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Equations (A, 15), together with the relations eigenstates below k, we obtain

W~((p+21r) = W„(q)+1,
Wg(0) =0, (A 16) (1/21r) ('Pn~1 0 n)Av p J ('In+1 Ã )A1BA ('Pn)d pn

Wz ( p) = mono tonically nondecreasing in y,

and the same relations for 8'~, determine again the
functions 8'~ and S'~. These functions, as well as the
constants C~(k) and CB(k), can be calculated from
(A, 15) by iteration. Finally, for M(k)+const= (1/21r)
X (pn+1 pn)Aq which gives us the relative number of

+gg ('Pn+1 'Pn)B1BB ('Pn)d V'n

A short calculation using (A, 15) gives the result

M(k)+const= pC~(k)+qCB(k).
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The electronic self-energy due to interaction with acoustic phonons is evaluated as a function of the
electron propagation vector k, and a relation is established connecting the Sommerfeld-Bethe interaction
constant with the energy band separation and effective masses. For nondegenerate prolate el)ipsoidal energy
surfaces of revolution, the self-energy depends linearly on the temperature T at high temperatures and
quadratically on T at low temperatures, this behavior being substantiated by the experimental results of
Macfarlane and Roberts. The temperature dependence of the principal effective masses nz;(T) at high
temperatures is given by (i= l or t)

m;(0)/I;(T) = 1+(128m./9ph sOD) m {'0)n-(E)(C )AvT

thus indicating a decrease in effective mass with rising temperatures. The result does not explain the deviation
from the T & law for the lattice mobility as observed by Morin and Maita. The percentage decrease at room
temperature for each of the electron effective masses amounts to less than 1%.These results do not account
fully for the possible change determined by Lax and Mavroides.

1. INTRODUCTION

HE temperature variation of the electronic energy
in crystals is usually attributed to radiation

damping, ' thermal expansion, ' electron self-energy, ' and
mutual electrostatic interactions of charge carriers. 4

In the present paper a study is made of the electron
self-energy in homopolar semiconductors with specific
reference to n-type Ge and Si. From the self-energy the
temperature dependence of the principal effective masses
is then deduced. At low temperatures the self-energy
exhibits a quadratic behavior with temperature, thus
substantiating the observations of Macfarlane and
Roberts' on the temperature variation of the infrared

' A. Radkowsky, Phys. Rev. 73, 749 (1948);Moglich, Riehl, and
Rompe, Z. tech. Phys. 21, 6, 128 (1940).

'R. Seiwert, Ann Physik 6, 241 (1949); F. Moglich and R.
Rompe, Z. tech. Phys. 119, 472 (1942); J. Bardeen and W.
Shockley, Phys. Rev. 80, 72 (1950);W. Shockley and J. Bardeen,
Phys. Rev. 77, 407 (1950).

3 V. A. Johnson and H. Fan, Phys. Rev. 79, 899 (1950);T. Muto
and S. Oyama, Progr. Theoret. Phys. Japan 5, 833 (1950); 6, 61
(1951);H. Fan, Phys. Rev. 78, 808 (1950); 82, 900 (1951).

4 F. J. Morin and J. P. Maita, Phys. Rev. 94, 1525 (1954); 96,
28 (1954).' G. G. Macfarlane and V. Roberts, Phys. Rev. 97, 1714 (1955);
98, 1865 (1955).

absorption edge. In addition, the percentage change in
the principal ehective masses from liquid helium tem-
peratures to room temperature is computed and found
to be much less than the possible change deduced by
Lax and Mavroides. '

H= H„+V(R, r)+HB, (2 1)

where B„is the Hamiltonian of a nonlocalized electron,
V(R,r) the electron lattice interaction and HR the
vibrational energy of the lattice. The latter two quanti-
ties are given by the relations

V(R,r) = — P g, (o.) p'V(r)
2(MK)'1,

p2AI"
X {n,(~)e" yu, *(~)e-"'l

~

E~, (~))
B. Lax and J. Mavroides, Phys. Rev. 100, 1650 (1955).

(2 2)

2. HAMILTONIAN AND THE LATTICE FIELD

The total Hamiltonian of the system, electron plus
lattice, may be written as
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and

Hlt=-,' Q Aott(o){nt(o)nt*(o)+trt*(o)nt(o)), (2.3)

where V(r) is the periodic potential occurring in H„and
gt(o) are the unit polarization vectors, one longitudinal
and two transverse, corresponding to the phonon propa-
gation vector o. In addition, ut(tr) and nt*(tr) are the
familiar annihilation and creation operators satisfying
the commutation relations

or negative, respectively. We shall find on evaluating
the total energy of the system that our perturbing term
is negligible at ordinary temperatures, thus leading to a
reformulation of electron-acoustic mobility theory,
which forms the subject of a subsequent paper. Before
proceeding to an evaluation of the total energy we shall
consider briefiy the Sommerfeld-Bethe interaction
constant.

3. SOMMERFELD-BETHE INTERACTION
CONSTANTS

Lnt (~'),nt*(~)]=+8...bt t.
L~ (~'),~ (~)]=o,

(2.4) We shall require the matrix elements of V(R, r) with
respect to the Bloch functions tP„,k. These a.re

Pnk, N X,n, kgNt (2.6)

where {sr is the product of normalized single oscillator
wave functions.

It has been usual in the literature to regard V(R, r) in
the total Hamiltonian H, as a perturbing term. How-
ever, we shall find it convenient for reasons which will
become clear later, to write (2.5) in the form

LH +V(R r)]x, k{ tv+ x, kHRPN+ H x, k{N

= &-, kvx. k, tv{x, , (2., 7)

the + or —sign occurring according as tr is positive or
negative.

We proceed to solve the Schrodinger equation

II+n, k, N ~n, k, X+n, k, X7

where 0„,k ~ is the wave function for the complete
system and E„,k, ~ the total energy. The quantum
numbers (zz, k) and 1V specify the electronic state and the
state of excitation of the lattice respectively. Using the
Born approximation for N„,k ~, we write

M(zz",k"; tz', k') =P 5E t(n",k"; zz', k')
t

where
X {&t( tr) bk", k'+ +&t (tr)bk", k' —o), {3~ I)

and ~o indicates integration over the unit cell. The I„,k
are the periodic part of tP„k.Making use of the eigen-
value equation satisfied by the N„kwe can easily show
that for intraband transitions

with
It"'"'(k",k') =+ (2/3)iCt"'"'(k')a, (3.3)

tt 3
C,"'"'(k')=~

I g (s p, t)(gt pt, ), (3.4)
&2m/ «-

where s is a unit vector in the direction of propagation
of the lattice wave e, and

Dent(zz", k"; tz', k') = ['trz/2MXcot(tr)]*'It"""'(k", k'),

(3.2)&t"""'(k",k') = (t(tr) zt ",k"*zt„,k ~V(r)dr,
J ~0

where H' is now the perturbing term given by

H Xtt, k{N HRX k{ ltvtXnkHR{ lv, (2 g) Ptt" tt —
)

' 2t'tt", k' ( z@V)2t'tt', k'dr.
cryst.

The wave function for an electron with propagation
vector k, may be written

Xn, k tz{tP., k+ Z be, k(t tzz ttr ) t'( tr)tPntr'k+rr') t (2 9),
t', 0'

where the tP„kare Bloch functions, the b„(tk', ',zz') curare

adjustable parameters and a is a normalization constant.
The x„kwe are using correspond approximately to the
"superconducting" wave function of Bardeen'; func-
tions of the same form have also been used by Takano.
Kith this wave function, the perturbing term becomes

The above result is valid provided the kinetic energy of
the electron in the initial state k', is small compared to
the energy gap between the conduction band and filled
band. The interaction constant given by (3.4) may be
evaluated in terms of the energy gap and principal
eRective masses, by making use of the f-sum rule,

2 p„t pt„.t' m 8'e„(k)
(3 ~)

m «~' et(k) —e„.(k) fz' Bk rtka

For an energy band e (k) of the form,
H'X. , k

——tz P (W) b„k(t',tz', tr')

XAott (o.')nt (o.')P„,k~, (2.10)

the negative and positive signs occurring as e is positive

fz' (k —k ')' k ' k'
e„(k)=— + +—

2 mg mQ fps3

(3.6)

t J.Bardeen, Phys. Rev. 80, 567 (2950l; Revs. Modern Phys. 25. . . (
261 (1951).

F. Takano, J. Phys. Soc. Japan 9, 430 (1954). m. )
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A considerable simplification is achieved in later calcula-
tions of the space average of the squares of (3.7) is
determined at this point. The direction cosines of the
unit polarization vectors are given by

(~= {sing, —co+, 0),
f2= {cosg cosQ, cos8 sing, —sin&),

gq= {sin9 co&, sin0 sing, cos9) = s,

(3 g)

the result being expressed for the case where the energy

so that the mean interaction constant, which includes
the eGects of the longitudinal vibrational mode and the
two transverse modes is given by

C"™(k)= {E(L«"'"'(k)j') )'
t

& -,'{e „(k)—«„"(k))

)m q' )m mq' &

X
f

—1 f+-'.
f

——/, (3.9)
Em, ) (mg m(]

surface is a prolate ellipsoid of revolution, having
m&

——m&, and m2=m3 m——
g A. s expected, Eq. (3.7) or

Eq. (3.9) indicate that for spherical energy surfaces,
only the interaction with the longitudinal mode remains.
In addition the interaction constant vanishes for free
electrons. Since the energy difference in (3.9) is seldom
known with accuracy, (3.9) may be used to determine
the maximum vertical energy separation between the
bottom of the conduction band and the top of the
valence band, if C"'"'(k) is determined from the acoustic
lattice mobility expression.

4. ELECTRONIC SELF-ENERGY

In this section the energy E„,&, & is evaluated using a
variation method following the scheme of Takano.
Multiplying the Schrodinger equa, tion (3.7) on the left
by%'„,k, z and integrating, we then minimize the total
energy with respect to the parameters b„&(t',n', o') The.
results are

oTt, (e', kao'; ~, k)
b „k(t',m',

,
o') =

{e~(k) —e„(k+e')+be.(k) +A(ug (o'))

E., ~ ~ ——e„(k)+8&„(k)+pA&a((o) (N (, .+2),

(4.1)

(4.2)

be„(k)=2
t', n', ~'&0

~OR/ (B', k+o'; B, k) ~'Ng, , {1—f(k+lr'))

~.(k) ~„(—k+o')+A~( (o')+be. (k)

~
on, (n', k —0'; e, k)

~

'(N g .+g) {1—f(k —e') }
(4.3)

c„(k)—e„(k—e') -Aarg (o')+be (k)

where N~„ is the phonon occupation number for the
mode 0, of the tth vibrational branch. The above result
(4.3) differs from that given by Frohlichg and Bardeen, 7

in that the self-energy 8e„(k)occurs in the denominator.
If we omit the perturbing term B' from the total
Hamiltonian and repeat the above analysis for the total
energy E„,z, &, we obtain again the expressions (4.1),
(4.2), and (4.3) with the difference, however, that the
phonon energy Aced, (o) does not occur in the denomi-
nators of these expressions. In the following section we
shall evaluate be„(k)approximately and show that at all
temperatures above the liquid helium range the presence
of the ha&, (o) term in the denominator has a negligible
e6ect on the magnitude of the self-energy for the
particular cases of Ge and Si.

5. ELECTRON SELF-ENERGY IN Ge AND Si

The conduction band of Si consists of six equivalent
prolate ellipsoids of revolution oriented along the six
equivalent (1,0,0) directions in k space. The conduction
band of Ge consists of 8 (or 4 if centered at the zone

boundary) equivalent ellipsoids of revolution oriented
along the set of eight equivalent (1,1,1) axes in k-space.

' H. Frohlich, Phys. Rev. 79, 845 (1950).

Under a suitable orthogonal transformation each surface
may be represented by an expression of the form (3.6)
with mq ——m~ and m2 ——m3 ——m, . In the expression (4.3)
the occupation number N~, , becomes small for large
values of a.. Since virtual transitions between energy
minima require 0- of the order of magnitude of 2m times
the reciprocal lattice parameter, then intervally transi-
tions should contribute very little to the self-energy.
Furthermore, for the case where the states n and n' have
large energy separations we may drop the summation
over e' in (4.3) and put e=e'. For an approximate
evaluation of 8e„(k) we drop the term 8e„(k) in the
denominator of (4.3) and use classical statistics. Thus
replacing the summation by integration over e space,
we find

4 mC, '
be. (k)= —P — (J~(k)+J (k)]

~' 9 phs, (2n-)'

4 mgCg'

9 pksv(2m)3 "o "o

p+1

X) dxLo(1 —Ex')+2oo —B(x 4 O)] ', (5.1)
—1
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where

p rftn f2 F

Jp(k) = 1Vg, ,a'da dP
J~

In the above it can be easily shown by use of the Euler-
Maclaurin summation formula that the second term in
the square brackets of (5.5) is negligible down to liquid
helium temperatures. The function L2(x) is Euler's
dilogarithmic integral defined by

and

dx[0.(1—Ex') %2o.o&B(x y 0)]—', (5.2) t-' 1 x
L2(x) = — —ln(1 —s)ds= P —.

n 1+2

1+E'
n, (E)=E-& lnIn the foregoing we have put 8 and @ as the polar angles

of e and 0 as the angle between Dk (electron propaga-
tion vector measured from the energy minimum) and
the longitudinal axis of the energy ellipsoid. The various
quantities occurring in the above equation are defined as
follows: 0-, the maximum phonon wave number; s~

the velocity of sound for the tth vibrational branch; p,
the crystal density; oo=m&s& /k, the wave number of the
electron traveling with the velocity of sound in the
transverse direction, and E= (1—r), where r= (m, /m~)
is the effective mass ratio.

The mean phonon occupation number is given by

(5 9)
1—E'

For spherical energy surfaces, r= 1, E=0 and n~(0) = 2.
At high temperatures defined by (T/OD)))1, expression
(5.7) becomes

10'
t

Ty-
1+4i

(OD)
(5.10)F(On, T) =

O~D

and at low temperatures defined by (T&'Hz)«1,

10' )Tq'
F(On T) =

O~n E On)
(5.11)

X, ,=(exp(kor~ (o)/xT) 1} '= P —e "~~", (5.4)

B(x,&,O) =2
~
Ak~ [(1—E)x cosO In addition we have taken the principal values of the

integral leading to
+ (1—x') l co& sin 0). (5.3)

where P~ ks, /xT. Fro——m (5.3) we obtain the result,

J+(k)+J (k)

dx

~=~ n'P, ' "
g (1—Ex')

The result (5.6) is in agreement with that of Fan and
Muto and Oyama, except for the introduction of the
factor n~(E) and the function F(O,T) which covers
almost the entire temperature range of interest. For Ge
and Si, the temperature rate of change of the self-energy
is deduced from expression (5.7) rather than from
(5.10), as Fan claims.

with

ALP $ &lfrn

X $e &d$+n'5'
Jp

(5.5)
$2 n2$2

6. TEMPERATURE DEPENDENCE OF
EFFECTIVE MASSES

Due to the electron lattice interaction the total
electron energy 8„(k)may be considered as

~„(k)= e„(k)+be„(k),
At the energy band minimum located at k', the quantity
B=O, so that from (5.1) and (5.5) where 6e (k) is the temperature-dependent term. The

principal effective masses are then given by the solution
of the secular determinantm ((C')A~g(E)

be„(k')= —-', F(O~n) T),
xM(10')

(5.6)
1 8'e„(k) 1

8;; =0,
k' Bk,8k, m;(T)

where (6.1)

if e„(k)is a quadratic function of the components of k.
Since e„(k)is already in canonical form, it follows from
expression (5.1) that the off-diagonal elements of the
effective mass matrix are small in comparison with the
diagonal elements. Thus diagonalization becomes un-
necessary and the principal effective masses are given by

GATI
+~ ~

ln(1 —e HD~ ) (5 7)(o.&

where we have assumed equal phonon velocities and
employed the relations 1 1 8'e„(k)

m(T) k' Bk P
(6.2)

o„=xOD/As' ——2s. (3/4n-) &0 &. (5.8)

10'
t
) T y')H

F(On, T)= 1+4
I I I

2(~ equi~) I—
OD 4O~D) E 6 )
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o. (1—Ex') —(2op —B)
Xln

o (1—Ex')+(2o-p —B) .
(6.3)

Since (B 2op)/o —(1 .Ex') &1—for electrons of average
~Ak~ values, the logarithmic term may be expanded
into a series, so that the principal effective masses are
given by

m;(0)/m;(T) =1+(128m/9phs)m '(0)n;(E)

X(P C~'/s~ On~)T, (6.4)

where m;(0) is the electron effective mass at absolute
zero and includes the effect of the zero-point vibrations
of the lattice. For the longitudinal direction

(E)= (1—E)' (E),

and for the transverse direction

n, (E)= —,'[ns(E) —n (E)j,
where the various n functions are defined as

1 (1+E)
u(E) = —su&(E),

4E (1 E)—
us(E) =s(1—E) '+ s(1—E) '+ ant(E).

For spherical energy surfaces, E=O and u;(0) =-', .

'7. ADIABATIC APPROXIMATION

The variational method employed in Sec. 4 for the
derivation of the interaction energy 8e„(k)suffers one
disadvantage in that the evaluation of the interaction
energy requires, as a first approximation, the omission
of the 8e„(k) term in the denominators of expression
(4.3). However, one advantage arises in establishing
immediately a criterion for the validity of the adiabatic
approximation, which is of importance in scattering
problems. Seitz" has shown that if the electronic wave
function is practically independent of the normal lattice
coordinates, then the term H' in the total Hamiltonian
is negligible. This is evident from the definition of H .
Since our trial wave function y„,q involves the normal
lattice coordinates and their canonically conjugate
momenta, it is important to determine the effect of
omitting the H' term from the Hamiltonian. As men-
tioned at the end of Sec. 4, the change in the electronic
energy takes the form of expression (4.3) in which,

"F. Seitz, Modern Theory of Solids (McGraw-Hill Book
Company, Inc. , New York, 1940), p. 470.

to a good approximation. At high temperatures we
obtain from (5.2):

J+(k)+J (k)

('~T ) t.s t.+' dx (2o.p —B)

Ebs, ) "p ~, (1—Ex') (1—Ex')

however, the fur~(o). term is absent from the denomi-
nators. Thus a criterion for the validity of the adiabatic
approximation may be written as

~g (p.)« ~
be. (k)+e„(k)—e„.(km') ~,

which must hold for all values of 0- up to 0. . The re-
lationship is satisfied where the bands n and n' are well
separated. For the case &z=e', the criterion may be
expressed as

r~, (n)&& ~ae. (k)~,

which is satisfied for Ge and Si for sufFiciently long
waves. Since it is precisely the small 0-, which contribute
most to the interaction energy, we may conclude that
t.he adiabatic approximation is valid. "

8. DISCUSSION

The temperature variation of the energy gap in
semiconductors is generally accounted for, by de-
termining the electron and hole self-energies at the band
edges, and the eRect of lattice expansion with increasing
temperature. The high temperature variation for semi-
conductors having spherical energy surfaces has already
been considered. ' An adequate analysis of the effect of
lattice expansion at both high and low temperatures for
semiconductors with ellipsoidal or degenerate spherical
energy surfaces has yet to be developed. The quadratic
behavior with temperature, for the self-energy, as pre-
dicted by Eq. (5.11) is substantiated by the work of
Macfarlane and Roberts5 who have observed a quadratic
temperature dependence of the energy gap at low
temperatures, in both Si and Ge. However, an actual
comparison of (5.11) with their experimental data must
await a similar calculation for holes.

With regard to the temperature dependence of the
electron effective masses, Eq. (6.4) indicates that there
is a decrease in effective mass with increasing tempera-
ture. Lax and Mavroides, ' assuming an eight- and six-
valley model for Ge and Si, respectively, have analyzed
the data of Macfarlane and Roberts and have concluded
that there is a possible 30% decrease in the density of
states mass m„=m&&m~& for electrons in Ge at 300'K.
For Si, however, they deduce a slight increase in the
combined density of states mass (m m„)&, which ap-
pears to be in contradiction with the theoretical result
(6.4), since hole effective masses are also expected to
decrease with increasing temperature. The observed
result in Si, may be due therefore to the greater inAuence
of lattice expansion on the curvature of the energy
surfaces, as well as to the increase with temperature of

"K.Huang, Proc. Phys. Soc. (London) A64, 867 (1951).In his
discussion of Wentzels' lattice instability, Huang dropped the
Puog(o) term in the denominators of (4.3) (which did not contain
the b~„(k) term), and had, as he remarked, used the adiabatic
approximation, which he considered as valid for long waves. This
conclusion is particularly evident from our expressions (5.2) and
(5.5l, where o.p Lwhich arises from the bed &(pl term) occurs only in
the term which is negligible at temperatures above approximately
4'K,
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where (C')A„ is the mean square Sommerfeld-Bethe
interaction constant, defined by

(C')A, ——p (C& ')A„

and determined from the standard expression for
acoustic lattice mobility

9 3.2X10 'c;; |' m q
'"

(c2).,=-
~ m*)pTz

(8.2)

Here m* is the mobility effective mass given by"

with
m*= (m„'m,')"'

m m|,' m)

(8.3)

1 jt1 2i
m, , (m, mg]

It may be remarked here that XIorin and Maita'4 have
observed experimentally a deviation from the T ' law
for the lattice mobility as given by (8.2). One possible
explanation of the deviation, as put forward by Benedek,
Paul, and Brooks" is that the effective mass m* in (8.2)

'~ In Ge and Si, the valence band is doubly degenerate at k=0
and characterized by effective masses m1 and m2, while a third
band separated by spin-orbit interaction 6 is characterized by m3.
In this case

m~= pni~+m«+mq& exp( —a/xT)]&
"B.Abeles and. S. Meiboom, Phys. Rev. 95, 31 (1954); M.

Shibuya, Phys. Rev. 95, 1385 (1954).
'4 F. J. Morin, Phys. Rev. 93, 62 (1954); F. J. Morin and J. P.

Maita, Phys. Rev. 96, 28 (1954).' Benedek, Paul, and Brooks, Phys. Rev. 100, 1129 (1955).

the statistically derived hole density of states effective
mass. "The later possibility is definitely operative since
the spin-orbit splitting 6= (0.035 ev) in Si is small.

An approximate evaluation of the percentage change
in the principal eRective masses in Ge and Si at 300'K
may be made, by assuming that the phonon velocities
are isotropic. Expression (6.4) may be written as

m, (0)/m. ;(T)
= 1+ (128vr/9ph's OD) m, '(0)n;(E)(C') A„T, (8.1)

be temperature dependent. If this be the case, then the
temperature dependence of m* must arise solely from
lattice expansion, and is not given by expression (8.1).
This is most clearly seen by examining the different
roles played by the electron-lattice interaction term
V(R, r) in the mobility theory leading to (8.2) and in the
self energy calculation leading to (8.1). It thus appears
possible to reformulate mobility theory on the latter
basis, using B' as the perturbing term for transition
probabilities, since, as we have seen, the adiabatic ap-
proximation is valid. From the above observations we
conclude, that it is not an entirely consistent procedure
to use expression (8.2) in conjunction with (8.1). In
spite of the inconsistency it is hoped that the mobility
expression (8.2) will give an approximately correct value
for (C')A„ to be used in determining the temperature
variation of the effective mass. With the further ap-
proximation of using the low temperature effective
masses m&(0) and m&(0), as determined by cyclotron
resonance experiments, " in (8.2), we find that for Ge,
ns, =0.12m, m„=0.22m, and ns*= 0.17m. For Si the same
quantities are ns, =0.26m, m„=0.33m, and m*= 0.30m.
The Morin-Maita electron mobilities'4 at 300'K are
p(Ge)=3800 cm'volt 'sec 'and p(Si) =1400 cm'volt —'

sec '. From (8.2) we then obtain ((C')A,)'= 22 ev for Ge
and ((C')A,)&= 20 ev for Si. Substituting for the known
values of the parameters in (8.1), we find that for Ge a, t
300'K, the longitudinal effective mass has decreased by
0.26%, and the transverse effective mass by 0.14%.The
respective changes for Si are 0.23% and 0.12%. From
these results the decrease in the electron density of
states mass amounts to 1.0% for Ge and 0.8'% for Si. In
the case of Ge the decrease is considerably less than the
30% decrease estimated by Lax and Mavroides. The
value of 22 ev for the interaction constant in Ge does
not appear unreasonably high since the same value in
expression (3.9) leads to a maximum vertical energy
separation of 2.2 ev between the bottom of the conduc-
tion band and the valence band. We conclude that a
large part of the effective-mass decrease must be due to
lattice expansion.

' Lax, Zeiger, and Dexter, Physica 20, 818 (1954); C. Kittel,
Physica 20, 829 (1954); F. Herman, Proc. Inst. Radio Engrs. 43,
1703 (1955).


