =0 refers to a constant term. The quantities
appearing under the integral sign are functions of O,
and of magnetic field direction.

For w71, resonance occurs for the fundamental
cyclotron current (n=1), when

w=w’(1+4Ry). O

To first order in the warping, this resonance condition
is the same as that obtained from the Shockley integral
for the cyclotron frequency.?

Equation (6) also contains contributions to the cur-
rent for n=2,3, ---. These correspond to resonant
absorption of energy at harmonics of the fundamental
cyclotron frequency.2®

III. HOLES IN GERMANIUM AND SILICON
(a) Energy Surfaces

The expression of Eq. (6) for cyclotron resonance in
the case of slightly warped spherical energy surfaces,
does not depend on the explicit form of the energy-
momentum relationship for carriers. However, theo-
retical considerations of Dresselhaus, Kip and Kittel,’
Shockley,?” and others and experimental observations®?
indicate that the top of the valence band in both ger-
manium and silicon consists of a pair of warped
spherical energy surfaces, degenerate at k=0, and
given by an expression of the form

h2

§=——
2m0

X{ARE[BE+ (k2R k2R 2R 2R,  (8)

In the cubic axis system, where the (&) sign refers to
the two different bands.
For purposes of a Boltzmann calculation, we shall

write
&= —(p*/2m)[1+¢(p/p)], )
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where
p=/k,

m=mo[ A+ (B*+£CH¥],
8(0/9) =% (B+3C) A+ (B+3C) T
C2 x4 4 ,4_2 473
x{[1— (P +ps '+ 3;0]_1]‘
2(B+3C7) P

The energy-momentum relation has been artificially
written in this form, to reduce the problem to the
general form we have considered, with g(p/p) as small
as possible. From these expressions, it is clear that the
(4) and (—) sign refer, respectively, to the light and
heavy holes.

On the basis of experimental results,”* we may ex-
pand the square root in Eq. (9) to first order, with a
maximum error of approximately 0.99, for germanium
and 79, for silicon. This maximum error occurs only
over very small regions ou a constant-energy surface,
and produces a much smaller effect on the averages
appearing in the Boltzmann theory. Then, g(p/p) in
the cubic frame of reference may be reduced to

g(p/p) =L (p=/ )+ (ps/p)*+ (p:/2)*— 3],

where

(10)

FC
T AEHe) (A= (B )]

Our task in analyzing the cyclotron resonance of holes
is now to evaluate the terms appearing in the expres-
sions for the cyclotron resonance current in spherical
coordinates, with the polar axis along H, making use
of Eq. (10).

The situation for the light holes is rather simple in

__Toon”

F16. 1. Coordinate systems used in analyzing cyclotron reso-
nance in germanium and silicon. The crystal axes are labeled
[100], [010], and [001]. (%, 9, %) are “magnetic” coordinate axes,
with x and y respectively symmetrical to [100] and [010].
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F16. 2. Schematic, showing the intersection of a plane normal
to H, with the warped constant energy surfaces in germanium or
silicon. (%, 9, and %), with Z out of the paper, are magnetic
coordinates.

both germanium and silicon. In both these materials,
x is small for the light holes (~0.16 for germanium,
0.32 for silicon)® so that there is a very slight anisotropy
of the cyclotron resonant frequency and line shape.
Harmonic cyclotron resonance is much too small to
observe experimentally.

We shall consider two cases of cyclotron resonance of
heavy holes in germanium and silicon: Case (1) trans-
verse cyclotron resonance: E along the [1107] direction,
and H in the plane normal to E (see Fig. 1); Case (2)
longitudinal cyclotron resonance: E in the (110) plane
and H parallel to E. We shall discuss line shapes of the
fundamental high-mass-hole resonance, for Case (1),
and the relative intensities of fundamental and har-
monic cyclotron resonance for both Cases (1) and (2).

(b) Fundamental Cyclotron Resonance Line Shapes

AAA

The magnetic frame of reference (£§2) is chosen, as
shown in Fig. 1, with the unit vectors £ and § sym-
metrical with respect to the (110) plane. In this frame
of reference, E=(E/V2)(£—4). (See Fig. 2.) Using
Eq. (6) for the cyclotron power absorption and making
use of simple relations which follow from mirror plane
symmetry with respect to the (110) plane, expressions
for the power absorbed in transverse cyclotron reso-
nance have been obtained. For the fundamental and
first 2 harmonics,
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Py=——E
8 m
R f(l-{—jwr)(u,l—uyl)(Szl—Syl) sin®d®
e
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P3=— _TE2
8 m
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The expressions for longitudinal cyclotron resonance
absorption are

3 Ne? 2(14+ jwr) (4,15 ,1) sin@dO
TEZRef( Jot) (#:1521)

P = )
"8 m (1+ jor)*+[* (14 Ro) or?
3 4\782 (1+]wr) (MZ_QSZ*‘Z) sin @d@
Py="— B Ref . (12)
8 m (14 jwr)*+[ 20 (14 Ro) P72
P 3 Ne f 2(14+ jwr) (%3S.3) sin®dO
= e .
s m (14 jeor)*+ [3e* (14-2Rg) T2

Higher harmonics also appear, but are of very low
intensity.

In the appendix, we discuss the approximate evalua-
tion of the quantities appearing in the integrals of Eq.
(11) and Eq. (12), as a function of the angle ©, and of
the angle 6 in the (110) plane, made by the magnetic
field with respect to the [001] direction. The expression
for the fundamental cyclotron resonant frequency, to
first order in the warping, is

w=2*(14Ro) = (eH/mc) {1415« 3(—5/9— 202+ 3a?)
+7(14102—15a4) 447}, (13)

where o= cosf, A =cosO.

Dresselhaus, Kip, and Kittel,” show curves of m*
versus kg, for H along [1007, [111], and [110]. Their
curves seem consistent with Eq. (13).

It is interesting to note that, for §~29.5° the first
order cyclotron frequency is independent of O, so that
the resonance line should be most nearly Lorentzian
in this case.

It should be pointed out that the assumption of
slight warping, made in developing the present cyclo-
tron expressions, does not hold too well for regions on a
constant energy surface far from the center contour for
heavy holes in germanium and silicon. However, the
integration over © favors the region of the constant-
energy surface near the center, where the approxima-
tions are more valid. McClure?® and Luttinger and
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Goodman? have developed more general theories of
conductivity for warped constant-energy surfaces.
Luttinger and Goodman have been carrying out ac-
curate calculations of cyclotron resonance line shapes
for holes in germanium, and our results seem to be in
reasonable agreement with theirs.

By using the results of the appendix, the relative line
intensities of the fundamental cyclotron resonance ab-
sorption of heavy holes as a function of magnetic field
have been calculated for H along the [001], [111],
and [110]. The parameters chosen for the calculation
were wr=35.5, and x=0.854. The resulting curves are
shown in Fig. 3. Lorentzian lines with wr=3.5, for the
center contour frequency (cos®=0) are shown for
purposes of comparison.

These computations were begun before the best
possible experimental determination of x had been made
for either germanium or silicon. However, the experi-
mental values of « for germanium and silicon are not
very much different from 0.854, (~1.15 for germanium,
~0.95 for silicon) so that an approximate comparison
of line shapes should be possible. Experimental curves
are shown in a previous paper.?

In the limit of large wr, an approximate expression
can be obtained for the fractional shift, AH/H, of the
absorption peak from the center slice peak, due to the
warping. The result for H along the [001] direction is a
fractional shift of ~0.22/wr, toward higher fields. For
H along the [110] and [111] directions, the fractional
shift is ~0.22/wr toward lower fields. This result is
consistent with the curves of Fig. 3, and is useful in
determianing the constants 4, B, and C from the experi-
mental data.?

The value of wr can be determined from the heavy-
mass-hole resonances, for wr>>1. The method is appli-
cable for H along the [001], the [111], and the [110]
directions. Let H' be the value of the magnetic field on
the steeper side of the resonance such that (H'— Ho)/H,
=1/wr, where H, is the value of the field at the peak.
Then, an approximate expression can be obtained for
the ratio of the power absorption, P’, at H’, to the
power absorption, Po, at Ho. The result is P’/ P¢=20.55
for H along the [001] direction, and P’/P¢=20.51 for
H along the [111] and [110] directions.

(¢) Harmonic Intensities

Integrated harmonic intensities have been calculated
for second and third harmonic cyclotron resonance lines,
for Case (1) and Case (2), using the first-order expres-
sions of the appendix. Detailed line shape calculations
were not made for the harmonics, since experimentally
they are of low intensity, and are obscured by the
presence of other, larger, resonances. The integrated
intensity is an approximate measure of peak intensity,
if the anisotropy spread in resonant frequency is less
than the line width, 2/7.

Certain simple relations hold for the cyclotron reso-
nance harmonic intensities. For transverse cyclotron
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resonance [Case (1)] the second harmonic intensity
should be identically zero for H along the [001] and
the [110] directions; and the third harmonic intensity
should be zero for H along the [111] direction. The
contribution of the center contour to the transverse
second harmonic cyclotron resonance intensity is zero
for H anywhere in the (110) plane; however, the con-
tribution of the remainder of the constant energy sur-
face is considerable.

For longitudinal cyclotron resonance [Case (2)],
the intensity of the fundamental should be zero for H
along the [0017], [1117], and [110] directions. The
second harmonic intensity should be zero for H along
[001] and [1117]. The third harmonic intensity should
be zero for H along [001] and [110].

Figure 4 shows the integrated intensity of second and
third harmonic cyclotron resonance, both transverse
and longitudinal, as a function of the angle 6. The ex-
perimental line intensities of harmonics® show only
partial agreement between theory and experiment.

IV. DISCUSSION

The agreement between cyclotron resonance ob-
servations, and the classical Boltzmann models with 7
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Fic. 3. Cyclotron resonance of heavy holes for H along
(a) [0017, (b) [111], and (c) [110]. Curves show power ab-
sorption (arbitrary scale) versus magnetic field, in units of
w°£»=eH /mcw. Parameters chosen were wr=35.5, K=0.854.
Curves of the center contour Lorentz lines are shown for
comparison.

independent of energy, discussed in this paper, are on
the whole fairly good. Both resonant frequencies and
general features of the line shapes are reproduced by
the theories. The occurrence of harmonics of the cyclo-
tron resonance lines for heavy holes in Ge and Si is
explained, although the observed intensities are not
completely consistent with theory. However, in experi-
mental configurations where the rf electric field is pre-
sumed to be perpendicular to the dc magnetic field,
there may also be some parallel rf electric field present.
This would make the comparison of observed harmonic
intensities with the theory very inaccurate.

Cyclotron resonance may also be considered from the
quantum-mechanical point of view.28-% Carriers exist in
Ge and Si, in quantized levels (Landau levels) in the
magnetic field. The rf electric field produces electric
dipole transitions between levels, and the resonant fre-
quencies are given by the same expressions as the
classical ones. For the case of warped surfaces, the
warping produces a mixing of Landau levels and a
violation of the usual selection rules, giving rise to

28 J. M. Luttinger, Phys. Rev. 98, 1560(A) (1955); J. M.
Luttinger, Phys. Rev. 102, 1030 (1956).

2 R. B. Dingle, Proc. Roy. Soc. (London) A212, 38 (1952).

% J. G. Dorfman, Doklady Akad. Nauk S.S.S.R. 81, 765 (1951).
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F1c. 4. Integrated harmonic intensities of heavy-mass-hole
resonances, as a function of the angle 6, between the [001] and
H. The intensities are given in units of &2, relative to the funda-
mental transverse cyclotron resonance of heavy holes. (a) Shows
the intensities for second and third harmonic transverse cyclotron
resonance; (b) shows the intensities for fundamental second and
third harmonic longitudinal cyclotron resonance.

harmonic cyclotron resonance absorption. All of the
quantum results are the same as those of the classical
theory, except at very low quantum numbers for the
case of bands degenerate at =0 (see reference 28). The
theory then predicts a change in resonant frequencies.
Observations by Fletcher et al.® of cyclotron resonance
of holes in germanium at 4.2°K to 1.3°K, and very low
power levels, probably indicate the occurrence of such
low quantum number effects.

Fletcher et al®' have also observed line narrowing at
very low power levels, (107® mw). This perhaps indi-
cates that, at higher power levels (10~° mw) and liquid
helium temperatures, the electrons and holes are at
temperatures higher than the lattice because the lattice-
electron relaxation, through the mechanism of phonon
creation and annihilation, is less effective at such low
temperatures.®?

The assumption of energy-independent relaxation
time 7, for the calculations in this paper, was mainly
for the purpose of simplifying the results. The fact that
the main features of the line shapes can be explained
by an energy-independent 7 should not be considered
as very strong confirmation of this particular assump-
tion. The general results are probably rather insensitive
to the energy dependence of 7. The theory of cyclotron

3t Fletcher, Yager, and Merritt, Phys. Rev. 100, 747 (1955).
2 A. Overhauser (private communication).
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resonance for warped energy surfaces can be modified
to take into account the energy dependence of 7, by
using the more general theory of Luttinger and Good-
man® and McClure.”? A careful measurement of the
temperature dependence of cyclotron resonance line
widths at low rf powers, as a function of such variables
as impurity concentration, crystal prefection, and dis-
location density, could help toward a better under-
standing of scattering mechanisms and the energy
dependence of 7.
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APPENDIX. EVALUATION OF CYCLOTRON
RESONANCE EXPRESSIONS

To evaluate the quantities appearing in the expres-
sions for the cyclotron resonance of holes in germanium
and silicon, it is necessary to write the quantity (g/x)
= (pLA+p, +pA—5pY/p* In terms of spherical co-
ordinates (p,0,0) in the ‘“magnetic” frame of refer-
ences (&,7,2). (See Fig. 2.) The expression is

(g/x) = go+g1(cosp+sing)+g_s sin2¢
~+g3(cos3¢p—sin3¢)+gs(cosde),

where
5 3 9 3 15 45
g0= (______a2+__a4) +A2(_+_a2____a4>
48 8 16 8 4 8
7 35 105
+A4( _______a2+_____a4> ,
16 8 16

4B (e 1) G—742)
Y A ’

(14)
g2=1B(—1+40’—3a%) (74°—-1),
AB3a6(5 )
Y 0

g1=76B*(—3+10a2— 3%,

A=cos®, a=cos, and 6 is the angle made by the
magnetic field direction B=sin®, 8=sinf, with respect
to the [001] axis.
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The vectors u and S are given by B3
o 23— = 3(—34+10a%— 3ot
u=[(1+g)p+4ve] (s 108) = gl 3T “)
=£[ (1+) Sin® cosp— 1 + (25— 10202481a%) 4],
o (St Su) = [(~ 23+ 90— 630
23— = —234-90a*— 63a*
g 1,9 379w
X (—) sin¢+—(—g) cos® cos¢] 4096
3¢ 2\90 +7(25— 10222+ 81at) 47],
1
; : - ka3 (3a®2—1)B
+§[(1+g) sin® sm¢+2 Sin® uﬂ:u(\g_zlAz_i_MAg’
a2
ag 1/90g
X (—) cos¢+—(—) cos® sind)] Fraf(3a>—1)B
£ 2\490 Sup=———————(3— 364244944,
w2
1/9g
+2[(1+g) cos@——(»—) sin@] 7 A B
2196 ; s g= (—1+4a?—3at),
1 —1
S=[4— f (14-9)-5" sin@d@dd;] (14-9)-5"u LB {an
T —F(14+g%u. (15) S, o= (—144a2— 3a?) (19— 494?),

From these relations, the quantities appearing in
Egs. (11) and (12) for cyclotron resonance power ab-
sorption have been obtained, to first order in the warp-
ing. The resulting expressions are

Ro=75x[3(—5/9—2a2+3a%)+7(1+10a2— 15a%) 41],

kaB(5—3a?)
togm — B3 (1—242),
42

FraB(5—3a?)
=——B(1-742).

23

K 13 27
—_ p— = 2 —f —— 2 4
(1= 241) (Sa1=S) =F B [1+16( 6 13 2 * ) The power absorption for the fundamental or any of

the harmonics, may be written in the form

3 9 63
—I——K( ——— 170:2-|——“-)a4A2
8 2 2

63 /3 9
+—K<—+a2——a“)A2],

1 0(A4%)dA
y (14 jor)+ H2(a+bA%)’

P=Re(1+jm)f_

16 \2 2 where Q(A4?%) is a polynomial in 42 and ¢ and b are

xaBA B functions of the magnetic field direction. These inte-

(th22)= L(5—3e?)— (1—9a%)A47], grals may be evaluated exactly. However, the final

V2 evaluation of the power absorption as a function of H

FraBAB: (16) still requires a numerical calculation, since the result

(Sz9) =—T(S—21a®)—7(1—9a%) 47], contains a term which is the real part of the logarithm
4v2 of a complex argument.



