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Magnetostatic Modes in Ferromagnetic Resonance
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It has been found recently that in ferromagnetic resonance experiments performed in inhomogeneous rf
exciting fields at a fixed frequency, absorption of power takes place at a number of distinct magnetic fields.
This is ascribed to the existence of long-wavelength modes of oscillation of the ferromagnetic sample. The
mode spectrum of spheroids is examined for the case, which may often hold in practice, where exchange
and electromagnetic propagation can be ignored simultaneously.

INTRODUCTION whose dimensions are of the order of mils one may
expect to find propagation unimportant in a wide range
of experimental conditions. For such samples, large
enough to ignore exchange and small enough to neglect
propagation, except in critical regions of field and fre-
quency, there should be modes which are essentially
size-independent. For now the forces are purely mag-
netostatic, each spin moves in the external dc magnetic
field and in the resultant dipolar field of the other spins;
since there is no characteristic length the size-inde-
pendence follows. The usual uniform precession of the
spins is clearly a mode of this type and it might be
expected that the Kittel formula with its dependence
upon ac and dc demagnetizing factors would be charac-
teristic.

We shall consider here only this relatively simple
problem in which propagation is set aside. The results
may always be examined to see whether they are con-
sistent with this assumption in any specific case. The
boundary value problem for determining the frequencies
of the modes is readily formulated. It is assumed that
the spins deviate only slightly from the direction of the
applied dc magnetic field and the equations of motion
may then be linearized. Their solution yields a relation
between the transverse components of magnetization
and those of the rf magnetic field, with all rf quantities
assumed to vary with time as e&"', where cu is the angular
frequency. Thus, a connection is given between rf 8
and rf 8 in the medium. With the neglect of propaga-
tion Maxwell's equations reduce to those of magneto-
statics:

ECENT experiments on ferromagnetic resonance
in ferrites" have shown that under suitable condi-

tions the power absorption at a fixed frequency may
pass through a number of maxima as the dc magnetic
field is varied. A necessary condition for the excitation
of these multiple absorptions is that the rf magnetic
exciting field at the sample be inhomogeneous. It seems
to be characteristic of the extra peaks that their field
separation from the familiar one obeying the Kittel
formula, usually excited by uniform fields, is sub-
stantially size-independent for su%ciently small sam-
ples. At the same time the separations depend markedly
upon the saturation magnetization of the ferrite and
have a temperature variation which may be ascribed to
this effect. It is consistent with the conditions of ex-
citation to suppose that these new absorptions are
associated with modes of oscillation of the assembly of
spins in which the phase varies throughout the sample. ' '
Since in the experiments the rf exciting fields do not vary
very rapidly over the sample the wavelength of these
modes must be comparable with the dimensions of the
body.

The ellipsoids which are used in these resonance
experiments generally have no dimension less than a
few mils, so that it is likely that the shortest wavelengths
involved here will be of this order. This implies that the
exchange and pseudo-dipolar forces can be ignored; the
effective exchange field for a wavelength X (cm) is
about 10 '/X' oersteds, so that X must be about 10 ' cm
before exchange becomes comparable with the usual
applied magnetic fields of a few kilogauss. The pseudo-
dipolar term will be substantially smaller than that du
to exchange. Electromagnetic propagation within th
ferrite will always be significant when the frequenc
and applied field are such as to make the effectiv
permeability of the medium very large. The range o
such frequencies and fields will, however, be th
narrower the smaller the sample, since propagation i
important when the dimensions of the body are corn
parable with the wavelength within it. For ellipsoid

divB =0, curlH =0.

' White, Solt, and Mercereau, Bull. Am. Phys. Soc. Ser. II, 1,
12 (1956);R. L. White and I. H. Solt, Phys. Rev. 104, 56 (1956).

2 J. F. Dillon, Jr., Bull. Am. Phys. Soc. Ser. II, 1, 125 (1956).
~ L. R. Walker, Bull. Am. Phys. Soc. Ser. II, 1, 125 (1956);J. E.

Mercereau and R. P. Feynman, Phys. Rev. 104, 63 (1956).

Since the sample is always small compared to the
cavity in which it is placed, it is reasonable to find the
frequencies of the modes of the sample when it is
situated in empty space. Then B and H must satisfy
the usual magnetostatic boundary conditions at the
surface of the body and tend to zero at large distances
from it. Imposition of these boundary conditions leads
to a characteristic equation for the mode frequencies.

It is of some interest to consider the relation of these
modes to the complete spectrum of the system. In the
main this will consist of short-wavelength disturbances
for which exchange is important. As has already been
pointed out, when exchange is significant the wave-
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length is very small compared to the samples in which
we are interested and it is not essential to fit boundary
conditions at the surface. One may take the disturbances
to be plane waves for which a dispersion relation is
readily obtained. It has been pointed out by Anderson
and Suhl4 that, for samples of finite size, the dispersion
relation is shape-dependent because of the effects of
demagnetizing fields. For a spheroid the dispersion re-
lation is in fact, of the form

~(k) =q[(H, 4X,M—,+H,asks)(H, 4~.M- ,
+H,asks+42rMp sin28)]&, (1)

where k=wave number of the spin wave, y=gyro-
magnetic ratio, Hp= applied dc magnetic field, Mp= sat-
uration magnetization, E,= demagnetizing factor along
the applied field, H, = an exchange field, u= lattice
spacing, and 8=angle between k and the applied field
k'=k k, whereas the Kittel formula for the mode of
uniform precession is

(u =y[Hp ——', (3',—1)42rMpj.

The formula (1), based upon the plane wave assump-
tion, will be applicable until the wavelength is perhaps
one-tenth the size of the spheroid, beyond which the
effect of the boundaries becomes significant. Since the
exchange term in (1) will by that time have become
quite negligible (again assuming the spheroid dimen-
sions to be of the order of a few mils), a&(k) will have
assumed an essentially constant value. This value is
obtained by setting k'=0 in (1) and depends upon 8.
The spectrum will now be completed by the magneto-
static or long wavelength modes which we are discussing,
whose location may be expected to be closely related to
the k=0 limits of (1). One of the significant conse-
quences of the shape-dependent dispersion relation (1)
is a recognition of the fact that the frequency of the
uniform mode may be degenerate with that of a
number of spin waves of moderate k number, roughly
k (42rMe/H. a2) &. This is significant for the ab-
sorption line width since it provides a possibility for the
transfer of power from the uniform mode to these
higher k numbers. ' An important question then to be
examined about the long wavelength modes is whether
or not they can provide further degeneracies with the
uniform mode. The answer appears to be that they do.

CHARACTERISTIC EQUATION

The sample will be assumed a spheroid of arbitrary
axial ratio whose axis of symmetry lies along the ap-
plied dc magnetic field. The ratio of the longitudinal
axis, b, to the transverse axis, a, is denoted by o..
The internal, demagnetized, dc magnetic field in the
spheroid, Hp —4~Mp.V„will be called H;. The mag-

4 P. W. Anderson and H. Suhl, Phys. Rev. 100, 1788 (1955);
H. Suhl, Proc. Inst. Radio Engrs. (to be published).

~ Clogston, Suhl, Walker, and Anderson, Intern. J. Chem.
Phys. Solids (to be published).

In the linear approximation this becomes

uom=y[l. X (Msh —H,m) j. (3)

If it is assumed that the sample is a single crystal with
the applied field along an easy or a hard direction, the
effect of crystalline anisotropy will, in the linear ap-
proximation, be to modify the applied field by an addi-
tive anisotropy field; this will be absorbed then into Hp.
The quantities, h and m, must satisfy the equations

curlh= 0,

div(h+4n. m) =0,

(4a)

(4b)

when propagation is ignored. According to (4a) a
magnetic potential, f, may be introduced such that
h= grad/, and (4b) then becomes

V2$+42r divm= 0.

Equation (3) may be written in component form as

uo222, =y (H,222v
—M phv),

uo222„= y (—H,m, + Mph, ),
(6)

from which the components of magnetization may be
found to be

4am =a——iv—,
Bx

where

with

8$ 8$
42r222v = iv—+n—,

Bx

.=n~/(IIH —n') v=n/(n~ —n )

0=~o/42ryMp, QII =H;/4nMp. -

(Sa)

(Sb)

With these expressions for 222, and 222„, the Eq. (5) for f
inside the spheroid becomes

(8 8
(1+n) l + la+

(axs ays) ass

Outside the spheroid

( 82 82 82

+ +
&axs ay' as*)

netization is written as

M=Msl, +me'"'

where 1, is a unit vector in the s direction (that of the
applied field) and m, which is small compared to Mp,
lies in the x—y plane. Similarly the magnetic field is

H= H;1,+he'~'

where h may also have a s component. The equation of
motion is taken to be the Landau-Lifshitz equation
without loss

dM/Ch= q(MX H).
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It is worth noting that 1+x may, in general, have either
sign, so that (9) may be of elliptic or of hyperbolic
type. The boundary conditions on f at the surface of
the spheroid are the continuity of P and of the normal
component of h+4s-m. Further, P—&0 at infinity.

We introduce oblate spheroidal coordinates P, ri, 4,
defined by

x= (a' —b') l(1+/) &(1—iP) l cosC,

y= (a' b')—l(1+/)1(1 rP)—l sinC,

s = (a' —b') 1/ii,

in terms of which, the surface of the given spheroid,

x'+y' s'
+—=1,

b'-

is given by

(1+n)'s, it follows that

(i(1+a)ls+ (x'+y') l cosu)

c

Xcosmrrdrr (14)

is a solution of (9), which, since it is a polynomial in

x, y, and s, must be regular. On the surface, (=b, we
have x'+y'= a'(1 —ri') and s= bri and if c' is now chosen
to satisfy c"=a' —(1+x)b', then (14) is just of the form
of (13) with ri'=ii and

( (1+ii) 'b ) ( (1+s)err

Y=b=l
~ [a (1+K)b']&) & L1 —(1+K)rr ]&)

Equation (14) thus reduces to

with ]0'= rr'/ (1—n'-) . p m(s(„)p m(i1)earns

Rather than define a separate set of prolate spheroidal
coordinates for the case n) 1, we shall assume that P in

(11) may be negative. For prolate spheroids, P will

lie in the range (—~, —1); for oblate spheroids, P is
in the range (0,~ ).Acceptable solutions P., of Laplace's
equation, bounded at infinity, are now of the form

P —
Q m(sg)P m(~)erma (12)

P-"(iY)p -(~')e'"'

=A „„e'~~
~

P„fig'ti'+ (1+$")&(1—ii") ' cosnj

Xcosmrrdrr, (13)

where 2 „,„is a numerical constant. If c' is the constant
which replaces (a' —b')' in the equations analogous to
(11) defining the $', ri', 4, the right-hand side of (13) is

where P„and Q„are the associated Legendre func-
tions of the first and second kind. It will be understood
that when m is used as a suKx it indicates ! mt. The
form (12) is satisfactory for both oblate and prolate
cases. On the surface, (=b, (12) reduces to A P„(ri)e' ~,

where A is a constant. A solution of (9), regular in the
interior, is now required which reduces to a similar form
on (=b. If f, ri', C are some set of spheroidal coordi-
nates, the expression P„(i(')P„"(g')e' e is a solution
of I.aplace's equation, which for integral n and. m and
all $', ri', satisfies the identitys

on the surface and is of the required form. An ac-
ceptable interior solution, ib', matched to (12) on
$= fe is, therefore,

Q."(t5s)f'= A eimc

P- (iso)

(
+ (i(1+s)is+ (x'+y') & cosa )

x) $a' —(1+a)b'] &

Xcosmndcr. (15)

(h+47rm) „.. .t

1 (1+b' q
1 (&P'y

(a'—b')& (rP+bs) ( rig ) gs

a/b
t:ibQ-"'(ib) jp-"(n)e' ' (16)

(a' —b') '*(n'+ b')

Internally, the Cartesian components of h+47rm are
found from (7) to be

rifi /Pi
(1+K) sv

Bx By

rifi rifi
(1+x) +iv, and

Bp Bs

It remains to satisfy the condition on the normal
component of h+4s.m at the surface. Externally,

efme

)
(is+ (x'+y') i coscr ~P„

l t cosmrrdrr.
E. c'

The direction cosines of the normal are

Since (9) becomes Laplace's equation if s is replaced by
(1—rP rP) -&r(1—rP)&

+—
!a' P) a

(1-~'):
cosi, sinC, — .

a b

'1 E. W. Hobson, The Theory of Spherical arid Ellipsoidal Har-
monics (Cambridge University Press, Cambridge, 1931). The normal component of h+4irm is now found from
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(14) to be

(h+4~m)„.„,
Q m(zP ) gbeimcp

=A„,
P--(4) ("-b')~(b'+")'

mv I'+
X — P (z5og+ (1+$o') ~(1—q') ~ cosu) cosmndn, J.

(1+m) i
P

„'(iform+

(1+$o') ~ (1—vP) ~ cosa)
b[a' —(1+~)b'7&~ —~

b

X f zing+(1+~) (1—zl')&—cosu ! cosmada,
a )

and making use of (13), this becomes finally

taking 0 or 1 as zz —
l
m

f
is even or odd and [—,(zz —l

m
l )]

is the greatest integer in —,
'

(zz —l
m

f
). We shall write, in

future, p for P, (zz —lml)7. The z's are the zeros of
P„(z),other than zero, and we set 1&zip) zzz) . &0.
It follows that

ifpP„'(imp)
f
m

f
$p' $

z

+ (0,1)+2 P . (19)P. (zko) 1+ho' —i go'+z, '

From the definitions of b and $p, we have $o'= (1+g)b'/
(1—~pp') = (1+~)n'/[1 —(1+~)u'7; substituting this in
(19), one has

P "(zh)
z$o =

l
m

l
(1+~)n'+ (0,1)

P„"(ago)

+2(1+~)cP P
r i z„z+ (1+@)~2(1—z 2)

(h+4~m) „...=Q-"(zoo) (a/b)e' "P-™(~)

P- (z&o) (a' —b')'(5o'+n')

X! mv P(ib)+—zgoP '(zoo) !. (17)
g2

From (16) and (17) the characteristic equation is
obtained in the form

which may be combined with (18) to give

1+b' Q--'('b) (o,1)
m ~ mv= — m

zb Q "(zb) CP

+2(1+.) P—i z„'+ (1+~)n'(1 z')—
fmf

(20)

Q
~

(zoo) P ~ (z]o) b2

i $o —=mv =m—vn' (18. )
Q.-('b)

SPECTRUM

The nature of the solutions of (18) is more easily
examined if the latter is rearranged. The associated
Legendre polynomials have only real zeros lying in

(—1, 1) and may then be written in the form'

tk(~—l~l)1
P„(z)= const. ant X (1—z') &~ ~zo ' g (z' —z„')

Q~ —Q sgnm

where the definitions of ~ and v have been used. It is
shown in APPendix I that [(1+bz")/ib][Q„'(imp)/
Q„(ib)7 is positive for all a and it then follows im-
mediately that (20) can have no solutions with QH&Q.
For since Q and Q~ are both positive, if QII)Q, then
K&0 and the right hand side of (20) is negative, whereas
the left is positive for all m. We, therefore, consider (20)
in the variables QII and A=Q —Q~, where D&0. Intro-
ducing the notation G„, (n) for [(1+bz/i(p][Q„'(z$p)/
Q„~(ihip) 7+ f

m
f +[(0,1)/n'7, we rearrange (20) in

final form:

1—(26+dP/Qsr)
Fl »+—

!= Iml f
G-, -(~)+2 2

QH) & ~i a'(1 —z z) —[z z+nz(1 —z ')7(2A+dP/Q ))
for m&0

= —(6+2Qii) for m &0.

(21)

n'(1 —z,')Q 2

2A„+
QH n'(1 —z„z)+z„'

7 It would clearly be better to write the zeros, z„ in a more
explicit, but cumbersome way, as z„, , , It should always be kept
in mind that the z, depend upon the n and m of any equations in
which they occur.

Equation (21), in spite of its clumsy appearance,
permits a straightforward discussion of the behavior
of the solutions for a given n and m.

The denominator in F(26+LE/QH), considered as a
function of 6, has simple poles at

for all n these lie in the interval 0&26„+(6,'/Qii) &1;
as a increases from 0 to ~ (from the disk to the needle),
each pole moves from 6„=0 to 2A„+ (6,'/QiI) = 1,
while the order of the d „, which is the reverse of that of
the s„', remains unchanged. Each term in the sum is
easily shown to be steadily increasing with 6; it s,'arts
from 1/[e'(1 —z„')], which is positive, at 5=0, runs

through the pole at 6=6„, increases from —~ to 0 at
2A+ (Az/Qil) = 1 and finally tends to 1/[a(1 —z„z)+z„z]
as 6—+~. It follows that the denominator of F also

increases steadily from a positive value at 6=0 to
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FIG. i. F(26+6~/O~) as a function of 5 and the lines 6 and—l6+2Qrr) for the case Qrr=1, n Sand=m=2gp=3j.

infinity at A~, then runs p—1 times from —~ to +~
between the successive poles, 6„,finally increasing from
—~ at A~ to a positive value as h~~. Between each
pair of poles will be a zero which we label 6,', with
6„)6„')A~r) . . Since G„, (n) is positive, the
denominator is positive at 2A+(LV/QIr)=1 and the
last zero, h~', must occur for a lower value of 6 than
this. Ii consequently starts positive at 6=0, decreases
steadily everywhere, going through zero at D=h, and
to +~ at A=A„'; it finally decreases from +~ at 0,&'

to a positive value as 6—+ ~ . It should be noted that if
2d+(d'/QH)=1, then 0&6&-'„so that it is always
true that 0„6,'& —,'.

Equation (21) may now be examined graphically by
plotting the two sides as functions of A. Figure 1
illustrates the procedure for the case n=8, m=2.
We shall suppose temporarily that p/0 and return
to the very simple case, p=0, later. Guided by Fig. 1
and considering first the case, m&0, it is clear that for
any QH, Eq. (21) has a solution in each of the p+1
ranges of 6 in which F is positive and that as Q~
varies each solution remains in the same positive in-
terval. We introduce, then, in addition to n and m, a,

third integer, r, to specify these diGerent solutions and
write (ts, rm, r) to label any one of the modes. The solu-
tion with maximum 6 is called r=0, the others are
assigned the r value of that zero of F, A„which lies on
the boundary of the region in question. Again, for
m&0, (21) has a solution in each of the p ranges in
which F is negative, which stays in this range of 6 as
Q~ varies. Values of r are assigned to these roots in

dg

the same way as for m&0; however, in this case there
is no r=0 solution.

It is clear from Fig. 1 that the solutions for positive
and negative res are, with !m! fixed, always interlaced.
If the notation, 8„+ and 8„, is introduced to indicate
the values of 6 for the rth solution with positive and
negative m, we have for all Q~

8p+&8y-&8,+&8;» . . 6 -&8+

and similarly for the corresponding frequencies

0,+&0;&0,+&0;». . . Q„-&Q„+.

Considering now the solutions for m& 0, as Q~ increases,
the curve F(23,+LB/Qlr) is shifted everywhere to the
right and the solutions of (21) move to larger A. Q is
evidently a steadily increasing function of 0~ for all r.
Since all the 6„' and 6„ tend to zero with Q~, so must
all the 6„+, except for r=0. Figure 2 shows the variation
of 6„' and hr with QII for the n=8, m=2 case. It is
easy to verify that for small QJI the solutions start out
according to

( n'(1 —s„')Q~ ) 1

Q„+-8„+-! !, .~0.
E (1—s,s)n'+s, ')

The intersection for the r= 0 root lies beyond all the 6„
and 6„' and leads to a finite value as Q~ becomes small

a=F( )

r ( 1
=l~l G-, -(n)+22! I

=Qs+ (22)
r (n'(1 —s ')+s„')

The r=O modes evidently have a finite frequency even
when the internal applied field vanishes and only the
dipolar forces remain. For all modes with m&0, as
Q~ increases, the separation, 8, will tend to a finite
limit, since 2A+(LV/QII)~26. These limiting values
are the solutions of

F(28) = 8 for nz) 0, all r (23)

In a similar way, when m&0, the solutions again
have 8 increasing steadily with QII, for the F curves
move to the right and the line —(6+2QIr) moves
downward with increasing OH. The behavior near
Q~ ——0 is identical with that of the corresponding solu-

0 0.2 0.4 0.6 G8 I.O 1.2 1.4 '1.6 1.8 2.0
AH

Fro. 2. Variation of the poles, 6,', and zeros, 6„,of F(25+6'/0~)
as a function of Qrr for the case n 8, =m=2Lp=3j.
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Finally, when m=0, (21) has solutions only if the
denominator in Ii vanishes. Thus, 8„'=6„' and, since
2A, '+ (6„"/QIi) is a constant, 8„' again increases
steadily from zero at QII=O to a finite limit in high
fields. There is no r=0 solution.

Returning now to the case p = 0, in which m = nz or
m=m+1, the situation is particularly simple since F
now reduces to the constant, ~m~/G„, (n). There will

be no modes with m (0 and the only solution for m) 0
is that with r=0. We have exactly

Q —QH= Iml/G. . (~). (25)

This solution diBers from other r=0 solutions only in
the respect that Q —QH is constant rather than steadily
increasing. For all spheroids the pattern of these modes
is of the form P (x+jy) with no z variation for the
(m, m, O) modes and P z(x+ jy) for the (m+1, m, 0)
set. This shows that the mode, (1,1,0), is the familiar
uniform mode and, in fact, (25) becomes in this case the
usual Kittel formula for a spheroid. This is somewhat
obscured because the demagnetizing factors are here
expressed in Legendre functions. It is a consequence of
(25) that, for either of these two series of modes, the
separation of the modes in frequency (or field) from the
uniform mode is field (or frequency) independent and
directly proportional to the saturation magnetization.

Summarizing, when pAO, all modes have Q increasing
steadily with QII, with the separation Q—QII increasing
steadily to a finite limit in high fields; the positive and
negative m solutions are interlaced and for fixed

~
m

~

all solutions except for that m) 0, r=0 have Q going to
zero with Q~. When p =0, only r =0 is admitted and
the interval Q —Q~ is field independent. Consideration
of Fig. 1 shows that for fixed Q the modes will be inter-
laced in Q~ for pWO and that Q —Q~ will also increase
steadily with Q to a finite limit. The r=0 modes will

disappear below the frequency given by (22), but all

others will persist to arbitrarily low frequencies.
A connection with the rest of the spin wave spectrum

as given by (1) may be established in the following way.
The maximum value of 8 which can occur for any Q~, n

and m is always the largest solution of

b=F(28). (23)

It may be shown that this root cannot exceed —,'. For
F(1) is equal to ~m~/G(n) and , in Appendix I,
G„(n) is found to be greater than 2m. Thus, F(1)&1,
which implies that the root of (23) is less than —,'. It

tion with m&0, to terms of order QII&. When Q~ be-
comes very large, 8„ tends to the same limit as 6„',
given by

1—28„
G„, (n)+2+ =0

i cr'(1 —s ') —[e'(1—z ')+s ']28,—

for m &0, r WO. (24)

follows that for all modes, with any e, m, and r,

—,
' p~ Q —QII)~ 0.

If the formula (1) is written in the present notation and
k' put equal to zero, it becomes

Q'=Qil'+Qii sin'8,

where 0 is the angle made by the direction of propaga-
tion with the s axis. This gives

Q —Q~ ——(QH'+QH sin'8) &—QH

& (QH2+~sr) ~—Qa

Thus all of the magnetostatic or long-wavelength
modes lie within the same limits as do the longest
spin waves for which the dispersion relation is applicable.

In Fig. 3, the course of Q —QII as a function of Q~ is
shown for a number of representative modes for the case
of a sphere (a= 1, go ——~ ). The sphere is a quite typical
case except for the existence of a permanent degenerace
between two series of modes which will be discussed in
the next section. While it has been noted above that
for a given n the modes of various m and r preserve
their order as QII increases, no such rule can be expected
to apply to modes of diferent rs. In fact, one sees from
Fig. 3 that the crossing of modes or their accidental
frequency degeneracy at particular values of QII is of
common occurrence. In particular, the uniform mode,
(1,1,0), shows such degeneracies. One would expect to
find this reflected in eGects upon the line profile at mag-
netic fields where such degeneracies occur with modes to
which the coupling of the (1,1,0) mode by nonlinearities
or by imperfections is appreciable.

EFFECT OF SHAPE

A general observation may be made about the effect
of varying the axial ratio by considering how
F(26+6'/QiI) varies when 6, QiI, e, and m are held
fixed and n is changed. Consider first any term in the
sum which occurs in the denominator and write this as

If 26+6'/Qzi is greater than 1, this term is always
positive and decreases steadily with n. This is true of
every term and it is shown in Appendix I to be true
also of G„(n), which, in addition, is infinite at n=0;
it follows that F is positive and increases with n from
the value zero, at u=O. If 2A+ (dP/QH) &1 each term
is negative at 6=0, decreases through a simple pole
and decreases again from infinity to zero for large n.
Recalling again that G„, (0) is infinite, the denominator
will be steadily decreasing, with a pole at n=0 and p
additional poles, finally tending to G, (~) which is
given by 2m (see Appendix I).F is clearly an increasing
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function of a, again starting from 0 at a=0, with p
poles and tending to the limit ~ for large n. Returning to
Fig. 1 it is clear that, since, for any 6 and QII, F de-
creases with a (or the whole F curve is depressed by an
increa, se in a) the intersections with the lines 6 and
—6—20II must move to higher A. Thus, a/l modes,
including those with r= 0, start with 6=0 when 0.=0,
have 6 steadily increasing with n and tend to A=~
as a~~. In Fig. 4 the course of some of the (zzz, zzz, 0)
and (m+1, zzz, 0) modes is shown as a function of
axial ratio. A consideration of (21) for large a shows

that, approximately,

28,+ (8,'/QIz) = 1 —0(1/a') for all zzz, r/0
Thus the modes of different zz,

~

zzz
~

and r differ only in
order a ' and the +zzz and —zzz are degenerate to this
order. For r=0, one finds from the expression given in
Appendix I for G„, (a) with a large, that

bp
——-', —O(1/a') for zzzW 1

= -',—O(lna/a') for zzz = 1.

The singular behavior of the r =0, m= 1 mode in very
prolate spheroids may be ascribed to the presence of
fields with axial symmetry about the z axis.

When a is small, all 6's are also small under all circum-
stances, but not necessarily of the same order in n.
A distinction arises between the two cases, zz —~zzz~

even and odd. The modes with zz ~zzz~ even are sym-
metric in s, those with zz —

~

zzz
~

odd are antisymmetric
in s. Clearly in a very thin disk a splitting of the two
types is to be expected. One finds the following be-
havior: for m&0, r/0, 8 is of order n', fog w&0,

r=0, zz ~zzz~ odd, b is of order a', for zzz)0, r=0,
zz ~zzz~ even, A is of order a; for zzz&0, z/1, b is of
order a'; for zzz&0, r=1, 8 is of order a' when zz —~zzz~

is odd and of order a when zz ~zzz~ is even.
The sphere is distinguished from other shapes by the

fact that here some of the modes are degenerate at all
fields. For a=1, G„,„becomes zz+1+zzz+(0, 1) and
thus the expression (25) for the modes with p =0 is
seen to reduce to the remarkably simple form

Q Qzz = —
/z(z2z+zzz1) for zz = zzz

= zn/(2zzz+3) for n= zzz+1.

Clearly the modes (ziz, zzz, 0) and (3zl+1, 3zzz, 0) are
permanently degenerate. It is interesting to note that
amongst such pairs are the (1,1,0)-mode, the uniform
mode usually excited in experiments and the (4,3,0)-
mode. The latter has @=0 as a nodal plane and three
nodal planes 120' apart through the s axis.

It is of occasional interest to know the field configura-
tion of the modes and this can be readily found from the
expression (15) for the internal ip. For the cases p =0 and
P= 1, the 1P (not normalized in any way) are given by

P=0, zz=zzz, 1P (x+jy)";
p =0, zz= zzz+1, 1P z (x+jy)
P = 1, zz =zzz+2, 1P (x+jy)

x'+y' ( Qzz

X —
] 1+

2(m+1) & Q &—Qz)

j' Qzl—a' —
~

1+ ~b' (2m+3)
Qzz' —Q'i



MAGNETOSTATI C MODES IN FERROMAGNETI C RESONANCE 397

p=1, m=m+3, )P s(x+j y)

x'+y' 1 ( Qrr
X —-i 1+ is'

2(m+1) 3 ( Q '—Q')

( QH
a' —

~
1+ [b'

QH' —Q')
(2m+5)

Plainly the azimuthal symmetry is governed by m;
functions with p even are even about s=0, those with

p odd are odd about z=0. Modes with the same m and
m, but di6erent r will have dissimilar patterns in view
of the different values of 0 for a given Q~. The patterns
of a mode of given n, m, and r will vary with field or
frequency. Whether a mode with particular e and m
is excited by a given external field depends upon the
presence or absence in the expansions of the latter in
spherical harmonics of the term P„(0)e+' ~.

As we have seen, 6 is small in weak fields for r&0 and
for small axial ratios. The first case causes no trouble
because 6 Q=O(Qiil) for small Qii a,nd therefore
1/l(p'oo Air, so that the restriction actually becomes less
acute as the field diminishes. For Bat spheroids, how-

ever, the situation is difficult, for the condition on 6 is
restrictive and at the same time the practical problem
of making small disks of small axial ratio is rather severe.
In view of this fact, it is somewhat unfortunate that the
most extensive data available on multiple resonance at
present have been taken on rather large disks. '

Dillon' has studied disks of manganese ferrite single
crystals with axial ratios of 1/20 and 1/15 in inhomo-
geneous magnetic fields of various types and has ob-
served as many as twenty absorption lines at a fixed
frequency in a given exciting field. These lines are
spaced in a systematic way in field and clearly represent
series of modes in which rI,, m, and r vary in some
simple manner. It is consistent with the data to suppose
that they are the series (m, m, 0) and (m+1, ns, 0). In

The author is indebted to Dr. Dillon for permission to discuss
his results before publication.

DISCUSSION

We have examined qualitatively the mode structure
to be expected when the assumptions hold which would

put us into a purely magnetostatic regime. Looking
back to Eq. (g) one sees that the diagonal and off-
diagonal components of permeability are QH/(QiI' —Q')

and Q/(Qri' —Q') times the free-space permeability,
respectively. These factors will be roughly 1/2D when
6 is small. The wavelength in the ferrite is reduced by
about a factor of (2A/p)', where p 10 is the dielectric
constant of the ferrite. If we require that the largest
dimension of the sample, D, be less than 1/10 of the
wavelength in the medium we have a crude restriction
on 6, namely,

6)500 (D/Xp)'.
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FIG. 4. 0—Q~ as a function of axial ratio for some of the (m, m, 0)
and (m+1, m, 0) modes. 0—Q~ is independent of Q~ for
these modes.

the first place, the separations of the lines are inde-
pendent of frequency over a wide range and have a
temperature dependence which suggests that they are
proportional to saturation magnetization. These were
the features which, according to (25) characterize
these series.

Further, Dillon has used fields with three distinct
symmetries; (a) even in s, even about a plane through
the s axis; (b) even in s, odd about a plane through the
z axis; (c) odd in s. In the first case, he finds a series of
modes of which the one with the largest field coincides
with the value for the uniform mode and all the others
occur at lower fields. In the second case, a series is
found which fall between the successive members of
the first series. These two series may be identified as
(m, m, 0) with tn odd and with m even. The nature of
the exciting field and the fact that the (1,1,0) mode has
the largest field agree with this interpretation. In the
third case, a series is found with three members at
higher fields than the (1,1,0) and several at lower fields.
This is consistent with (25) for disks of this axial ratio
and for the series (m+1, m, 0) which one might expect
to find excited in a field odd in z. When one attempts to
compare the actual spacings observed by Dillon with
those given by the analysis it is found that a fair
qualitative agreement is found if it is assumed that the
efIective axial ratio of the disk considered as a spheroid
is substantially greater than the thickness to diameter
ratio. We observe again that Dillon's disks are about
0.100 in. in diameter which is certainly too large for the
assumptions of this analysis to be valid.

In spheres, White, Solt, and Mercereau' have made
measurements on samples of manganese ferrite and
manganese-zinc ferrite placed at various positions in a
rectangular cavity. The saturation was not measured,
but the positions of the peaks was observed as a func-
tion of temperature from around room temperature to
the Curie point. The ratio of the separations of two of
the lines from the uniform mode remained essentially

'The writer wishes to thank these authors for permission to
quote their results.
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constant with temperature in the case of the manganese
ferrite (the manganese-zinc data shows some puzzling
deviations); and the separations themselves were es-
sentially unchanged between X and E band. This would
indicate that these two modes belong to the (ni, m, 0) or
(m, en+1, 0) series and if the saturation magnetization
is taken to be 3300/4ir gauss at the lowest temperature
(about 15'C), the two lines may be identified as (1,2,0)
and (2,2,0) with an error in the calculated separations
of about 2%. The presence of these lines is consistent
with the field symmetry used to excite them. Two other
modes were excited whose separation was frequency-
sensitive and apparently not proportional to the mag-
netization. If one uses the same value for the saturation
at 15'C and assumes that the separation of the two
earlier modes provides a magnetization curve, the
extra modes appear to be (1,3,0) and either (0,2,0) or
(2,5,0) (these are barely resolved in a sphere over the
range of Qli covered in these experiments). The presence
of these modes is consistent with the excitation and the
calculated separations are within 3% of the observed
values. White et a/. have given a somewhat similar
identification for their lines. It would be interesting to
have further data on spheres taken in fields of definite
symmetry.

The problem of excitation for the diferent modes is
not resolved. The intensities observed by Dillon are such
that the absorption at resonance falls off by a factor of
roughly two between successive resonances; this is too
slow if one simply considers the known inhomogeneity
of the exciting field and computes the amplitudes which
should be excited. It is also true that the excitation of
the modes seems to depend somewhat upon the ma-
terial examined. This makes it plausible to suppose that
some internal mechanism, such as inhomogeneities or
variations in dc magnetic field, such as exist in disks,
may cause excitation.

APPENDIX I

The function, G„„,(n) was defined as

1+$p' Q„'(imp) (0.1)
G-, -( ) = . +I~i+

imp Q„"(imp) 0!

where $p'=n'/(1 —n'). It is possible, of course, to de-
duce the properties of G„,„by expressing the Q„
explicitly in hypergeometric functions, but enough for
our purposes can be found directly. We write

while for m= 0,
dp ——n(n+1), s=2,

f„p~(inn) —'.

(A4)

When n is just below 1,f„, is greater than n+1 and
decreasing with n. Again, since df/dn changes once
from negative to positive as f goes from n+1 to ~ for
any n(1, fmust al, ways lie below the line on which

df/dn vanishes. It is therefore a steadily decreasing
function of n. For small n, we put

and find
$= 1.

~ ~ ~

The constant ei cannot be determined in this manner
but is not essential.

It is now established that G„, (n) decreases steadily
with e. It is infinite for n small, going as a ' for e—m

even, and as n ' for n —m odd. Its value is n+1+
I
m

I

+(0,1) at n=1. As n~~, G„, tends to 2lml; for
m/1, 0 it goes as 2l nil+0(n '), for m=1 as 2I nial

+O(n ' inn) and for m=0 as (Inn) '.

AppENDIX II

For some purposes it may be useful to have orthogon-
ality relations between the different modes. We let the
subscripts X and p refer to two modes with distinct
frequencies at some field 0&. Then

Then, using the properties of Q„"for large values of its
argument, f„(1)=n+1, which is sufficient to identity
the solutions of (A2). Near n= 1, we put f=, (n+1)
+ci(n' —1)+,and find that

ci = —
I
(n+1)' —ni']/(2n+3) (0,

so that f„is, less than n+1 and decreasing, for n

slightly above 1. Since for any n) 1, df/dn changes from
positive to negative once in going from f=m to f=n+ 1,
then df„/d, n remains negative for n) 1 and tends to
m as n~~. For large n, we put

f„, =e+din '+.
in (A2) and obtain, for m/1, 0,

2(np —1)di ——(n+m) (n m+—1), s= 2. (A3)

For m= 1, we put

f„,i ——1+lnn[dpn '+
and find

1+$p' Q '(imp)
.-(n) =

Q=(iso)
(A1)

and we have

VQq+ div4irmi ——0,

V'P„+div x.4„m= 0,

df (f+n) (f n 1)——
n =m' f'+- —

do! 1 cP
(A2)

Using Legendre's equation and changing the indepen-
dent variable to n, it is found that f„satisfies [@VV. 4.VVi]d~-

space

f+ Q i div4z. m„P„div4m. mi, ]dr =0, —
spheroid
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which yields

[grad/i, m„—grad)„. .mi, 7dr =0.

If one starts from the complex conjugate equation

V'Qq*+ div47rmi, *——0,

spheroid and proceeds in a similar manner, a second orthogonality
relation is found in the form

Substituting in this expression the components of
gradit found from Eq. (7), one has

(11&,+0„) fm„,mq„m—q,m»7dr =0, (B1)
spheroid

spheroid
$m& mqo m»mq )dr=0 (B3)

and, therefore, the integral must vanish. The orthogon-
ality relation may equally well be written as

(m„+my+* m„—mi,
—*7dr—=0

spheroid

where
spheroid

[m„my+ mg m„—+]dr,

m+= m, &jm„.

(B2)

One use which can be made of the orthogonality
relations is to verify that the magnetostatic modes
actually diagonalize the total magnetic energy of the
system when the latter is expanded to quadratic terms
in the deviations from line-up.
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Nonradiative Transitions of Traypetl Electrons in Polar Crystals
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An algebraic formula is derived which represents the integral expression of Huang-Rhys for nonradiative
transitions of trapped electrons in polar crystals. The formula is a good representation over a very wide
range of trap depths and coupling constants.

A THEORY of nonradiative transitions of trapped
electrons in polar crystals involving multiphonon

processes has been given by Huang and Rhys. ' Using
the same physical ideas but a diferent formal approach,
VasileG' has investigated the Huang-Rhys formula in
some detail and has produced, in the course of his work,
a relatively simple formula for the probability of
thermal ionization at low temperatures. It is the
purpose of this letter to give a high-temperature ap-
proximation for the Huang-Rhys formula, and it will

be found that the approximation may in fact be valid
down to very low temperatures depending on the value
of a certain interaction constant which arises in the
theory.

Huang and Rhys find that the probability for a non-
ra.diative multiphonon transition involving p phonons
between a trapped state p, which has an energy 8
below the bottom of the conduction band and a state
in the conduction band which is approximated to a

' K. Huang and A. Rhys. Proc. Roy. Soc. (London) A204, 406
(1950).

2 H. D. Vasileff, Phys. Rev. 96, 603 (1954); 9?, 891 (1955).

free-electron state of wave vector k, is given by

16rr'hroP Ir 1 1 ) [(k~ exits) ~'

I
——I(n+l), R~, (1)

3v. & e eo ) (W+ hk'/2m)'

where co& is the circular frequency of longitudinal polari-
zation waves, e is the volume of the unit cell of the
crystal, ~0 and e„are the static and high-frequency
dielectric constants, n is the average number of phonons
cot excited at the temperature considered, (k~ex~tt) is
the matrix element of the electric moment between the
conduction state k and the trapped state tt, and

]n+iq»'
Ro=expL —(2n+1)S7)

~
I„(2S[n(n+1)7&), (2)

l n&

where S is an interaction constant and I is the Bessel
function of imaginary argument. The positive sign of

p in (1) refers to recombination of the electron into the
trap with the emission of phonons, and the negative
sign corresponds to thermal ionization by absorption of
phonons.


