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TABLE II. Theoretical and experimental full widths for
various proportional counter pressures.

Proportional
counter

thickness
cm argon

12.0
5.0
2.0

Mean energy
loss

220 kev
85 kev
34 kev

% full width due to
Landau-Symon eEect

Theoretical Experimental

34~3 32.5w3
40~3 45 ~3
45~3 50 &4

was found to be 13%.Since a part of this is due to the
energy spread of the nonuniform thickness n source,
the inherent resolution of the counter is better than
13%,and certainly adequate to investigate the observed
distributions.

The highest pressure proportional counter measure-
ment was equivalent in terms of absorber thickness to
the 0.005-in. plastic scintillator. This affords a check. on
the shape of the distribution in this region. Figures 4
and 5 show the distribution of pulses produced in the
proportional counter in the Landau region and sym-
metrical region, respectively. Also shown are the
theoretical curves calculated from the formulas of

Symon, and a Poisson distribution appropriate to the
statistical fluctuations in the number of ion pairs formed
in the absorber. The Poisson distribution is arbitrarily
normalized to the same maximum value as the Landau
distribution. Table II shows theoretical and experi-
mental full widths for three proportional counter
pressures. The errors quoted in this table for the
measured percent full widths were estimated graphically
from the accuracy of drawing a smooth curve through
the experimental points.

CONCLUSIONS

The frequency distribution of energy losses of 37-Mev
protons was found to be in good agreement, both in
shape and full width, with the predictions of Landau
and Symon, for absorber thicknesses from 34 kev to
2 Mev.
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prigogine has shown that in the steady state in which certain macroscopic amenities F1, F2, FI, are
fixed and other macroscopic afTinities FIc+1 F/c+2 ~ ~ F, are unconstrained, the values assumed by the
unconstrained amenities are such as to minimize the rate of production of entropy. We here show that the
complete m1croscopic density matrix of the system is that which minimizes the rate of entropy production
subject to the imposed constraints. All magnetic fields are assumed to be zero.

It is shown that the kinetic coeKcients connecting Casimer s o.-type and p-type variables alway s vanish.
The validity of the minimum entropy production theorem in the absence of a magnetic field depends on
this fact. The limitations on the validity of the minimum entropy production theorem in the presence of
a magnetic field are brie6y discussed.

Calculations on particular mode&s by Klein and Meijer and by Klein corroborate the theorem here
proved. An analysis of magnetic resonance by Wangsness suggests certain modifications necessary in this
case of a nonzero, nonstationary, magnetic field.

INTRODUCTION

'HE essential foundation of the theory of irre-
versible thermodynamics is the Onsager reci-

procity theorem. ' This theorem establishes a symmetry
in the mutual interference between two simultaneous,
linear, irreversible processes. In particular, if fJt,) is

a set of "fluxes, " and if {FI,) is a set of associated
affinities so defined that the rate of entropy production

* This work was supported by the O@ce of Naval Research.
' For general references see S. R. deGroot, Thermodynamics of

Irreversible Processes (Interscience Publishers Inc. , New York,
1951).

Sis
S=gh Fhjh,

and if the phenomenological equations between fluxes
and affinities are linear

JI,=Q; L,I,F,,
then the Onsager theorem states that

L,v(B)=Lp;(—H). (3)

Here H signifies a magnetic field.
Attempts have been made to rephrase the Onsager
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gJg Jg J2o ~ ~

The strong analogy with equilibrium thermostatics is
evident; the entropy S, considered as a function of the
extensive parameters XI, is a potential for the intensive
parameters Fk.

t9Xp Xls X2'''

Another restatement of the Onsager theorem is that
the entropy production function, considered as a func-
tion of the amenities, is a potential for the cruxes. That is,

BFj'g Fg, F2
(6)

The thermostatic analogy is that the Massieu function
S[- fs . ] (the Legendre transform of the entropy), '
considered as a function of the intensive parameters,
is a potential for the extensive parameters

as[ rg, . ]

As we anticipated, these reformulations of the
Onsager theorem, by their analogy with thermostatics,
suggest a further extension of the theorem. In particular
it is suggestive that the entropy production function
may, like the entropy itself, be subject to an extremum
principle. Accordingly Prigogine showed that in the
steady state which is reached when certain amenities are
constrained to have definite values, all unconstrained
amenities assume the values which minimize the entropy
production function. ' This theorem is easily seen from
Eqs. (1), (2), and (3) which yield

8=+;,s L;sF;Fs. (g)

If FIc is unconstrained, we tentatively compute its
value by minimizing S; that is, we write

theorem, in the hope that a statement with a greater
appearance of generality might fortunately prove also
to have a greater content of generality, or might at
least suggest directions of possible generalizations of the
theory. Thus Onsager himself showed that in the ab-
sence of a magnetic field the reciprocity relations follow
from the statement that the entropy production func-
tion 8(. Js), considered as a function of the fluxes,
is a "potential" for the affinities. That is

8S

(9) implies, by Eq. (2), that J&=0, and this is the
obviously correct condition in the steady state. We
consequently have checked Prigogine's theorem.

Again Prigogine's theorem naturally suggested in
turn a further generalization, although this conjectured
further generalization does not appear to have been
formulated explicitly in the literature.

It was conjectured that in the steady state in which
one or more amenities are constrained, not only do the
several remaining amenities assume values which mini-
mize S, but that every detailed element of the micro-
scopic density matrix also assumes a value which
minimizes S. The investigation of this conjecture was
the underlying motivation of Klein and Meijer's4 study
of the Aow of a gas between two pressure reservoirs,
and of Klein's' study of the Overhauser efIect. Setting
up a specific and tractable model, they were able to
compute explicitly the density matrix in the steady
state, and thence to show that in these special cases
the density matrix does indeed minimize the rate of
entropy produc tion.

Subsequently, Wangsness' carried out a similar
analysis of the steady state in magnetic resonance.
His results suggest that a related theorem (with certain
modifications proposed by Wangsness) may apply even
in the case of a nonzero, nonstationary, magnetic field.
We shall restrict our attention to the zero-field case.

Finally, we note that the conjectured generalization
of the minimum entropy production theorem is in
agreement with the thermostatic equilibrium principle
for that steady state in which the number of constrained
affinities is zero. For then the "steady state" is just the
equilibrium state, and the density matrix both maxi-
mizes S and minimizes S, giving the latter its minimum
possible value of zero.

With these special cases in which the extended
principle of minimum entropy production is corrobo-
rated, the validity of the conjecture is strongly sug-
gested. We, therefore, shall prove, in this paper, that
in the steady state of an irreversible process the density
matrix is such as to minimize the rate of entropy
production.

I. DENSITY OPERATORS

The interaction of a system with the irreducible
fluctuations of the walls and of the vacuum induces an
ergodic behavior and makes the wave function of the
system a stochastic rather than a definite function. If
the set of functions (P„)constitutes a complete ortho-
normal set spanning the Hilbert space of the system,
and if we write the wave function of the system as

B8/BFs 2Q; L,sF,=O. —— +=2-a4-, (10)
To corroborate that this equation does yield the correct
value of the unconstrained amenities we note that Eq.

' See E. A. Guggenheim, Thermodynamics (North Holland
Publishing Company, Amsterdam, 1949), p. 19.

'Reference 1, Chap. 10 and I. Prigogine, Etude Thermody-
»a»coque des Phdnome»es Irreverssbles (Ed. Desoer, Libge 1947).

then the coefficients a„are stochastic variables, with
random moduli and random phases. The density matrix

M. J. Klein and P. H. E. Meijer, Phys. Rev. 96, 250 (1954).
~ M. J. Klein, Phys. Rev. 98 1736 (1955).
~ R. K. Wangsness, Phys. Rev. 101, 1 (1956).
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g has elements p„which are the statistical averages
of all pairs of coefFicients':

The average value of any operator can be computed in
terms of the density ma, trix. Thus for an operator P:

c„*a n m

p„&„=traceiR 'S. (12)

The ( ) brackets here signify a statistical average,
the ( ) parentheses signify a quantum-mechanical
matrix element, and the definition of the matrix I is
the evident, standard definition.

The entropy of the system is also de6ned in terms of
the density matrix, by the de6nitiona

matrix % in% is defined by its series expansion and
consequently is the sum of terms of the form ~Rn.

But Q" is Hermitian if g is Hermitian, and therefore
Q ln'g is Hermitian. The trace of a Hermitian matrix is
real (the trace is the sum of the eigenvalues, all of
which are real), so that the entropy is real.

The elements of the density matrix are not all inde-
pendent; we have the necessary restriction

trace% = 1. (19)

Throughout the following, all variations of the p„are
assumed to be subject to the condition (19).

By Eq. (13), the entropy is a function of the pa-
rameter p„.Associated with each matrix element p
we define an afIinity Ii

„

S= —k trace($1n%]. (13) Ii„=BS/Bp. . (20)

Then the average value of p„ is

((P-))=c-, (15)

where ( ) indicates a quantum-mechanical and ( ) a
statistical averaging process.

The operators p are not Hermitian but the oper-
ators

and
Pnm gQnm+Pmn]

] f
Pnm 2 ~ nm Pmn]

(16)

are Hermitian. Then

Although in equilibrium the quantities p„aretime-
independent, in the course of an irreversible process
they may depend explicitly on the time. We shall now
show that the complete set of variables p„can be
treated analogously with the macroscopic fIuxes J&,
with a set of linear kinetic equations analogous to Eqs.
(2), subject to the symmetry of Eq. (3), and conse-
quently subject to the theorem of minimum entropy
production.

We erst note that the elements of the density matrix,
like the extensive parameters of thermostatics, can be
considered as average values of appropriate operators.
Let the set of operators fp ) be the idempotent (if
a=am) and nilpotent (if elm) operators for the set of
functions {f). That is, define the operators p„„sothat

(14)

Then, since the equilibrium value of the density matrix
is that which maximizes the entropy, the condition of
equilibrium is that

p —p

2. KINETIC EQUATIONS

(21)

If a system is not in equilibrium the density matrix
elements will change with time, tending toward the
equilibrium values determined by equations (21). We
define a set of fiuxes by

Jnm= pnm) (22)

and we note that the fiuxes are functions of the amenities,
such that the fIuxes vanish if the amenities all vanish.
For sufFiciently small values of the affinities the fluxes
are therefore linear homogeneous functions of the
afFinities, and we can therefore write

~nm= Zr, s +rs, nm+rs. (23)

We now seek to show that the Onsager symmetry
applies to the kinetic coefFicients I.„,„.

The Onsager theorem follows from a consideration
of the statistics of the spontaneous fIuctuations in the
equilibrium state. We therefore consider the appropriate
distribution function governing the statistics of the
density matrix elements.

The "instantaneous density matrix elements" (p„)
are defined as

p. =((p.„+))+i((p„—)). V-)= (+ l~-'+~7- I+)=~-*~-. (24)

I'he density matrix is a Hermitian matrix. Its elements
are complex, but both the real and imaginary parts
are average values of Hermitian operators.

The fact that % is a Hermitian matrix implies that
the entropy, as defined by Eq. (13), is real. For the

R. C. Tolman, The Principles of Statistical Mechanics (Oxford
University Press, New York, 1938), Chap. 9.

8 J. von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Dover Publications, New York, 1943), p. 202 and L.
Landau and E. Lifshitz, Statistical Physics (Oxford University
Press, ¹wYork, 1938).

Pd(pii)d(pi&) . =de' "d(pii)d(p, 2) (26)

' R. F. Greene and H. B. Callen, Phys. Rev. 83, 1231 (1950).

The density matrix elements p„arestatistical averages
of the (P„),by Eq. (15). A corresponding "instan-
taneous entropy" s is defined in analogy with Eq. (13):

s= —k traceL(%) ln($)]. (25)

Now the probability of a given set of instantaneous
density matrix elements is'
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&0= C P n. m Capnm4m (28)

Although we shall not use Eqs. (27) or (28) we cite
these to indicate the point of contact between our
formulation in terms of the density matrix elements
and the usual formulation in terms of certain linear
combinations of them —the thermodynamic extensive
parameters.

Returning now to Eq. (26) we note that the equi-
librium state is that which maximizes P, and conse-
quently is that which maximizes s. Expanding s around
the equilibrium state in powers of the deviations

(29)

from the equilibrium values, there are no linear terms.
For small deviations from equilibrium, s—S is then a
homogeneous quadratic function of the deviations
A(p„),and P is a multidimensional Gaussian distri-
bution. It is this form of the distribution function
which underlies the statistical considerations leading
to the Onsager reciprocity relations.

Having established the Gaussian form of the distri-
bution function for the instantaneous density matrix
elements we are almost ready to take over verbatim
Casimir's demonstration of the reciprocity relations. "
One further observation is necessary; we must consider
the behavior of the density matrix elements under the
operation in which all the particle momenta are re-
versed.

3. MOMENTUM REVERSAL SYMMETRY

As Casimir has carefully pointed out, "the symmetry
or antisymmetry of the fIuctuating parameters under
the momentum reversal operation is important in the
Onsager proof. Whereas Casimir's observation is not
usually of importance, because thermodynamic ex-
tensive parameters are always automatically symmetric
under momentum inversion, our density matrix ele-
ments do not automatically have simple symmetry,
and the Casimir observation now assumes a real signifi-

' H. B. G. Casimir, Revs. Modern Phys. 17, 343 (1945).

In passing, we note that the wave functions f„of
Eq. (10) span the Hilbert space of a system with a
definite energy, volume and composition. The system
can be considered to be composed of a small subsystem
and a reservoir; the reservoir being merely that portion
of the system other than the small subsystem. The
probability distribution (26) for the total system then
implies a probability distribution for the subsystem.
The resultant "generalized canonical distribution" has
the form'

P=A exp([s—P F~x~j/k}. (27)

Here the quantities xj, are the thermodynamic extensive
parameters, defined as certain linear combinations of
the instantaneous density matrix elements, and the FI,
are appropriate linear combinations of the reservoir
affinities. Thus if xo is, in particular, the energy, we have

cance. We therefore must so arrange our choice of basis
functions Q„}as to insure a simple symmetry behavior
in the density matrix elements.

All of the basis functions (P„}of Eq. (10) may be
chosen as eigenfunctions of the system Hamiltonian,
with energy eigenvalues lying in an extremely narrow
range of energy, in accordance with the microcanonical
constraint on the energy. For convenience in discussion,
we shall assume that all the eigenvalues are non-
degenerate. If wave functions are actually degenerate,
it is nevertheless possible to choose proper linear
combinations so as to obtain the same symmetry
properties as those obtained in the nondegenerate case,
so that our assumption of nondegeneracy is purely a
matter of analytic convenience.

The Hamiltonian which generates the basis functions
(P„}is necessarily invariant under a reversal of all
particle momenta, because the system is contained
within fixed rigid walls. Since all the basis-functions
are nondegenerate, it follows that each basis function
is either symmetric or antisymmetric under the mo-
mentum-reversal operator. We shall say that each basis
function f„has either even or odd "momentum-
parity. "

The effect of the momentum-reversal operator on the
total wave function 4' of Eq. (10) is to change the
signs of the a„corresponding to odd parity, and to
leave unaltered the a„corresponding to even parity.
The parity of the product a„*a is then the product of
the parities of P„andP„.It therefore follows that the
parity of the density matrix element p„ is the product
of the parities of f„andP . The dia, gonal elements of
the density matrix all have even momentum parity,
whereas the nondiagonal elements may have either
even or odd momentum parity.

We may now identify each density matrix element of
even parity as an "o.-type variable" in Casimir s
nomenclature, whereas each density matrix element of
odd parity is a "P-type variable. " We may now merely
adopt Casimir's derivation to conclude that (in the
absence of a magnetic field) the coefficients L„,„of
Eq. (23) are subject to the following symmetry.

L», nm= Lnm, « if parity of pnm=parity of p«,
(30)

Lra, nm= Lnm, rs if parity of pnmAparity of pr'

4. CASIMIR AZTISYMMETRY

We have now shown that in the absence of a magnetic
field the kinetic coefricients are either symmetric or
antisymmetric according to the parities of the associated
density matrix elements. But the minimum-entropy
production theorem, as proved in Eqs. (8) and (9)
depends upon the kinetic coefFicients being symmetric.
We consequently wish to show that those kinetic
coefficients which, by Casimir s argument, are ostensibly
antisymmetric are actually zero.

The argument which we use is essentially that which
is ordinarily employed to show that those kinetic
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coeKcients connecting fIuxes of diferent vectorial
character must vanish. Thus if J~ corresponds to a
(scalar) flux of energy from the electron "gas" to the
lattice vibrations and if J2 is an x-directed (vectorial)
electrical current, then the kinetic coeKcient LI~
vanishes. This is true because all nonzero terms in the
equation

J1 lsllF1+1 12~2+ ' ' ' (31)

5. GENERALIZED MINIMUM ENTROPY
PRODUCTION THEOREM

We now have the linear kinetic equations

+nm= P +rs, nm+rss (32)

with the symmetry conditions, in the absence of a
magnetic field;

must behave in the same way under the coordinate
transformation x~ —x, y—+—y, s—+—s; both F& and J&
are invariant under this transformation whereas F2 is
Qdd.

In our case we consider an equation of the form (23),
and we assume that J„is of even momentum parity.
We consider for the moment that the basis functions
in Eq. (10) are expressed in the momentum represen-
tation. Then the momentum inversion operator is
equivalent to the coordinate transformation x—+—x,
y~ —y, and s~—s. The requirement that all terms in
Eq. (10) behave in the same way under this co-
ordinate transformation now implies that L„,„=0if
p„and p„,have diR'erent parity. We thus conclude
that Casimir's antisymmetry is not real, and that the
matrix of the kinetic coefFicients is necessarily sym-
metric in the absence of a magnetic field.

F=S y
and 8 is symmetric:

The scalar entropy is, accordingly

~S=-2'F y= —2,y. g t&.

(40)

(41)

(42)

The Qux vector J is related to the afFinity vector F by
the kinetic matrix Q:

and
J—=y= 9 F= 9 C t&, (43)

(44)

Finally, the scalar entropy production function is
defined by

S=J.F= F B.F

=t& 8 B.S.p.

(45)

(46)

The constraints (39) can now be written in the form

As a typical case we have a macroscopic aflinity (such
as a gradient of the inverse temperature) constrained
to some constant value; as the macroscopic amenities
are linear combinations of our density affinities such a
constraint is of the form (39).

In the steady state consistent with the constraints
(39) and (19), we wish to show that the elements of
the density matrix are such as to minimize S.

In order to carry out the analysis conveniently, v e
adopt a concise notation. We consider the various
density matrix element deviations Ap„ to be compo-
nents of a "vector" y. The affinity vector F is related
to the density vector y by the entropy matrix 8, in
accordance with Eq. (37):

Lnm, r8 Lrs, nm (33) b(') F=i, k=1, 2. (47)
Furthermore the entropy is a function of the density
matrix elements, so that

The additional constraint (19) can be written in the
form

or

dS BS dp„

dt ~,~ Bp„dt
Pn, m +nm+nm.

fI& y=0 (48)
(34)

where t&&". is a diagonal unit matrix. When we invert
Eq. (40) to express p in terms of F, this constraint

(35) can be written as

Inserting (32) into (35) gives
b(s+1& .F—0 (49)

+nmrP nm+rs, (36)

Fnm Prs Srs, nm~prs& (37)

The entropy is a quadratic function of the density
matrix element deviations, and consequently the
affinities are linear functions of the density matrix
element deviations:

where b"+' is simply 5 8 '.
Our problem now is to be phrased as follows. We are

given a set of constraints of the form (47) and (49) and
we wish to show that g assumes a value which mini-
mizes S.

We first note that it is always possible to replace the
set of («+1) equations (47) and (49) with an equivalent
set

where a'~& F=A&"&, k=1, 2, «+1 (50)

b„„'2&F=1, k= 1, 2, (39)

S„, = 82S/Bhp„,8hp (38)

We now assume a set of ~ imposed constraints of
the form

where the a(~) are orthogonal, the A&~) are constants,
and A+' is zero. That is, the b(~) can be written in
terms of a set of («+1) orthonormal vectors a&"&,

spanning the («+1)-dimensional subspace defined by
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the vectors bt"', and with a'~" = b&~".

&(~) .(~) —g,~ (51)

Inserting this into Eq. (42), we compute the entropy
scalar

(53)AS=-'g S.y=-'p' a.S a p'.

From this we can compute the transformed amenity
vector, defined by

(54)aS=-,'F' y',
whence

It is natural now to augment the orthonormal set of
vectors a'"' (k&~+1) by a complete orthonormal set
a(~& spanning the complete space of the p. We consider
the coordinate transformation to this new set of axes,
with the matrix a as the transformation matrix. We
define a transformed density vector

(52)

F' a—'9 a-'S~ ——0, k)~.
Expressing F' in terms of y' by Eq. (55) gives

(6g)

vector, we find
y'. a 8 a 5)——A&"&, k&~, (65)

y'. a 8 Q. a-'S~ ——0, k)~. (66)

This set of simultaneous equations determines y' and
hence y in the steady state.

We now show that this solution can also be obtained
by minimizing S. From Eq. (61) we find

5S=2F' a '8 a 'bF'=0, (67)

where the variation 5F' is to be taken subject to the
constraint (63). But the only restriction implied by
Eq. (63) is that 8F' must be zero in the subspace & ~,
and is completely arbitrary in the subspace & ~. Thus
Eq. (67) implies that the coefficient of 8F' have no
components in the subspace )~. That is,

F'=a S.a y', (55) y'. a 8 9 a '5)=0, k)x. (69)
or

F'=a F. (56)

j'=a 'j, (57)

The transformed flux vector follows from Eq. (52):

The fact that this equation is identical with Eq. (66)
proves the theorem that in the absence of a magnetic
field, and subject to constraints of the form (39) and
(19), the density matrix elements assume values which
minimize the rate of entropy production.

whence

and we easily find

J'=a—'J,

J'=a—'9 a-'F' (59)

6. ROLE OF THE MAGNETIC FIELD

In order that the minimum entropy production
theorem be valid, we must have

(70)
Finally, the entropy production is

S=J F= (a J') (a-'F')= J' F' (60)

The Onsager theorem gives only

Q(H) = 9'(—H) (71)
=F' a ' Q a 'F'
=y'. a S.B 8 a y'

(61)

(62)

If we choose a coordinate transformation in agree-
ment with Eq. (52), our conditions of constraint
now become

F' Sg ——A&"', k=1, 2, a+1 (63)

where S~ is a unit vector along the kth axis of the
primed coordinate system.

The actual steady state which will be realized with
the constraints (63) is now trivial to compute. It is
determined by the equations

J' 6 =0, k)a. (64)

Equations (63) and (64) determine the solution.
Writing each of these equations in terms of the p'

In the absence of a magnetic field, (71) reduces to (70)
and the minimum entropy production theorem is valid.
In the presence of a magnetic field, the symmetry (71)
must be augmented by geometrical considerations
which determine the behavior of Q under the transfor-
mation H~ —H. If the geometry is such that B(H)
= 9(—H), then (71) again implies (70), and the
minimum-entropy production theorem is valid even
in the presence of a magnetic field. If, however, the
geometry is such that Q(H) = —9(—H), as in a typical
Hall eR'ect experiment, then the minimum-entropy
production theorem is not valid in the form here proved.
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