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suggests the presence of trapping levels. Such traps
could increase the majority carrier lifetime and thereby
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In order to study thermal scattering of moderately bound electrons in a metal, corrections are considered
to a deformable scattering potential. A constant multiple of the dilatation is derived that must be added
to account for the correct zero of potential in a homogeneously deformed crystal. In an inhomogeneously
deformed crystal (a crystal undergoing thermal vibrations), a function of the strain must be added to
take care of charge redistribution. The deformable potential must also be modified to treat umklapp processes
consistently. The modification provides that as the phonon wave vector increases in magnitude, some

umklapp character must gradually be added to the scattering amplitude.

1. INTRODUCTION

N calculating the thermal scattering of electrons in
a metal, one considers each electron to be approxi-
mately describable by a Bloch wave function. The
thermal distortions of the crystal alter the potential
felt by the electrons, and thus scatter the electrons
from one Bloch state to another. A central problem in
the theory of thermal scattering is to estimate the
scattering potential V., which is the difference between
the actual potential V4 in a thermally deformed crystal
and the potential V of an undeformed crystal.

Vee(®)=Va(x)—=V (1). (1.1)

In a vibrating crystal, the displacement S, of the
ionic core, whose equilibrium position is at r,, can be
expanded in normal modes of the lattice (phonons), as

S,(r)=N"%3,; e aq; exp(iq-r,)

+a,* exp(—iq-r,)]. (1.2)

Here a,; and a,;* are respectively proportional to the
destruction and creation operators for the phonon with
wave vector q and polarization vector e,;; V is the
number of unit cells in the crystal. (Discussion is
limited to the case of a single atom per unit cell.) One
can also consider Eq. (1.2) as defining a general dis-
placement function S(r) by replacing r,, in that equation
by the continuous variable r.

Bloch,! in his early work on the conductivity of
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LF. Bloch, Z. Physik 52, 555 (1928); 59, 208 (1930).

metals, assumed that the potential deforms along with
the crystal. That is,

Va@+S(@)=V(1).

The potential in the deformed crystal at the displaced
point is equal to the potential of the undeformed
crystal at the corresponding equilibrium point. Nord-
heim? used an alternative assumption that the potential
in a deformed crystal is the sum of the contributions
from the several ion cores, and that each contribution
to the potential moves rigidly with the corresponding
core. Probably the most satisfactory calculation of the
scattering potential to date is Bardeen’s self-consistent
formulation,® but Bardeen’s method seems limited to
metals whose conduction electrons are nearly free.

The object of the present paper is to find a scattering
potential that would also be applicable to moderately
tightly bound electrons, such as the d electrons of
transition metals. We base our work on the deformable
potential, but we suggest three important modifications.
(1) In a crystal with a small homogeneous strain, it is
necessary to add a constant to the deformable potential
in order to maintain the energy of the crystal inde-
pendent of the strain (to terms linear in the strain).
(2) In a crystal with locally varying strain, such as the
sinusoidal deformation corresponding to a phonon of
finite wavelength, some redistribution of charge takes
place to keep the Fermi level constant throughout the
crystal. The calculation of this second effect follows
closely the work of Hunter and Nabarro.! (Bardeen’s

2 L. Nordheim, Ann. Physik 9, 607 (1931).

3 J. Bardeen, Phys. Rev. 52, 688 (1937).

4S. C. Hunter and F. R. Nabarro, Proc. Roy. Soc. (London)
A220, 542 (1953).

(1.3)
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method also involves a redistribution of charge.)
Finally, (3) it is necessary to modify the description of
the deformable potential to treat umklapp processes.

2. HOMOGENEOUSLY STRAINED CRYSTAL

In this section, we consider the ion cores as rigidly
fixed at lattice points. In an unstrained crystal, the
Bloch wave functions for the conduction electrons
satisfy a Schrodinger equation

[— @/ 2m)V*4-V (r) — E(k) } (r,k)=0.

Now apply a homogeneous deformation S(r) to the
entire crystal:

(2.1)

r—r'=r+S(r)
= (I+’7) T,

where 1 is the identity tensor, and the strain,

n:;=1%(0S:/0r;+ 95,/ 0ry),

(2.2)

is independent of position. Since the crystal is still a
perfectly periodic structure, the electrons will again be
described by Bloch functions satisfying the equation

[— @/2m)V*+ V(") — Ea(K) Ju(r' k) =0. (2.3)

The subscript % is used to emphasize a homogeneous
strain.

It is useful to change the independent variable in
Eq. (2.3) from r’ to r as defined in Eq. (2.2).

Since

V2=V"242V ..V
b

the Schrédinger equation for the strained crystal
becomes

[— (#2/2m) (V2—2V - -V)+ Vi (x+S(r))
— E.(K) (' (), k') =0.

Terms quadratic in the strain have been neglected.
We now introduce the fundamental assumption that
the potential felt by an electron in a uniformly strained
crystal is the deformed potential of the unstrained
crystal plus an additive constant (proportional to the
strain) :

(2.4)

Via+S(@)=V(0)+C. (2.5)

It is an immediate consequence of this assumption and
of Egs. (2.1) and (2.4) that, to the first order in the
strain, the energy of an electron with wave vector k’
in a uniformly strained crystal is related to the energy
of an electron with wave vector k in the unstrained
crystal by

Ey(K)—E(k)=C+ (#2/m)k|V-n-V|E)  (2.6)
provided that k and k’ are connected by the relation

r -k'=r.-(I+9) k'=r k. 2.7
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During the process of straining the crystal, as the
wave vectors of the individual electrons change from k
to k', the energies of the electrons will change according
to Eq. (2.6). So the total change in energy of the
conduction electrons is obtained by summing the right
hand side of Eq. (2.6) over all the occupied states of
the conduction band (in the unstrained crystal). [ Since
all of the electrons do not change energy by the same
amount, there will be some jumping by electrons near
the Fermi level into states of different wave vectors.
But the number of electrons that jump will be small,
and proportional to the strain. Unless there is a band
degeneracy in the immediate neighborhood of the
Fermi level—in which case Eq. (2.6) is itself not valid
—the energy lost by each electron will also be linear in
the strain. So the effect of electron jumps is quadratic
in the strain and negligible for the present calculations. ]

If (and only if) the crystal is cubic, then in summing
the energy changes over the occupied states all shear
terms will vanish, and only dilatations will contribute
a net change in energy. Since the dilatation is expressed
as

Aznzx+77yy+77uy (2'8)

the average change in energy per conduction electron
can be written as

(En—E)w=C+ (12A/3m){k| V2| E)n

=C—(24/3)(K.E.)z, (2.9

where (K.E.)p is the electron kinetic energy averaged
over the occupied states of the conduction band. An
almost identical argument indicates that strain produces
a shift in the Fermi level F equal to

GA=F,—F=C—(2A/3)(K.E.)F, (2.10)

where the kinetic energy is now to be averaged over
the Fermi surface.

So far, no attempt has been made to evaluate the
constant C in the potential. This constant is now
determined in accord with a stationary property of the
energy of the crystal. The work of straining a solid is
proportional to the square of the strain produced. So
to the first power of strain, the energy of the crystal
must be independent of the strain. Presumably in a
correct calculation, this stationary property would
follow automatically. With an approximate potential
such as the deformable potential assumed in Eq. (2.5),
the additive constant C may be so chosen to keep the
energy constant.

In order to assign a value to C, it would be necessary
to know how the separate components of energy
(exchange, correlation, and core effects as well as the
single-particle energies of the valence electrons) vary
with volume. Lacking this information, we propose to
determine C so that the direct electronic energy is itself
stationary. This then gives for C the value

C=(24/3)(K.E.)p. (2.11)
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3. THERMALLY VIBRATING CRYSTAL

Because the lattice motion is slow compared to
electronic motions, it is reasonable to treat the lattice
motions as adiabatic. Further, in any particular electron
scattering process only a single mode of lattice vibration
is involved. So we assume that there is a slowly varying
local deformation determined by the particular lattice
mode doing the scattering. The conduction electrons
feel the same potential as in a homogeneously deformed
crystal, deformed to the local deformation.

Landauer® has pointed out, however, that there is a
further correction. If a metal is given a hypothetical
nonuniform deformation, without allowing any redistri-
bution of charge, the Fermi level will not be uniform
throughout the metal. Hunter and Nabarro* have
determined the charge redistribution required to equal-
ize the Fermi level, if without any flow of charge the
Fermi level fluctuates by an amount GA. Let the
density of electrons added to any region be #'(r). If
this density oscillates with a wave vector g, then it
gives rise to an additional Coulomb potential

Ve=—4mn'e/q. 3.1)

The extra electrons added locally to the conduction
band raise by an amount #'/2pr the energy level to
which states are occupied, where pr indicates density
of states per energy interval for a particular spin
direction, at the Fermi energy. The condition that the
conduction band is everywhere filled to the same energy
is that

GA-+4mn'e®/ g2 +n'/2pr=0. (3.2)
From this it follows that
n'=— (¢®GA/4we*) L(q), (3.3)

and so the added potential energy per electron is

—eVe=—GAL(g), (3.4)
where L(q) is an abbreviation for
L(g)=[14(¢*/8me*or) ] 3.5)

The shift in Fermi level without charge redistribution,
GA, has already been indicated in Eq. (2.10).

The result of combining Egs. (1.1), (2.5), and (3.4)
can be written as

Vsc:V(r_s(r))_V(r)+](Q)Ay (36)
where J(¢g) stands for
J(9)=(C/A)—GL(q). 3.7)

Except in the immediate neighborhood of core positions
V(r—S(r)) can reasonably be approximated as —S(r)
-gradV. If for a particular phonon the displacement is
written as

S(r)=N"%e[a exp(iq-1)+a* exp(—iq-r)],
5 R. Landauer, Phys. Rev. 82, 520 (1951).

(3.8)
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and the dilatation as

A(r)=iN"}(q-¢)[a exp(iq-r)—a* exp(—iq-1)], (3.9)

then in terms of Bloch functions of the form
Y (r,k)=N"% exp(ik -r)u,(r),

the scattering amplitude between an initial state ¢ and
a final state f takes the form

Vel y=N-3 f M —e-gradV+i(g)(q-8)Ja

Xexp(iKy-r)+[—e-gradV—iJ(g)(q-¢) Jo*

Xexp(iK_-1)}udr. (3.10)

The integration is over a unit cell of the crystal, and
the K vectors, defined by

Ki=ki+q—k;, (3.11)

must be equal to 27 times a reciprocal lattice vector,
or zero.

4. NORMAL AND UMKLAPP SCATTERING

A complete set of the wave vectors k and q is obtained
by using reduced vectors, which are required to lie in
some selected unit cell in reciprocal lattice space. This
cell is conveniently (but not necessarily) chosen as the
first Brillouin zone. Then processes in which K =0
are called normal, and those in which K, is equal to
27 times a small reciprocal lattice vector are called
umklapp.

As the quantity |k;—k;| gradually increases, a point
is generally reached at which the scattering changes
from normal to umklapp. There is no physical reason
why the scattering amplitude should change markedly.
In fact, which processes are called normal and which
umklapp is essentially a matter of bookkeeping. (These
remarks have no bearing on questions of the importance
of umklapp processes in maintaining phonon equi-
librium.) But Eq. (3.10) does predict a sudden change.

The difficulty arises in the expression (3.8) for the
displacement of a general point (r) While Eq. (3.8),
or Eq. (1.2), describes the same displacement of ion
cores if q is replaced by q=k, this is not true for the
displacement of a general point in the crystal. But it is
possible—and evidently necessary—to generalize the
displacement to a form

S(r)=N"* 2 g5 eq;X o{aq; exp[i(q+Ky) 1]

+aq* exp[—i(q+Ko) 1]} (4.1)
Provided only that for every mode
Zg Xg= 1, (42)

Eq. (4.1) gives the same displacement for ion cores as
the previous expressions for displacement.
The coefficients X can now be adjusted so that the
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scattering potential of Eq. (3.6) is unaffected by
replacing the phonon reduced wave vector q by an
equivalent “expanded” wave vector q'=q-+K, where
as usual K is 27 times a reciprocal lattice vector. A
suggestion in line with the spirit of the deformable
potential would be to require that X, be a function of
the magnitude of | q+ K|, for example,

X | g+ K~

In calculating scattering amplitudes, it now becomes
necessary to sum the contributions due to the various
X/’s. For small ¢’s, Xo=1 and all other coefficients are
small. On the other hand, when ¢ approaches a zone
boundary, and | q| =~ | g+ K| for some particular ¢, then
Xo=~X,~1. The character of the scattering—whether
normal or umklapp—changes gradually as the magni-
tude of ¢ changes.

5. DISCUSSION

Although the scattering potential developed in this
paper is intended to be valid for any metal, it is of
interest to examine the case of nearly free electrons,
and to compare our results with those of Bardeen.?
The potential V, which appears explicitly in expression
(3.10) for the scattering amplitude, can be eliminated
by use of the Schrédinger equation.® We write the
resulting expression for that part of the scattering
amplitude corresponding to phonon absorption:

(f1Vsel i)=i;\"%a[ (q-¢)J (q) fuf* exp (1K, - r)u.dr
+i{ E;— Ei— (/2m)[ (k;+K,)*—k?}

Xfu,-e-grad[uf* exp (1K 1) Jdr—2(h%/2m)

Xf(q-gradu{)s-grad[:uf* exp(iKJr‘r)]dr]. (5.1)

If we consider normal scattering, and neglect any
dependence of the #’s on %, then the first integral in
Eq. (5.1) is just the normalization integral, and equal
to unity. With the same approximation, the second
integral vanishes, and the third integral is [ 2m(q - £)/37%%]

6 A. Sommerfeld and H. A. Bethe, Handbuch der Physik (Verlag
Julius Springer, Berlin, 1933), Vol. 24, Part 2, p. 512.
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times the kinetic energy of an electron with k=0. So
the normal scattering amplitude is

(f] Veo| iy =iNa(q-£)2{ (K.E)5— (K.E.)o
+L([(K.E)r—(K.E)z]}. (5.2)

Of the subscripts on the several kinetic energies, B
indicates an average over the occupied states of the
band, F implies the average over the Fermi surface,
and O refers to the k=0 state. For nearly free electrons,
the band should have standard energy dependence,
for which

(K.E)s— (K.E)=3 (K.E)r— (K.E)o]=%. (53)
The bracket in Eq. (5.2) reduces to
B+3L(9k. 54

A comparison with Bardeen’s work now leads to the
following conclusions. (1) Our expressions (5.2) and
(5.4) agree precisely with Bardeen’s result for forward
scattering (q=0). They decrease with increasing g,
but less rapidly than Bardeen’s work indicates. (2)
There are minor differences in the ¢ dependence of the
correction L(q) due to the potential of the redistributed
charge. The constant pr of our expression (5.4) replaces
a slowly varying function [N/W (K)] of ¢ in Bardeen’s
paper. And this potential correction applies to the entire
scattering potential in his work, instead of only £ of it,
as in our expression (5.4). (3) But there is an essential
difference in ¢ dependence, which arises from our use of
a deformable potential, in contrast to the use of a
rigid-core potential as the basis of Bardeen’s calculation.
The rigid core introduces a phase factor exp(£iq-r)
into the integrals corresponding to our Egs. (3.10) or
(5.1) even for normal scattering, and gives rise to a
coefficient [g(#)] in the scattering amplitude that
decreases rapidly with ¢. Neither the deformable
potential nor the rigid-core potential can be rigorously
justified as correct starting points, and it is not obvious
how to make an @ priori choice between them.

The importance of J(g) to Egs. (5.1) and (5.2)
should be pointed out. In the absence of J(g), the
bracket in Eq. (5.2) would become — (K.E.)o. Rapid
oscillations of the wave functions of the conduction
electrons close to the nucleus, particularly for the larger
principal quantum numbers, can make (K.E.), several
times as great as the Fermi energy ¢ of Egs. (5.3) and
(5.4).



