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A mathematical method is developed which gives fairly generally the density of eigenstates for one-
dimensional disordered systems. The method is applied first to a disordered linear chain of elastically
coupled masses. The results for the energy spectrum are closely related to those obtained by Dyson.

Then we consider the electronic energy-states in a one-dimensional disordered crystal, represented by a
series of 6-function potentials of diferent strengths, randomly distributed.

We solve the resulting functional equation explicitly in that case which corresponds to a uniform crystal
with a small amount of impurities; that is, we And the shape of the impurity bands.

I. INTRODUCTION

HE energy levels of an electron in a pure crystal
can be computed in principle if the crystal po-

tential is known. In this paper we will study the case
in which the crystal consists of diferent atoms, ran-
domly distributed.

We restrict our considerations to a one-dimensional
crystal model and hope that this gives in some respects
a qualitatively correct description of real three-dimen-
sional crystals.

We shall use a general mathematical method which
also applies to similar problems. One of these is the
determination of the eigenfrequencies of a linear chain
which consists of elastically coupled atoms with ran-
domly varying masses. This problem is interesting in
itself and most suitable for demonstrating the mathe-
matical method involved. Therefore, we will consider
it first.

IL FREQUENCY SPECTRUM OF A
DISORDERED CHAIN

(a) Description of the Model

Suppose that we have an alloy containing i diRerent
kinds of atoms A', , A' with the masses m', .

, m'.
Let p& be the fraction of atoms A', Qp'=1. As a one-
dimensional model of this crystal we choose a chain of
elastically coupled masses m&, m&, nz3, ~ . , where the
nth mass m„can assume the values m', , m' with the
probabilities p', , p'. Suppose for the present that
these probabilities are independent of the nature of the
atoms which occupy the neighboring places (u 1)and-
(u+1). (The case where a correlation between neigh-
boring atoms exists will be discussed in Appendix II.)
Furthermore we will assume that the forces between all

neighboring atoms can be described by the same elastic
constant k.

Now consider such a chain of many, say A', atoms
and assume as the boundary conditions that the chain
is fixed at the points which correspond to the place
numbers v=0 and u= V+1. Then the equation of
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motion for this chain may be written as

m„u„=k(u„+~+u„& 2u„—) for v=1, 2, 'V, (II, la)

up = uN+1 —0. (II, ib)

2 —Mls' —1
—1 2 —Mgco'-

—1

—1
2 —M3(v' —1

—1 2 —&Nod

=0

We could try to determine the possible eigenvalues co„'

from this equation and then by averaging over all
possible chains find the mean distribution of the eigen-
values. This way, however, is mathematically dificult.
We have found a different method which seems con-
siderably simpler.

(b) New Formulation of the Eigenvalue Problem

We write Eq. (II, 2) in matrix form:

fu„) ( 0 1 ) (u„,)
Eu +g) (—1 2 —M s'il Lu„ i

for u= 1, 2, iV, (II, 3)
uP = uN+I —0.

From this it follows that

/u~ ) f 0

(u~~yJ (—1

1

2 —M~(o')

0 1 uo
(», 4)

E —1 2 —M~~') (u)j

Here ul uN are the displacements of the masses
m& .mN from their equilibrium position and up
= uN+& =0 are merely introduced to establish the
validity of (II, 1a) also for u= 1 and u=.V.

With M = m /k, M—'=m'/k and u = co'u, —Eq.
(II, 1) gives

u„(2—M„co') =u„+~+u„~ for x=1, 2, .'6, (II, 2)
up uN+ 1

The secular equation for the eigenvalues u„' of m' can
now be written as
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unity) given by

i—I:@br+i (cob') —
%br+i (~-')j2'

=—&LM(tobs) —M(co ')j (II, 11)

where M(aP) is defined as

M(cot) —= (1/A) &({number of eigenvalues to„'

with co„s&sP}. (II, 12)
(II ~) Then'v-(~') =

I

Eu„

Xow instead of considering u0=0 and u~ ~=0 as fixed
numbers in Eq. (II, 4) for co', we fix only us=0. Then
with uo ——0 and ui = coscot, Eq. (II, 4) gives u&+&
=u~+, (to') coscot as a function of co' and t, and whenever

u~+r(co') =0, then both the boundary conditions are
satisfied and co'=~„' is an eigenvalue of our problem.

To study the cos dependence of ubr~t(aP), we look at
the two-dimensional vectors

t'x
in an x-y plane; v=1 . These vectors have a remark-

U
able property: With increasing to' the vector v„(oP)
rotates uniformly in the positive direction around the
zero point in the x-y plane, i.e. , if p„/2 is the angle
between the positive x-direction and the vector v„,
then q „(cot) increases monotonically with co'.

To prove this we define

z( c)o= u„ i/u = tan ( p„t/2) (II, 6)

Then (3) implies

z„+i= 1/(2 —M„to' —z„) for 33= 1, 2, iV. (II, 7)

with the boundary condition

s'y —0, z~+y= ~. (11, g)

Equations (II, 6) and (II, 7) establish a continuous
connection between q„and q„+~. We shall make this
connection unique by requiring in accordance with

(II, 6) and (II, 7) that

vs„= 2srh+sr implies io„+i=2srh+27r. (II, 9)

(Here and in the following, h is any integer. )
If we furthermore put yr ——0 (in accordance with the

boundary condition uo ——0) then vr„= vo„(aP) is a well-

defined function of co'. The second boundary condition
u~.+I =0 is satisfied whenever

vrbr+t (co') = 7r+ 2srh (boundary condition). (II, 10)

Now from (II, 6) and (II, 7) it follows that

(rlson+r) f 1+z.' q
I&0,

Bios ) for constant ~s ~1+znyl .~

/rip +tl z +i'
I
&0.

Bco ) for constant ya ~ 1+zn+1 ~

Therefore with vrr=0 the functions ys(cos), bo3(CIP),

are monotonic nondecreasing functions of co'.

Let now oP increase from co,' to cob' Then iobr+., (bo')

increases monotonically from vo(co, ') to p(rob') and
whenever in this region bobr+t(co-') =sr+2srh, then both
the boundary conditions are satisfied and oP=co„' is an
eigenvalue. Therefore the number of eigenvalues in
the interval co,'&co'(cob' is (with an error smaller than

M(sP)= (1/2srS)tobr+t(to')+const. (II, 13)

(c) Chains with Randomly Distributed Atoms

So far we have discussed only one chain with a speci-
fied distribution of the masses M', ~ M' over the
places (1), (cV). Now we consider a large number of
such chains with different random distributions of the
masses. For each of these chains the vector

0 1 q ( 0 1 q )0~
v (&')=

I (—1 2 —M icos) ( —1 2 —MioP) 41)

is a different function of oP.

Let us describe the probability distribution of the

vector v„(oP)= " '
I

over the different directions in
u„p

in the x-y plane by means of a distribution function for
z„=u„ i/u„. We define:

to„Lz7dz

No. of chains for which z(z„(co') (z+dz
(II, 14)

total number of chains

Then we can easily obtain a relationship between the
distribution functions to„Lzj and to„+tLz] for z„and z„+i.

If in all chains the nth place were occupied by the
same mass M„=M', then z„+~ would be a definite
function of s„:

z„+i——1/(2 —M'sP —z ); z„=2 —M'co' —(1/z„+i).

' If all the masses are equal, M„=M, then

0 1 N 0
&N+I = with n = 1—Mcu'/2.

2e 1'
0 1

The eIgenvalues of the matrix are XI, .=a& (n~ —1)&. If—1 2a
these eigenvalues are real, i.e., Ini )1 or 3Erds&4, then for in-
creasing n, v„converges to an eigenvector of the matrix. This
eigenvector does not satisfy the second boundary condition and
therefore no eigenvibrations can exist in this region.

If i tti &1, however, then Xt, 3 = e+'@3 with real p, and

1 2 1
=a cos(Ep 2)+b sin(Xp/2),

where a and b can be expressed by the eigenvectors of the matrix
and depend slowly (compared with A .p) on p. Therefore q N+1(co')
=X P and

P 1 . 3foP
M (tos) +const = —=—~ arc sin 1 — +

27r x 2



DISORDERED ONE —DI MENSIONAL CRYSTALS 427

w„+,[s]=—w„[2—MiaP ——,'].
z2

Since actually the nth place can be occupied by all
masses M' M' with the probabilities p' p', the
actual relationship between w„+i[z] and w„[s] is

. 1
w„~i[s]=+ p' —w„2 M'oi' — . —(I—I,15)

2 z' z.

According to the boundary condition z~=0 for all
chains, we have

wi[s]=b(z). (II, 15a)

With this the functions w„[s] are completely deter-
mined.

If for large n the functions w„[s] approach a function
w[s], then w[z] must satisfy

(a) w[z]=ZiP'(1/zs)wL2 —M'~' —(1/z)],

(b) w[s] &0,

(c) I w[s]ds = 1.

(II, 16)

(The relations (b) and (c) follow from the definition
of w„[s] as a probability density. )

We shall see, however, in Appendix I that w[s] may
become an extremely singular function. (We shall give
there an example where w[s] is not continuous in any
interval of the real axis. )

Therefore it is convenient to introduce

g

W.Ls]= (II, 17)

Here we consider W„[s] as a many-valued function
of s. (This convention is necessary in order to obtain
the simple Eq. (II, 18) for W„[s].) The main branch
W„[s] of W„[z] is obtained by integrating Js*w[s'jds'
on the direct way without touching infinity (suppose
sA ~). The other branches are obtained by adding or
subtracting fs"w„[z]ds+J'„'w [s]ds= 1 several times.
We see that W„[0]=0and that for all branches W„[0]
in an integer.

Now Eq. (II, 15) can be written as

W~ i[z]=Q,p'W„[2—M'co-" —(1/s) ]
—W„[—~ ]. (II, 18)

Here the same branch of 8'„has to be taken for all
values of j. Then W„+i[0]=lV„[—~]—W„[—~] is

Therefore, in this special case, the probability of finding
z„+& in an interval dz„+& must be equal to the proba-
bility of finding z„ in the corresponding interval, i.e.,

w„~ [s ~i]ds„+i——w„[s„]ds„,
or

an integer and therefore one branch of 5'~&, namely
W„+i vanishes at s=0 in agreement with IV +i[s)= Js*w„+i[s']ds'. Instead of (II, 15a), we can write

Wi[s]= for z) 0
0 for z=0

z&0.
(II, 18a)

Then the functions IV„[s] are completely determined
by (II, 18) and (II, 18a). Now it can be shown (see
Appendix I) that

lVi[z]+Ws[x]+ +W„[s]
lim = W[z] (II, 19)

exists (II, 19) and that W[s] is a continuous function.
This function satisfies the relations:

(a,) W[s]=p,p W[2 —M~&v' —(1/s)]- W[-
(b) W[s] is a monotonic nondecreasing

function of z, (II, 20)

(c) W[~]—W[—~]=1; W[0]=0.
[The relations (b) and (c) are satisfied already by each
W„[s] and (a) follows from (II, 18) and (II, 19).] It
can be shown (see Appendix I) that W[s] is uniquely
determined by (II, 20).

Differentiating (II, 20), we obtain with w[s] = (d/ds)
&(W[sj Eqs. (II, 16) for w[s], provided that W[s] is
a differentiable function. In cases where W[s] may not
be differentiable, we shall sometimes say "w[s] is
given by Eq. (II, 16)," as synonymous to "W[s]
= J;*w[s']ds' is given by Eq. (II, 20)."

By means of (II, 18), (II, 18a), and (II, 19) the func-
tion W[s] can be calculated by iteration. ' This iteration
method can be assumed to converge quite well except
in some limiting cases. In Sec. IV we shall give an
approximate explicit 'expression for W[z] in such a
limiting case.

As a last step we have to express M(ro') of Eq. (12)
by means of the distribution functions w[s]=w[s, &o'],
or W[s]= W[z,aP] (it is convenient to indicate the co'

dependence explicitly) .
Let us consider for a specified chain the numbers

p~+i(ro')) p~(ro')) . )A(ro')) pi(ro') =0. (II, 21)

Write @~+i(co')=27rH+e, where 0&e(2ir and H is a
large integer (we assume that .V is very large). Now
compare with (II, 21) the numbers

ir g+i (co') & 27rH) 2ir (H —1)))4ir) 2~) yi(ro') =0. (II, 22)

Since2z) y~i —p„)0[thisisseenfrom (II, 6), (II, 7),
(II, 9)], it must occur for H different values of ss that
y„and q„+~ include an integral multiple of 2x, i.e.,
that p„+r&2z.h) y„. From (II, 6), (II, 7), and (II, 9)

s In Sec. IV(b) a different iteration method for tel sg is de-
veloped.
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it is seen that the latter condition is satisfied if and
only if —x & p„—2~h&0 or if —~ &s„&0.Therefore
H is equal to the number of s„s with negative sign in
the series s.y, s~ ~, zI ——0. On the other hand—
averaging over many chains this number is given by

0

N)~ w[s]ds= NW—[ ~]—.

Therefore, for large .'V,

(1/2rr'V) p~+i=H/:t'= —W[—~]
and with (13) we obtain the final result for M(aF) as
defined in (II, 12):

~(to') = —W[—~ ~']. (II, 23)

[The additive constant in (II, 13) is seen to be zero

by checking (II, 23) for cd'-=0. Then s +i=1/(2 —s„)
and z„~l for fs—+~ . Therefore J' „'w„[s ]ds„=
—W„[—ao, ro']—+0. On the other hand, (II, 12) gives
M(to') = 0 for to'-= 0.]

1. The atoms A~, A~, .A~ in the one-dimensional
model shall be equidistant; let the eth atom A„ lie at
x= Nl.

2. The atom A„can be any one of the A'
Considering many systems, we assume that the proba-
bility of A„being an A' is p', independent of the neigh-
boring atoms. (The more general case where correla-
tions between neighboring atoms exist is discussed in
Appendix II.)

3. The potential V(x) in the interval (n ——,')l&x
& (n+-,')1 shall be determined completely by the eth
atom, U(x) = f/'(x —n l) in (n —-', )l&x& (rs+s)/, if

The general method for calculating the density of
electronic energy states will be described in (c). As a
preliminary we shall consider in (a) and (b) two special
potential types for which the results can be stated more
explicitly. Here the crystal potential is represented by
a succession of equidistant 8 functions of diferent
strengths:

V (x) = Q „(h'/2m) U„S(x—rr l) .

We define
(d) Summary

ts, o

'; p', p*]= w[s)dx, (II, 24)

Here V„characterizes the potential of the eth atom
and can assume the values V', . V' corresponding to
the different atoms A', . . .A'. Now we consider sepa-
rately the cases

(a) V„)0 for all rr,

(b) U &0 for all rs.

where w[s] is uniquely determined by

.1
w[s] =Q p& w[2n& (1/s)], — —

32

w[s]) 0,

We shall prove that the density of eigenstates in these
cases can be expressed by the function F[a' rr';.

(11, 25) p' .p'] of Kq. (II, 24).

I w[s]ds = 1.

Now the relative number of eigenvalues with co„'-&~-"

for a long random chain is

M(ro') =F[cr' . .a'. p' . p'], (II, 26)

with n'=1 —M'tos/2. Here p' is the fraction of atoms
with mass M'.

Similar results were obtained for the first time by
Dyson. ' Dyson's results, though equivalent, are slightly
more complicated mathematically. In particular the
relationship (II, 26) is much simpler than Dyson's
expression for the distribution function.

III. ELECTRONIC ENERGY LEVELS IN
ONE-DIMENSIONAL DISORDERED

POTENTIALS

In this section, we consider the electronic energy
levels in one-dimensional models of a disordered crystal
consisting of different atoms A', ~ A '. We restrict our-
selves to models which satisfy the following conditions;

' F. J. Dyson, Phys. Rev. 92, 1331 (1953).

(a) V(x) = X.(A'/2m) V.S(x—nl); V.)0
We write the wave function in the interval (tr —1)l

&x&ftl as 1k=A e*"*"+B„e"*",with x„=x l(fs ,')— ——
where k= [(2fis/h')E)'* and E is the energy. Then

(
"+' and " are connected by the relationship8„+I n

A„+

V.
l,~xi

2sk)

V„

2ik

V„

2ik

t' U.q
1 le

'"'
2ik)

(A„)
is„&

t'A „y
(111, ia) 4

Eg„)

Assuming as boundary conditions the vanishing of
P(x) at x=l/2 and x= (X+,')1 these bound-ary condi-

If all the potentials are equal: V„=V0, 5R„=VR0, then the
regions in which eigenstates exist are given by ~X&, 2~ =1, where

9 are the eigenvaiues of GEO ~0i10—xi ~
~

=xi p —2X~, 2Lcoskl
+(Vp/2k) sinklg+1=0. ~Xl, 'R~ =1 is equivalent to )coskl+(Vo/2k)
Xsinkl) &1.
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tions can be written as

Now we introduce

A 1+Bi——0,

A N+1+BN+1

r = iA„/—B„.
Then (III, 1) can be written as

(III, 1b)

(III, 2)

p„as a function of q „+I.We shall write

p„= vs„+1 D'(—Vi„+1), prOVided that A„=A'. (III, 8)

From (III, 3a), (III, 4), and (III, 5) we could easily
derive an explicit expression for the so defined functions
D'(p). We shall need, however, in the following only
two properties of the functions D'( rv) which are easily
verified:

r„+,——(c„r„+1)/(r.+c„*), where

c„=i[1+(2ik/V„)]e'"' (III, 3a)

D'(y+2rr) =Dv(p),
D'(2'2r+ kl) = 2kl.

(111,~)

ri= rN+1 i (b——oundary conditions). (III, 3b)

22rh+ y & p„&22rh+ p+dp,

with k=0 or +1 or +2 . For this function w(vv2) we

can easily derive a functional equation. In order to
write this equation most conveniently, we must express

To solve this boundary problem we define with r~=i
and Eq. (III, 3a) the functions of k: ri ——i, r2(k),

rN+1(k). Then the k values of the electronic eigen-
states are given by rN+1(k)=i. From (III, 3a) with
ri ——i it is seen by induction that

~
r„~ =1 for all n

values. Therefore we can introduce angles y„by

(III, 4)

The continuous relation between p„and p„+q given by
(III, 3a) and (III, 4) can be made unique by the
auxiliary requirement that

vr
= 22r —kl+2rrhp shall imply

p~+1= 2rr+kl+2rrh-p, (III, 5)

with the same integer ho in both expressions. If further-
more we put q1=2r/2 (in accordance with the boundary
condition ri ——i), then q „=p2 (k) is a well-defined func-
tiOn Of k (fOr giVen V„'S);and WheneVer pN+, ——22r+22rh,
then P(x) vanishes at x= ('V+ —',)l and both the bound-

ary conditions are satisfied. From (III, 3), (III, 4), and
(III, 5) with V„)0 it follows by a short calculation
that p„(k) is a monotonically nondecreasing function
of k. Therefore in an interval k~(k(k2 the boundary
condition p2N+1(k) = —22r+22rh is satisfied (with an error
smaller than 1) [ppN+1(k2) —vv2N+1(k1)]/22r times, i.e. ,

the number of eigenstates in the interval kI (k(k2 is

X[M (k2) —M(ki)] =
[ppN~1 (k &)

—yN+1(ki)]/22r (III, 6)

with

M(k') —= (1/X) && (No. of eigenstates with k & k')
=[p2N+1(k')/22r]+ const. (III, 7)

Suppose now that we have many random chains of 8

potentials, where V„can assume the values V', . V'
with the probabilities p', . . .p"'. We look at qr„(for a
specified large n) in many such chains. We define
w (p)dp as the probability that p„ lies in any one of the
intervals

Assuming now that w(pp) is the distribution function
for p„as well as for y„+1 (for large enough n), we obtain
by the same reasoning as in Sec. II for w(p):

w(y)dp=Q, p&w(vr D'(p'))d(—vr Dv(vr)). —(III, 10)

It is convenient to introduce

W(y) = w(q')dp ',
~~+It

(III, 11)

where w (rp) is considered as a periodic function,
w(p2+22r) =w(y) [this follows from the above defini-

tion of w(y)]. Then W(p2) is a single-valued function
defined for all real values of y and satisfies the relations:

(a) W(~) = Zlp'W(9 D'(I)) W(2—~ kl), — —

(b) W(q+22r)=W(q)+1,
(c) W (2rr+kl) = 0,

(d) W(q) is a monotonically nondecreasing

function of q.

(III, 12)

=E p' (P.+1 P-) w(v-)dP- (III, 14)—
j

Here the subscript j indicates that p„and p„+I are re-

lated by p = p2„+1—D'(q„+1) as in Eq. (III, 8), i.e.,
(qr„+,—p2„), equals (p +1—q„) provided that V„=Vv.

[(III, 12) (a) is obtained from (III, 10) by integration;
note that p= 2rr+kl implies -that p —D'(y)= 2rr kl-—
and that W(-,'2r+kl) =0. (III, 12)(b) and (d) follow

from the definition of w (y) as a probability density and

(III, 12)(c) follows from (III, 11).]
In order to express M(k) of Eq. (III, 7) by means of

W(p), we shall use a method different from that
applied in II but more generally applicable. From
(III, 7) we have

22r.VM (k)+const = pN+1(k)
= [V N+1(k) —

V N (k)]+[VN(k) —~N-1(k)]
+ +[q 2(k) —

ppi (k)]. (III, 13)

We see that 22rM(k)+const equals the average value
over different chains of p„+1(k)—qr (k) (for large
enough n). This average value can be written as

('P»+1 'P»)Av
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tn$n —kl+2n (d ~ —1
i W(p„)dp„

0 dq„kl

,~—k i+2+

=2kl+ W(g„)dp„

~
~7r+kl+2~

2 p'W(v. +i D'(~—.+i))d~.+i

Integration by parts gives from (III, 14)

j'~—kl+2~

(Nn+ 1 'pn)Av P p ('In+1 pn')jW('p n)

This result was conjectured first by Saxon and
Hutner and proved subsequently by Luttinger. '

I.et us now defi~e w[z] by w[z]~dzj = ~w(y)dp~
where z and y are connected by Eq. (III, 16). (Note
that dp/dz) 0 if 0 & kl &7r and dq /dz (0 for 7r &kl &2s).
Then Eq. (III, 10) gives for w[z]:

1 1 V'
w[z]=P p'w 2nj —— —, with n'=coskl+ sin—kl;

7. S S2 2k

furthermore

w[z]dx= 1 and w[z]) 0.

[We could have integrated in (III, 14) over any interval
of length 2x. The present choice of the limits of integra-
tion is convenient because at these limits (p„+,—p„),
=2kl, independent of j.]

By means of the functional Eq. (III, 12a) for W(p),
the last integral can be written as —J (IV(p)
+W(-,'vr —kl))dp, and we finally obtain

(1/2s ) (pji nN'n)Av W(2s —kl) =M (k). (III, 15)

The same function w[z] which is uniquely determined
by these relations, occurred in (II, 25), only with a
different meaning of the n"s. To express M(k) in terms
of w[z], we write kl = 2s-h+l with 0 &8 &27r. Then Eq.
(III, 15) with W (kl) = 0 gives

M(k) = W(2s.+2vrh+b) —W(~~~ —2sh —8)

=2h+ W (-,'m+8) —W (—',s.—6)

[Note that the additive constant in (III, 13) vanishes
because for k~0 lV(27r kl)~W—(,'~+kl)=-0.]
this result our problem is reduced to finding W(q)
from (III, 12). We could calculate W(p) directly from
(III, 12) by an iteration method. We shall see now,
however, that W(q) is closely related to W[z] in
(II, 20) and that consequently M(k) can be expressed
by means of F[u' . a'; p' p'] of (II, 24). We define

2h+ j w[z]dz for 0&6&m

2k+1+ ~ w[z]dz for &B(2
E 0

Then (III, 3) and (III, 4) imply

1—ie'& ~"+k" coskl —sing„
Therefore we have the final result: If kl=2s-h+8 (i.e.,

(III, 16)

we are in the region of the (2k+1)th and (2k+2)th
band), then

(a) z„~i——1/(2n„—z„) with

n„=coskl+ (V„/2k) sinkl. (III, 17)

(b) zi=z&+i= —1 (boundary conditions).

For a better understanding of the transformation
(III, 16) note that p'= —,'ir —kl and q"= ', 7r+kl are-
transformed into s'= ~ and s"=0. Therefore s„=~
implies that s„+~=0 because p„= p' implies that p„+~
= q". It follows that the relation between z„+~ and s
must have the form z„~i c/(b z„) and fu——rtherm—ore c
can be made unity. From (III, 17) we can draw a simple
interesting conclusion: Consider a region where none of
the pure A j crystals (j=1, 2, i) has an energy level,
i.e., a region where

)
u'

(
=

(
coskl+ (V'/2k) sinkl

~
) 1 for

all j.'Now fora mixed crystal we obtain from (III, 17a)
with zi= —1 successively ~z2~ (1, tz3j &1, ~zA+i~
(1, because ~n„~ )1. Therefore the second boundary
condition s~+~= —1 cannot be satisfied. That means
that in this region the mixed crystal has no electronic
states either.

M(k)

2h+F[n' n' p' p'] for 0&6&~

2k+2 —F[a' n' p' p'] for s-&h(2s. .
(III, 18)

Here F[] is defined as in (II, 24) and nj=coskl
+ (U'/2k) sinkl.

(b) V(x) = —X (h'/2m) V„G(x—nl); V.)0
A single one-dimensional potential hole V(x)

= —(h'/2ns) Vob(x) with Vo) 0 has exactly one bound
electron state with the binding energy (h'/2tn) (Vo'/4).
Therefore we expect that for the crystal potential con-
sidered there exist states with negative total energy.
We shall consider here these states only. Then the
wave function in the interval (ii —1)l(x&el can be
written as

P(x) =A„e'"*»+B„e*"*, with x„=x—l(e ——,
'—).

5 J. M. Luttinger, Philips Research Repts. 6, 303 (1951).
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2k)

t A. y

)B„i

tA„q

EB„)

The boundary conditions )P =0 at x= l/2 and x= (N+ si)l

can be written as

A i+Bi——0,

A N+1+BN+1
(III, 19b)

If all potentials are equal, V„=Vo, 5E„=SRO, then the
regions in which eigenstates exist are given by

~
Xl, ~

~

= 1

or ~no(k)
~

=
~

—cosh(kl)+(Vo/2k) sinh(kl)
~
&1, where

X), 2 are the eigenvalues of ORO. In the case where
~
no(0) t)1 or Vol)4, no eigenstates with k=0 are possible;

i.e., the energy of all states is negative, and we have a
band with X bound states which correspond for very
large values of Vol to the bound states of E single
potential holes. For Vol&4 however, the energy band
will be broadened so as to include some states with
positive energy. Therefore the number of states with
negative energy, which we are considering here, will be
smaller than E.

In the following, we shall assume that /V„&6 for
all n. This is a very weak assumption [e.g. , for /=10 '
cm it means that the binding energy in a single potential
hole, ~E(,

~

= (A'/2')(VO'/4) is smaller than (A'/8))lp)
X36=28 evj. However, it simplifies the following con-
siderations since it implies that dn„(k)/dk &0 (for all n
and k values), where n„= —cosh(kl)+ (V /2k) sinh(kl).
Now we apply to (III, 19) the transformation

s„=—(A„e ~'+B„)/(A +B e "'). (III, 20)

This gives

Here k is real and E= —())i'/2m)k' is the total energy.

The relation between &" and
&

"+' is easily found:
n @+1

(4(x) ~

E))t'(x) ) ~(N+.,),

(4 (x) i—OKN(k)ORN l(k) OR)(k)~
~

. (III, 24)
E)P'(X) ) .=((2

We can assume that )P(x) is real and therefore define

q„by

4 (x)
tan(-', p„)=

4''(x) *=( —;)i
(III, 25)

Then (III, 23) and (III, 25) imply a relationship be-
tween p„and p„+~. This relationship can be made
unique by an auxiliary requirement [see Eq. (III, 5)].
We write the so-defined unique connection between p„
and y~~ as

())„=p„+l 6& (p„+,) provided th—at 'A„=A'. (III, 26)

(c) General Method

Now we develop the general method for calculating
the density of electronic energy levels in. a potential
which satisfies the conditions 1—3.' In the interval
(e—~)l&x&(ll+-', )l the wave function )P(x) is deter-
mined by the values of )P(x) and )P'(x) at one point. The
values of )P(x), )P'(x) at the ends of the interval are
related by

4(x) 4(x) i
=OR-(k) I, I (»I, 23)

4'(x)~ =(-+.)i ~4'(x)~. (. :)i

Here the matrix OR„(k) is determined by the potential
in the eth interval. Since we assumed this potential to
depend on the nature of the &zth atom only, we can
write

OR„(k) =OR'(k) provided that A„=A&'.

The matrices OR'(k), OR'(k) shall be assumed known.
They depend on the electron energy. k shall be any
parameter which characterizes this energy. If we pro-
ceed from one cell to the next, then )P(x), )P'(x) change
continuously with x. Therefore

s„+,= 1/(2n„—s„), with
cy„= —cosh(kl)+ (V„/2k) sinh(kl),

s,= sN+l ——1 (boundary conditions).

(III, 21a)

(III, 21b)

The functions 6'(p) can be computed from the matrices
OR& and are periodic: 6&'(sl+2x) =6'(s)). As our bound-

ary conditions we shall assume )P(x) =0 at x=l/2 and
x= (S+si)l or, in terms of qr,

If we put sl = 1, then by (III, 21a) s&(k), s3(k),
sN+l(k) are functions of k and sN+l(k)=1 is the

condition for an eigenstate. Furthermore the s„(k) are
monotonically nondecreasing functions of k for V„/&6
(because then dn„/dk&0). It follows then as in (II)
that the number of eigenvalues in an interval kI &k &k2

is given by lV[M(k&) —M(kl) j, where

lM (k) =F[o.' n'; p' p'j+const, with
~'= —cosh(kl)+ (V'/2k) sinh(kl). (III, 22)

py —0& p~+ y
—2&h.

If we define by (III, 26) with pl ——0 functions p)=0,
s)2(k), l))N+l(k), then the eigenstates of the systems
are given by pN+l(k)=2lrh. Considering now many
random systems, we describe the probability distribu-
tion of (|l„by a density function w(y). This function

In this section we shall omit some proofs which are obtained
by the same reasoning as the corresponding proofs in (II) or
(IIIa).
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satisfies Lsee F.q. (III, 10))

1{({)d{o=Z)p'~(v —~'(e))d(v —~'(v)),

~(v)&0

M)({{)){f/=1,
0

w(p+2ir) = (q).

(III, 27)

For W(~) = j&&i{)(p')dp', where {f is an arbitrary con-
stant, we obtain

W({o)= Z P'W({ —~'({o))+C(k),
W (q ) is monotonic in p,
W(P+2n-) =W((P)+1,
W(d) =0.

(III, 28)

The relations (III, 28) determine the function W(q)
and the constant C(k) (for fixed k) uniquely. Further-
more W(y) and C(k) can be calculated from (III, 28)
by an iteration method. We note that C(k) is inde-
pendent of the choice of d and that C(k) can be written
as

0

C(k) =Q p&)t w(q)dq.
—a~ (0)

(III, 29)

The subscript j indicates that p„+~ and p„are related
by p„= &p„+1—6'(rp„+1). Integration by parts gives,
with (III, 28), the result

-g N+1(k) =C(k).
2miV

(III, 30)

Let us assume first that for all possible chains pN+1(k)
increases with k monotonically. Then for k increasing
from ki to k2, pN+1(k) increases from yN+1(k)) to
&pN+1(k2) monotonically. Hence in this interval the
boundary condition &pN+1(k) =2irk is satisfied (1/2n. )
&&{pN+1(k~)—pN+1(k))} times and therefore the aver-
age number of eigenvalues in k~ (k (k~ is

(P N~, (k,—) PN~, (k,)—}=,V(C(k,)—C(ki) }.
2'

This condition that pN+1(k) is monotonic in k for all
possible chains was satisfied in the special cases con-
sidered in II, III(a), and III(b), and there we used this
property of &pN+1(k) for obtaining the results. Now we
shall extend our theory to cases where this condition
is not satisfied, i.e., where the functions q N+, (k) for the
individual chains need not be monotonic. In these

In order to find the mean value of yN+1(k), we write

PN+1(k) ) ({{)n+1 {{)n)Av

=&V Q)"p&(v)„+1 p„),w(v „)dg„(—for large )V and n)

cases we can determine (1/2irA') {3N+,(k) =C(k) as
before, but now C(k) also need not be monotonic.
Assuming however that C(k) is a smooth function of k,
we can divide the k-values into intervals in each of
which C(k) is monotonic.

Let us consider such an interval k~ (k (k& where the
function C(k) is monotonic, assume for example that
C(k) increases with k in (k),k~). Now there may be
chains for which qN+1(k) does not increase with k in
(ki, k2). We shall show however that the fraction of
these chains goes to zero when g and the number of
chains compared approach infinity.

Let 1V, m, s be large numbers such that ms=.V+1
and write pN+1(k) as a sum of s terms:

~N+1(k) = (V
—{o1)+({2

—{{.)+
+ (9 {v+1)m 'Pvm)+ ' + (gvm P{v—1)m)

=ti+4+ +t,+1+ +t..
Averaging over all chains, we obtain

t +1 (Ip{ +1) (p )A mC(k), independent of v.

Consider now for a moment those of the chains only
for which p (for one specified ) ) lies in a certain small
interval. Then for these chains the numbers p„, p„~~,

+2, ~ will soon approach the probability distribu-
tion given by w(y), independent of the value of p„
i.e., almost all of the p, q„+~, y„+2, p„+ are
(for large n) distributed according to w(y). Therefore
the average of (p{,+1)„—p ) taken over the restricted
class of chains with specified p will also be mC(k), in-
dependent of the value of p . Now in the sum

d d—PN+1(k) =—(P~—y))+ +—(P,m
—y{v 1),„)

dk dk dk

= ti'+ +t.',

averaging over all chains again, each term has a positive
average value and the average value t„+~' is independent
of 3„'. Therefore, for large s, the fraction of chains for
which the sum in negative approaches zero, i.e., for
almost all chains pN+1(k) increases with k and we have
the final result:

In a region ki &k &k2 where the mean value {3N+1(k)
=2ir&VC(k) is a monotonic function of k, there the
number of eigenvalues is given by

&
I C(k2) —C(ki)

I

= (1/2~)
I { N+1(k2) —~N+1(kl) ~.

There may be chains for which pN+1(k) has not the
monotonic character of gN+1(k) but the fraction of
these chains goes to zero and hence they can be
neglected.

IV. IMPURITY BANDS

Introduction

Suppose that we have a crystal of A atoms with a
small amount of 8-atoms. Then in an energy region
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where the pure A crystal has no allowed electronic
states, there may occur an "impurity band" of electron
states due to the 8 atoms. Impurity bands can occur
also in the frequency spectrum of an elastic chain:
Suppose the chain consists of atoms A with mass M
and a small number of atoms 8 with a lighter mass m.
Then above the frequency limit of the pure M chain,
there appears a band of frequencies due to the masses m.

If the 8 atoms in the crystal are far apart from each
other, then the impurity band will be very narrow and
for increasing concentration of the 8 atoms the width
of the impurity band will increase.

By means of the general methods developed in the
previous sections, it is possible in principle to calculate
the density of eigenstates everywhere and in particular
in the impurity band. But the iteration method used in
II and III, though always convergent, converges sufh-
ciently quickly only so long as the fraction q of 8 atoms
is not too small.

In this section, however, we shall consider the case
where the concentration of 8 atoms is very small.
Therefore we have to apply here a different method.
We shall approach the problem first, in (a), by a simple
approximate method. Later, in (b), we shall develop a
more accurate theory based on the general results of
Secs. II and III.

It will be sufficient to consider for the present the
impurity bands of the elastic chain only. The generaliza-
tion to electron impurity bands is then straightforward.

(a) Approximate Method

Here we calculate the impurity bands in an over-
simplified model of the elastic chain. We cannot expect
this calculation to give quantitatively good results.
The reasons for considering this model however are:
(1) Since we obtain explicit results here, we can check
the validity of an approximation method which becomes
essential in (b). (2) Our over-simplified model can also
be applied to three-dimensional problems. It is there-
fore interesting to check the usefulness of this model

by comparison with the more realistic model of (b).
Assume that we have a chain of elastically coupled

masses M (fraction P) with a small number of lighter
masses zzz (fraction q). Then each m-mass in the chain
will generally be embedded in many M-masses and will
therefore in first approximation behave like a mass m
when embedded in an infinite chain of M masses. In a
second approximation which will be studied here, we
take into account not only one mass m but also the
next nearest m mass, neglecting all other m-masses in
the chain.

Suppose that the two m masses considered are sepa-
rated by s M masses. Then for calculating the fre-
quencies due to these two m masses we consider them
in our simplified model as embedded in an infinite
chain of M masses, and again separated by s M masses.

Now we shall calculate the eigenfrequencies due to

tu„&i p 0 1i ~ 0 1p

i zz„) & —1 2n~ ( —1 2Pj

with 2n = 2 —M&a' 2P = 2 —zzzoP (IV, 2)

Now the displacement vectors vt and v~~+,+3= v,„~ at
the beginning and the end of the chain are related by

v.„g= T~ TpT~'T pT~ v j, (IV, 3)

We want to calculate the eigenfrequencies due to the
two m masses above the frequency limit of the pure M
chain. In this region T has real eigenvalues:

with
T v'=X'v', T v"=X"v", (IV, 4)

X'=n+(n' —1)'*, X"=n—(n' 1)' —X"& —1&X'&0,

If now the m masses vibrate with a frequency above the
frequency limit of the M chain, then the amplitude of
the M masses must decrease exponentially towards the
ends of the chain, i.e.,

Ta VK+s+z —4 for large rz.

Tce "VK+y

This is possible only if

v~+,+3= v't& const,

v~+i ——v" 0& const.

Therefore the eigenfrequencies are given by the relation

v'= TpT 'Tpv" )&const, (IV, 5)

the two m masses for such a system. Then, by averaging
over these systems with the correct statistical weight
for all possible s values, we shall obtain an approximate
expression for the energy spectrum of a disordered
chain.

Looking at one m mass in a random chain, the proba-
bility that the next m mass in one direction of the chain
is separated by s M masses is clearly P&(s) = qp'
(s =0, 1, 2, . ). Likewise the probability that the
next m mass in the other direction is separated by s M
masses is Pz(s) =qp'. Therefore the probability that
the next m mass in one or the other direction is sepa-
rated by s m masses becomes P (s) =P, (s)P,()s)
+Pz(s)P&() s)+Pz(s)Pz(s), or

P(s) =2qP"+'+q'P" (=2qp" for q(&P). (IV, 1)

Now we consider a chain consisting successively of:
Eo masses M, 1 mass m, s masses M, 1 mass m, E
masses M, where E is very large. As in II, let u„be the
displacement of the nth mass and define
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with

t'1 —X' ) /11S=
I I; Sv'=

I I
Xconst; Sv"=

I I
Xconst;

E 1 -x") &oi (1)
Oq

ST S '=
I

IXconst.
&0

We obtain from (IV, 5)

t'11 (X"' 01 (01
I
=STpS 'I ISTpS 'I

I
Xconst,

&0) & O 1) &1)

and inserting

~ (8+1)X"
STuS '=

I I Xconst,
8—1)

(n' —1)~

with 8=, (IV, 6)

It is easily seen that this equation [where n, P, and X'

are given by (IV, 2) and (IV, 4)] determines exactly
two eigenfrequencies co,+ and co, above the limit fre-

quency of the M chain, provided that m (~M. For
M&m)-,'M two such solutions exist only if s is large
enough. (Consider as an illustration the case s=o
where the two m masses are neighbors. If m(-,'M, then
two vibrations exist where the masses m swing against
each other or in phase. In the latter case the effective
swinging mass is 2m and therefore this type of localized
vibration in the chain is possible only for 2m &M.)

When we average now over all possible values of s,
the density of eigenfrequencies in the impurity band
can be written as

( ') = l Z.P(~)(~( '—.+')+~( '—. ')), (IV, g)

where

p (~')doP =
No. of frequencies in dko'

No. of m masses in the chain

Here we have assumed that either m &M/2 and hence
for each s two frequencies ~,+ (above the frequency
limit of the pure M-chain) exist, or that we consider
only large s values. If m &M/2 is satisfied, then p (aP) =0
beneath the frequency limit of the M chain and
J~"p(a&')daP=1 [since QP(s) =1] i.e., the number of
frequencies in the impurity band equals the number of
m masses. For large values of s, i.e., if the two m masses

we finally obtain as conditions for the eigenfrequencies:

(1 8)2 —yI 2 (s+1)

or

(~'-1)'
8= =1& IX'I'+'. (Note that IX'I &1.) (IV, 7)

are far apart, co,+ and or, approach, according to
(IV, 7), a frequency &u, given by 8=1 or

4 1 m
GO

=— with
M 8(2—8) M

(IV, 9)

This frequency co is therefore the resonance frequency
of a single mass m in a long chain of masses M. [The
frequency limit of the pure M chain is given by
~'= (4/M) &~'.]

If the concentration q of the m masses decreases then
the probability of finding two m masses close to each
other (e.g. , s&10) decrease with q'. Now only two m
masses close to each other can give a frequency much
diferent from ~. Therefore, for low impurity concen-
tration q, almost all frequencies lie near to co.

Let us consider this case, where frequencies much
diferent from co can be neglected, in more detail. The
relation (IV, 6) can be written near ~=co as

(8(1—8/2) ) fco' a7 )—
(1—6)' ) &

(IV, 10)

with cv' and 8 from (9). Using c=8 1as our new—co-
ordinate, the eigenfrequencies are determined [see
Eq. (IV, 7)] by

c=8—1=~ IX'I +'. (IV, 11)

Therefore the density of frequencies p[c]=p(co')d~'/dc
is given by

~l c]=2 2 P(&){~(c—l~'I'+')+~(c+ l~'I'+'))
s=0

=2 qP"(~(c—
I
~'I')+~(c+ I~'I')).

s=l

(IV, 12)

e=lnp/2 lnlX'I =q 2 ln (IV, 13)

[Here X'=u+(u' —1)' has been replaced by its value
at co=&a: X'= —8/(2 —8).) Therefore the most natural

This function p[c] is highly singular at c=o (note that
IX'I &1 and that therefore the 5 functions accumulate
around c=o). In a real chain these 5 functions will be
smeared out a little by the interactions between more
than two masses which we have neglected here. There-
fore it is reasonable to replace p[c] for c=o by a
smoothed function p[c]. In order to determine p[c] we
form J'p[c]dc, replace this by a smoother function,
and differentiate again: If c=

I

X'I ", where so is a posi-
tive integer, then

c+0

p[c']dc'= & qp"= 'P"'= .Icl', --
0

s=so

with
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way of smoothing J'0'p(c')dc' is to replace it by

pC

P[c']dc'=-,'
I
c I" for c)0.

0

we begin her"- -according to the general theory of Secs.
II and III—by calculating the distribution function
w[z]. Equations (II, 16a) and (II, 20a) for w[z] and
W[z] read now

This gives
t [c]=20lcl" '

p 1 q 1
(a) w[z]= —w 2u ——+—w 2P ——

s' 8 8' 3

The same result is obtained by replacing the s summa-
tion in (IV, 12) by an integration. This is justified if
besides p=1 also

I

X'
I
=1 is satisfied. A simple calcula-

tion gives

" d. qP"f~(c—l~'I')+~(c+ ll 'I')) =20lcl' '

(if lcl &IX'I),

with 0 as in (IV, 13). This replacement of the sum by
an integral can be described quasi-physically as follows:
Actually the numbers s of M atoms between two nearest
m atoms is an integer, occurring with the probability
P(s) =2qp' (for p= 1). We calculate, however, as if s
could assume any positive value with the probability
density 2qp". This procedure is justified mathematically
only if IV I

=1. In our example it gives good results,
however, also if this condition is not satisfied since even
then the result agrees with the preceding smoothing
method. The procedure of replacing s by a continuous
parameter will be used again in (b). We shall assume
there also that the condition

I

X'
I
=1 is not so essential

for the result.
Concluding our discussion of the simplified model-

in which we take into account only the interaction
between two nearest masses m at a tim" we see that
the density of eigenfrequencies in the impurity band
can be described by

with
t [c]=t [c]=2elcl' ' (IV, 14)

8(1—0/2) aP —(u'
C=

(1—i))' co'
)

2 ln I (2 —i))/i) I
M

provided that the following conditions are satisfied:

(1) q must be small enough such that almost all eigen-
frequencies lie near ~0; (2) cu must lie near to cu such
that the approximation (IV, 10) is valid and that
p(c) can be replaced by ti[c].

The previous theory could be improved by consider-

ing the vibrations of 3, 4, 5 . masses m in a chain of
masses M. This way of approach to the problem is
troublesome, however. Therefore we shall use in the
next part (b) a different method based on the results of
Secs. II and III. We shall obtain there a better expres-

'

sion for ti[c], which is different from (IV, 14).

(b) More Accurate Method

In order to calculate the impurity bands of an M
chain containing some lighter masses m (fraction q«1)

(IV, 15)
1 1

(b) W[k]=PW 2n —+—qW 2P ——+const,

where p and q are the fractions of M and m--masses in
the chain and n, P are given by (IV, 2). We are con-
sidering a region above the frequency limit of the M
chain, i.e., n& —1. Furthermore we can assume —1&/
&+1, since for n& —1 an P &—1 no eigenfrequencies
exist.

It is convenient to introduce

(b) w(x) & 0, (IV, 17)

J(c) w(x)dx=1.

with

Ti i(x) =
(n' —1)&

—x+ (8+1)X" P—n
(IV, 18)

Before we go into details it is important to obtain a
qualitative idea of the behavior of w(x): As before, let
u„be the displacement of the nth mass and define the
numbers

x.= (z.—7')/(z„—Z"),
where

~n Nn —1 Nn.

Then the relationship between x„+~ and x is

x~i=T (x„)=Y'x„,
or

x.~i——Tp (x.) = [(8+1)X"x.—X"]/[x.+ (8 1)], —

depending on whether the nth mass is M or m. Now
w(x)dx is the probability that x„(for large rt) lies in
the interval (x, x+dx), when we compare either many
chains at the same n or many different n-values at one
long random chain. In the case of a pure M chain

(q=0), the relation between x„+, and x„ is always
x~~=~"x„; and since X' (1, xn will go to zero for
rt~~. Therefore we have w(x) =5(x) for q=0.

x= (z—X')/(z —X"),

w(x)dx=w[z7dh; W(x) =W[z], (IV, 16)

where X', X" are defined as in (IV, 4). Then w(x) is
determined by [see (IV, 15a) and (II, 16)7:

AT p '(x)—
(a) w(x) =pX'"w(X'"x)+q w[Tp '(x)],

t9x



436 HELMUT SCHMIDT

For very small values of q one might assume w(x) to
differ only slightly from l&(x) because in the series

xi, x2, x3, ~ ~ the relation between successive x values is
mostly x„+I——A."x„,which tend to push x to zero. Only
the transformation x„+i——Tp(x„), which occurs with the
small probability q, may push x out of the neighborhood
of zero again. But this effect of a transformation Tp
will generally be canceled by the many following
transformations T .

This argument fails, however, if Tp(0)=~. Here
again many of the x„'s will be near to zero, but a
transformation Tp now pushes these x„'s near to in-

finity. An x„near enough to infinity, however, cannot
be transformed into the neighborhood of zero, even by
as many as 1/q successive transformations T .

Hence in this case the x„'s accumulate around x= ~
as well as around x=0 and w(x) differs from zero
appreciably at x=o and x= ~.We see that even a small
number of lighter masses m in a chain of masses M
may change i(&(x) considerably if the "resonance
condition" Tp(0) = ~ is satisfied. From (IV, 18) it
follows that Tp(0) = ~ or Tp '(~) =0 is equivalent to
8=1. Therefore Tp(0) = ~ means [see part (a)] that
co equals the resonance frequency of a single m mass
in an M chain. [The same result can be obtained easily
without referring to part (a).]

We return to Eqs. (IV, 15). In deriving these equa-
tions in Sec. II we obtained an iteration method for
W[z]. Now we derive Eq. (IV, 15) once more in order
to obtain a new and here more useful iteration method.

Considering a chain of M and m masses, let us define
the numbers s„as before. Then for a particular chain

s„+i——1/(2u —s )
—= T.[z ], 2n=2 —M(u'

s„+(——1/(2P —z„)= Tpks.] 2P—= 2 —mes'

according to whether the szth mass M„ is M or m.
Assume that M„=m for n=si, s~, . (s„+i)s„) and
that all other places are occupied by masses M.
Now consider among the s„'s only ss&, ss2, . and write
for convenience s's„:—s(„)~ Then

s(n+1) Tz "+ " Tp[s(&)].

Let w(„)[z] be the distribution function for z(„) if we
average over many chains.

Assuming for a moment that in all chains there would
be the same number s= (s„+i—s„—1) of M masses
between the nth m mass and the (n+1) th m mass, we
would obtain

s(„~i)= T 'Tp[s(„)],

and consequently, for

we obtain

W(„i.i)[s]=W(„)[Tp 'T~ '[s]]+const.

Since it occurs, however, with the probability P (s)
= qp* that the nth and (n+1) th m masses are separated
by s M masses, we obtain

W(.+i)[s]=E qp'W(-)LTp 'T='[s]]
s=0

+const. (IV, 19)

This gives a new iteration method for W[s], since again

1
lim(W(i&[s]+l'V(2&[s]+ +W&„)[s])X = W[z].

[This can be proved in the same way as (II,19).] It is
easily verified that the equation

W[s]=p qp'W[T p-'T.—'[s]]+const
s=0

is equivalent to

W[s]=pW[T —'[z]7+qW[T p
—'[s]]+const,

which is Eq. (15b). Introducing x and W(x) as in

(IV, 16), we can write (IV, 19) as

W( y&) (x) =p qp H'(„& (Tp-'()&'" x))+const. (IV, 20)
s=0

So far our equations are quite general. Now we assume
that q is very small. Then the number s of M masses
between successive m masses is mostly very large,
since the probability for a certain value s is P (s) = qp'.
Here we make the following approximation: We calcu-
late as rf s could assume any positive value with the
probability density qp'. This is equivalent to replacing
the s-summation in (IV, 20) by an integration. [This is
mathematically justified if, besides p=1, also

~

l&"
~

=1.
We may assume, however, as explained in (a), that the
requirement iV'~ =1 is not very important for the
result. ] Then we obtain for W(x), from (IV, 20),

W(x) = I qP'W(Tp '(X'"'x))ds+const; (IV, 21)
0

and, differentiating, we get

d Tp
—'(&&"'x)

i(&(x) = qp'z(&(Tp '(X"28x)) ds,

or, with

r = )&""x e =q/1n)&'",

fQ Z

W( )[s]=) w(„)[z']ds':
0

~(&(x) = )
(

(+")* 1 x '—' (ITp
—'(r)

e—— s&(&(Tp '(r)) dr
T T dT
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The last equation can be written as

dTp '(r)
tt&(x) = L(r&x) w(Tp '(r—))dr

4 ~ d7' (IV, 22)

with

d = tt) (x')dx'.
X

with

L(Tp(r'), x)tt)(r')d7',
I Here we used that L(x(),x) depends very slowly on xs
near x()——Tp(~).]

Now the constants a, b, and d can be determined as
follows: from t'„"tr)(x)dx=i =J' t'A(x)dx+d, it fol-
lows that

L(r,x) = e
I
x

I

' '/
I
r

I

' for

0&x&r and r&x&0 (IV, 22')

= 0 otherwise.

We want to solve Eq. (IV, 22) for w(x) under the
assumption that q is very small and that the frequency
considered lies near the resonance frequency of a
single nz mass in an M chain (i.e., B=1).In order to
do this we note:

—= 2 ln)t'"+Is —ds—
8

&i&3
if B&1, (IV, 26a)

ink'"

(a+b) Ink'"+d =1. (IV, 25)

Two further relations between a, b, and d are obtained
from (IV, 24) by comparing both sides for x)0 and
x(0. These three equations for a, b, and d give us, after
a short calculation':

1. For any function g(r) which vanishes in a neigh-
borhood of v=0, we obtain from (IV, 22')

j. ink'" —83
—=2 lnX'"+Is
8 lnX'" —82

if B)1, (IV, 26b)

L(r,x)g(r)dr = cilxl' ' for x)0l
~ near x=0,

cslxl' —' for x&0!
1

&i=q " 1(x+ le[) I'Ixl' 'dx=s») '"(1+lcl")
J()

where c~ and c~ are constants.
2. We have seen that w(x) is very small except near

x=0 and x= (x). Therefore, in (22), [dTp '(r)/dr]
Xzt)(Tp '(r)) is very small near r= 0. LFrom (IV, 18),
with B=1, it is seen that Tp '(0) is neither near to 0
nor near to ~ .]

Looking now at w(x) on the left of Eq. (IV, 22), we
see that w(x) near x=0 must be almost equal to a
function A(x) defined as

a(x)=aqlxl -' for 0&x&1
=bqlxl' ' for —1&x&0 (IV, 23)
=0 otherwise,

& =q l(x+ le[) I'lxl' '«=») '"lcl"
—t~t

—Ic[

g3 —
q

—1

I (x+ [cl) ['lx[' 'dx=-,' ln)t'"(1 —[c[')

M(o)') =q(1—u lnY")+const. (IV, 27)

where Ic I
=

I
B 1[. (The ap—proximate expressions for

the integrals can be used since q«1.)
As the last step in our calculation, we show that

M(o)') of Eq. (II, 12) can be expressed by the constant
a only:

where a and b are constants. Inserting into both sides
of (IV, 22) such a function tt)(x) with

tt)(x) = A(x) for —1 &x &1,
=0 except near x=0 and x= ~,

where we note that A(x) is very small for x—&~1, we
obtain from (IV, 22) near x=0:

I

a(x) = L(Tp(x'), x)Z(x')dx'

L(Tp(x'), x)w (x') dx',

or
1

D(x) = L(Tp(x'), x)A(x')dx'+dL(Tp(~), x), (IV, 24)

7 Let us consider, for example, the case B(1. In the region
x&0, Eq. (IV, 24) gives

0
I' '(d(lr&( )I '+& q(l*'I' 'IT&(.*')I 'd '

—1

1—B
+ f&(l 'I' 'I "&(,*')I '&*').

Since

Tp(x') =P(B+1)X' x' —li's7/Lx'+(B —1)7=—) ' /( +s(Bx1)7—
for x'=0 and B=1, and since furthermore [Tp(~) ['=1 and
[1),"['=1for q«1, our equation can be written as

I
a=(lnX"2) ' d+bq x" ' ' x"+ B—1 'dx"

0

+pq I
"I' 'Ix"+IB—1[['d*" .

-1B—11

Similarly, considering (IV, 24) for x(0, we obtain
—IB—ll

f)= (Ink"s) 'aq [x[' '[x+[B—1[ ['dx.
—1

Now, with (IV, 25), the constant e can be calculated. 'This gives
us the result (IV& 26a).
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This result is easily obtained from the relation

0

M(co') = ~ w[z]dz+const

1

t w(x)dx+const [see Eq. (IV, 16)].

With u (x) = aq I
x

I

' ' in the region X"&x &1, we obtain

M(co') =const —aqc '(1—X'2')

=const —aq ink'" for e =0.

This derivation of (IV, 27) is questionable, however.
We know that w(x) equals aql xl' ' for small values of
x)0 and we know that w(x) is small like aq

I
xl ' ' near

x=1, but we have not proved that aqlxl' ' is a good
approximation for zv(x) near x= 1.

To prove (IV, 27) properly, we use here the same
ideas which led us in Sec. II to the relation M(co')
=J „'w[z]dz+const. We define P„by x„=tan( P„)
and make the relation between p„+i and lk„(p~ i
= T g„) or P„+&——Tz{f„))unique by postulating that
T~{0)=0; 2z &Tp{-,'n. ) &2z-+-,'z-. Now M(cu')+const is
equal to the prnbability that P„+& and P„ include a
multiple of 27r. For f„+i T{f„)t—h—is is impossible.
For f„+i Tp{P„) it——occurs whenever x„ lies outside
the interval 0&x &Tz '(0) =1/(8+1). Since the
probability of finding x„outside this interval is

(@+i)—'
1—)I aql xl '—'dx= 1 —a ink"'

0

and since furthermore the relation P„+i——Tz{P„)occurs
with the probability q, the relationship (IV, 27) follows.

The final result can now be stated explicitly:

2. Under these conditions the Eq. (IV, 14) was a
rough approximation; Eq. (IV, 28), however, can be
assumed to give very good results.

3. The density function p[c] of (IV, 14) and the
corresponding m[c] = (1/q) (d/dc)M(cP) of (IV, 28) are
both very sharply increasing functions near c=0 with
weak long wings in the region of large

I
cl values.

4. If q is very small, then the fraction of eigenvalues
of the impurity band which lie in these wings [where
(IV, 14) and (IV, 28) do not hold] is also very small.

5. Equation (IV, 14) differs essentially from (IV, 28).
Note in particular that near c=0 p[c] is proportional
to lcl"—' while m[c] is there proportional to lcl" '.

In cases where q is not quite so small that (IV, 28)
can be applied, a better solution w(x) of (IV, 22)
might be useful. Such a solution could furthermore be
improved by the iteration method (IV, 20).

The generalization of our results to electronic im-

purity bands presents no difhculties. Let us consider
the model of Sec. III(b). Assume that the crystal
consists of two types of atoms 3 and 8, occurring with
the probabilities p and q (q«1), and let the potentials
of these atoms be determined by V" and V'. If now
V') V", then below the lowest energy state of the pure
3 crystal there are energy states due to the 8 atoms.
As shown in (III, b) the number of eigenvalues k„with
k„(k is

0

lVM(k) =X I w[z]dz+const,

where w[z] satisfies Eq. (IV, 15) with

n = —cosh(kl)+ (V"/2k) sinh(kl),
(IV, 29)

P= —cosh(kl)+ (V'/2k) sinh(kl).

M(cu') = 1—
2c 2

Starting from Eq. (IV, 15), we can now proceed as
before with (IV, 29) and obtain the result analogous
to (IV, 28):

with

1—
I

cl"
=1—

q
(z3 ——', I

cl')'
for Go )Go

&

M(k) =const+»

for B(1

for 8)1,
) 8=—(1,

ink"2 2 ln
I (2 —8)/0 I

M

('8(1—8/2) ) (ca- —cu ) 2 f 1

(1—6)' 3 ( co' ) M &8(1—0/2) ~

Comparing the result (IV, 28) with Eq. (IV, 14), we
note:

1. Both equations were derived under the conditions
q« i and z=co.

where now with n, P from (IV, 29),

c=8—1, 8= (n' 1)l/(P ——a),
e = q/1nV", X"=0.—(o.' 1)i. —

In the special case V&=0, we obtain

c= (k—k)/k,
e= q/kl,

where k= —,'V& is the k value at the resonance.
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In conclusion I would like to thank Professor Lutt-
inger, who suggested this problem to me, for many
valuable discussions and help in completing the manu-
script. Furthermore I am indebted to the American
Academy of Science and to the Foreign Operations
Administration for making my temporary stay in the
United States possible.

APPENDIX I

We add some remarks concerning the solution w[s]
of Eqs. (II, 16). We write these equations as

w[s] =P,p z-'w[T, -'[z]],
w[s]& 0,

(A, 1)

We show first that, provided a solution W(pp) of (A, 6)
exists, this solution is continuous (n) and unique (P).

(&x) Assume that W(p&) has a jump of height d at
p= happ and that no higher jump does occur. Then W(pp)
has a jump d also at all points ppp+ 2&rh. From (A, 6a) it
follows that W(pp) must also have a jump d at all
points T, '(happ)+2prh (note that Pp'=1). In the same
way it is seen that W(&&p) must have a jump d at all
points ppp+ 2&rh, T& (v&p)+ 27rh, T~ (T& (p&p) )+2&rh,

~ . Provided that we have at least two diferent n'-

values, there can be found an infinite number of such
points in the interval 0& &p&2s. at which W(pp) should

jump by the amount d. This is impossible since W(&p)
is monotonic and W(2~) —W(0) =1.Hence W(pp) must
be continuous.

(P) Assume that there are two different functions
satisfying (A, 6). Then the difference U(pp) satisfies:

w[s]dz = 1, U(9) =ZJp'U(T& '(v)) U( —~)—,

U(pp+2pr) = U(&&p),

U(0)=0; iU(pp) i &1,

U(p&) is continuous.

with (A, 7)
T —'[z]=2n& —s ' 2n'=2 M'co' —(A, 1a)

It is sometimes more convenient to consider w(pp), de-

fined by
w(pp)dpp= w[s]dz,

Let U(p&) assume its maximum at ppi and its minimum

(A, 2) at happ. Then, from (A, 7),

with

s = t.an(-', p&). (A, 3)

—U( 7r) = U(pi)——Q p'U(T, '(v&i)) &—0,
—U(—~) = U(v'p) —2 p'U(T& '(pp)) &o,

Then we define the operators T, ' acting on y as hence U(—pr) =0. It follows further that U(pp) must
reach its maximum on a whole set Si of points:

T, '(pp)=—2 arc tan 2a'—,(A, 4a) S { +2 h T, ( )+2 htan( pp/2)
1— pl ~ ) j 01

Tl,
—'(T,—'(ppi))+2m h,

and make the continuous relationship p&' = T; '( p)
unique by requiring and its minimum value at a set S2.

T,—'(0) =pr.

Now (A, 1) can be written in terms of w(&p) as

w(~) =Z~p'w(Tr '(p)) dT '(v)Id',

w(p)&o,

We can assume that in'i &1 and n' /ex' (the case where

in'i &1 for all j has no physical interest). Then it is

easily seen that for the sets S& and S2 the point p= x is a
common point of accumulation. [If there exists an

(A 3) integer e that Ti "[z] is the unit transformation, then

T,—~"—') = T,. From (A, 1a) we see that T,—'Ti[s]
=z+2(n' n') The—refor.e repeated application of the
operator T2 TI ' ) transforms any s to infinity or
any p to m. as near as we want. Therefore p=~ is a
common point of accumulation of Si and Sp. If Ti "[s]
is not the unit transformation for any integer n, then
the points Ti "[p&]+2&rh lie dense everywhere (for any
&pp) and the points of Si and Sp lie dense everywhere. ]

Since U(pp) is continuous, it follows that

40

w(s&+2pr) =w(s&).

For W(p&) = fp "w(p')d&p', this gives

W(p)=E p'WLT '(v)] —W( —~),

(b) W (pp) is monotonically non-

decreasing in q, (A, 6)
U(pr) = U(p& ) = U(p ), i, U(p&) = U(0) =0.

(A, 4b) Sp= ((pp+2sh& T, '(pp)+27rh&

T '(T, '(qp))+2vrh, . }

(d) W(0) =0.
(c) W(&p+2pr) = W(pp)+1,

Now we can construct the solution W(p) of Eq.
(A, 6). Let Wp(&p) be any function which satisfies
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W-+i(~) =2 p'W. (T '(p)) —W. (—~), (A, 9)

W" (p) =[Wp(p)+Wi(p)+ +&I'-(p)7/
(zz+1). (A, 10)

The functions W„(&p) and W" (&p) also satisfy (2, 8).
Furthermore, we see from (A, 9) and (A, 10) that

IW"(~)—2 p'W"(T '(p))+W"( —~) I

Wp(q+2zr) = Wp(p)+1,
Wp(0) =0, (A, 8)

Wp(pp) is monotonically nondecreasing in p.

Then define, with Wp(pp) from (A, 8), the functions
W (pp), W" ((p) by

consider the case where a correlation between neigh-
boring atoms exists.

Suppose we have a two-component crystal containing
A and B atoms occurring with the probabilities p and
q. Comparing now many one-dimensional crystals, we
call those crystals which happen to have an A atom
at the zzth place A crystals (n = any fixed number) and
the crystals with a 8 atom at the szth place 8 crystals.
If there is a correlation between neighboring atoms,
then among the A crystals the probabilities of finding
an A or B atom on the (zz —1)th place may be different
from P and q. We call these probabilities PA,i and PAB.
In the same way we define among the 8 crystals the
probabilities of finding on the (zz —1)th place an A or
8 atom as P» and P». It is seen easily that

W-+i(v) —Wp(p )

zz+1
(A, 11)

n+1

PAA+PAB

PBA+PBB= 1,

gPBA pPAB ~

(A, 14)

Since the functions W"(p) are monotonic and bounded
in 0 & p & 2m. , there exists a convergent subsequence
W"(p), W"(p) converging to a function W(p).
From (A, 11), we see that W(q) satisfies (A, 6). Since
furthermore no other solution of (A, 6) can exist, the
series W'(p), W'(&p), must also converge to W(y).
Having proved that W[z] exists and is a continuous
function, we shall now demonstrate as an example that
w[z] can be highly singular.

Assume that )n'( &1; (ot'~)1. Then z=T,—'[z] has
two real solutions z', z" with [z') &1,

(

z"
(
)1. Assume

now further that pi" jz'~ ') 1 and finally that Ti " is
not the unit transformation for any integer v. Now
w[z] provided that it exists, satisfies

w[z7=p"'z 'w[T '[z]]+p"'z 'w[T '[z]]+

w[z]) 0, w[z]dz=1.
(A, 12)

Since all terms in (A, 12) are non-negative, this equa-
tion with z=z'= Tz '[z'] and p&'~

~

z'
~

') 1 implies that

w[z'7=0 or w[z'7= ~. (A, 13)

APPENDIX II

So far we have assumed that the atoms in our one-
dimensional crystal are distributed at random. Now we

If w[z']=0, then from (A, 12) it follows that w=0 at
Ti "[z'] for all integers zz)0 These po. ints lie dense
everywhere. Hence w[z] vanishes on some points of
every interval. But w[z] cannot vanish throughout
any interval (this would imply w[z] =—0 but Jw[z]dz
=1). Therefore w[z] cannot be continuous in any
interval. The same result is obtained if w[z'] = ~. Here
it is seen that w[z] cannot be finite throughout any
interval.

We want to determine the electronic energy levels
for the general crystal model discussed in (III, c). [This
general formalism applies also to the vibrations of a
linear chain of atoms]. The numbers &p„[see (III, c)]
for the different crystals depend only on the nature of
the atoms preceding the zzth atom [i.e., on the (zz —1)th,
(zz —2) th, 1st atom].

Since now there is an interaction between the nth
atom and the (&z—1)th atom, the distribution functions
for p„may be different among the A crystals and among
the B crystals. Let wA(pp„) [wB(p„)] be the distribu-
tion functions for p„ in the 2 [B]crystals, where the
zzth place is occupied by an A [B]atom. Instead of one
distribution function w(&p) =wA(rp) =wB(ip), we have
now two such functions. We cao easily find a set of
difference equations for wA(q) and wB(p): Let us con-
sider the A crystals first. Here the distribution of p„ is
given by wA(p„). The distribution of &p„ i is wA(rp) or
wB(p) according to whether the (n 1)th pla—ce is
occupied by an A or 8 atom. These two possibilities
occur with the probability P» and P». Therefore, as
in (II, 15), we obtain

wA(v)dp =PAAwA(p ~"(p))d(p ~'(p))
+PABwB(~ ~'(p ))d(p —~'( )),p

or with

WA (p ) wA('p )d'p WB(p) wB('p )d'p
0 0

WA(V) =PAAWA(V —~"(q))

+PABWB( P z1 (9 ) )+CA (k) (A 15a)

Considering the 8 crystals we obtain in the same way

WB(pp) =PBAWA(p 6"(ip))—
+PBBWB(P &(q))+CB(k). (A) 15b)—
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Equations (A, 15), together with the relations eigenstates below k, we obtain

W~((p+21r) = W„(q)+1,
Wg(0) =0, (A 16) (1/21r) ('Pn~1 0 n)Av p J ('In+1 Ã )A1BA ('Pn)d pn

Wz ( p) = mono tonically nondecreasing in y,

and the same relations for 8'~, determine again the
functions 8'~ and S'~. These functions, as well as the
constants C~(k) and CB(k), can be calculated from
(A, 15) by iteration. Finally, for M(k)+const= (1/21r)
X (pn+1 pn)Aq which gives us the relative number of

+gg ('Pn+1 'Pn)B1BB ('Pn)d V'n

A short calculation using (A, 15) gives the result

M(k)+const= pC~(k)+qCB(k).
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The electronic self-energy due to interaction with acoustic phonons is evaluated as a function of the
electron propagation vector k, and a relation is established connecting the Sommerfeld-Bethe interaction
constant with the energy band separation and effective masses. For nondegenerate prolate el)ipsoidal energy
surfaces of revolution, the self-energy depends linearly on the temperature T at high temperatures and
quadratically on T at low temperatures, this behavior being substantiated by the experimental results of
Macfarlane and Roberts. The temperature dependence of the principal effective masses nz;(T) at high
temperatures is given by (i= l or t)

m;(0)/I;(T) = 1+(128m./9ph sOD) m {'0)n-(E)(C )AvT

thus indicating a decrease in effective mass with rising temperatures. The result does not explain the deviation
from the T & law for the lattice mobility as observed by Morin and Maita. The percentage decrease at room
temperature for each of the electron effective masses amounts to less than 1%.These results do not account
fully for the possible change determined by Lax and Mavroides.

1. INTRODUCTION

HE temperature variation of the electronic energy
in crystals is usually attributed to radiation

damping, ' thermal expansion, ' electron self-energy, ' and
mutual electrostatic interactions of charge carriers. 4

In the present paper a study is made of the electron
self-energy in homopolar semiconductors with specific
reference to n-type Ge and Si. From the self-energy the
temperature dependence of the principal effective masses
is then deduced. At low temperatures the self-energy
exhibits a quadratic behavior with temperature, thus
substantiating the observations of Macfarlane and
Roberts' on the temperature variation of the infrared

' A. Radkowsky, Phys. Rev. 73, 749 (1948);Moglich, Riehl, and
Rompe, Z. tech. Phys. 21, 6, 128 (1940).

'R. Seiwert, Ann Physik 6, 241 (1949); F. Moglich and R.
Rompe, Z. tech. Phys. 119, 472 (1942); J. Bardeen and W.
Shockley, Phys. Rev. 80, 72 (1950);W. Shockley and J. Bardeen,
Phys. Rev. 77, 407 (1950).

3 V. A. Johnson and H. Fan, Phys. Rev. 79, 899 (1950);T. Muto
and S. Oyama, Progr. Theoret. Phys. Japan 5, 833 (1950); 6, 61
(1951);H. Fan, Phys. Rev. 78, 808 (1950); 82, 900 (1951).

4 F. J. Morin and J. P. Maita, Phys. Rev. 94, 1525 (1954); 96,
28 (1954).' G. G. Macfarlane and V. Roberts, Phys. Rev. 97, 1714 (1955);
98, 1865 (1955).

absorption edge. In addition, the percentage change in
the principal ehective masses from liquid helium tem-
peratures to room temperature is computed and found
to be much less than the possible change deduced by
Lax and Mavroides. '

H= H„+V(R, r)+HB, (2 1)

where B„is the Hamiltonian of a nonlocalized electron,
V(R,r) the electron lattice interaction and HR the
vibrational energy of the lattice. The latter two quanti-
ties are given by the relations

V(R,r) = — P g, (o.) p'V(r)
2(MK)'1,

p2AI"
X {n,(~)e" yu, *(~)e-"'l

~

E~, (~))
B. Lax and J. Mavroides, Phys. Rev. 100, 1650 (1955).

(2 2)

2. HAMILTONIAN AND THE LATTICE FIELD

The total Hamiltonian of the system, electron plus
lattice, may be written as


