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Effect of Variable Ionic Mobility on Ambipolar Diffusion
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Westinghouse Research Laboratories, Pittsburgh, Pennsylvania

(Received October 8, 1956)

Recent measurements of the mobility of atomic rare gas ions in their parent gases have shown that the
mobility falls with increasing field strength, becoming inversely proportional to the square root of the field
at high fields. This paper presents the solution to the ambipolar diffusion problem for cylindrical geometry
and with the observed field dependence of ionic mobility. Results for He+ ions in He indicate that ambipolar
diffusion in a low-pressure positive column may be reduced by a factor of two or more from that predicted
by using constant mobility. The theory is also applicable to Ne+ ions in Ne and to A+ ions in A.

1
M~NE of the basic assumptions made in developing

the theory of ambipolar diRusion is that the ionic

mobility is constant. Recent measurements of the
mobilities of atomic rare gas ions in their parent gases"
have shown that the mobility falls with increasing
electric field strength, becoming inversely proportional
to the square root of the field at high fields. This paper
will present the solution to the ambipolar diRusion

problem in the case of field-dependent ionic mobility.
Cylindrical geometry has been used, but the method of
solution is adaptable to other geometries. The theory
has been worked out numerically for an analytical
approximation to the field variation of the mobility
which is applicable in the case of atomic rare gas ions

in their parent gas, e.g. , He+ in He. The theory is then
extended to the calculation of the diffusion loss from

the positive column of a discharge for which the axial

field is appreciable.

the particle current density I + for the ions is

I'+ = D+V'np—+IJpKe~. (2)
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In most, if not all, gases p ))p+ and D )&D+. Thus

TABLE I. Values of the parameters pp and a of Eq. (14).

Here n, n+ are the electron and ion densities; D, D+
are the diRusion coeKcients, and p, p+ are the mobili-
ties. For su%.ciently large electron densities, the diRer-
ence density required to maintain the space charge field
is small enough so that n+ —n «n, or n+=n =n.
Since no net current can continuously Row to the
insulating tube walls, I = I+= I".Eliminating I from
Eqs. (1) and (2) gives the electric Geld as

THEORY Ion an(1 gas pp (cm2/volt sec) a (mm-cm/volt)

The particle current density I for the electrons
moving in a gas under the action of a concentration
gradient and a space charge held E is

I = —DVn —p En

He+ He
Ne+ Ne
A+ A

Eq. (3) becomes
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' J. A. Hornbeck, Phys. Rev. 84, 615 (1951).
2 M. A. Biondi and L. M. Chanin, Phys. Rev. 94, 910 (1954).

FIG. 1. Ion mobility es E/p. Solid circles from reference 2;
open circles from reference 1; curves represent Eq. (14) with pp
and a as given in Table I.

E= —(D /p )Vn/n= —V.V'n, 'n, (4)

where V, is defined as the characteristic energy of the
electrons, D /p . Integrating this equation, with the
boundary conditions E=O, V=O and n=no at r=O,
we find that the electrons have a Boltzmann distribution
in space with characteristic energy V„.

n=noe — i

Here —V is the electrostatic potential, and E= VV.
When one substitutes Eq. (4) into Eq. (2), the

particle current density is given by

I'= —(1J,+V,+D~)7'n.

In an active discharge V,))D+/p+, so that we may
neglect the ion diRusion current in comparison with the
ion mobility current, i.e.,

I = —p+V,Vn= p+En.
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The remaining boundary conditions are that n=0 at
the wall, r=R, and by Eq. (7), that the drift velocity,
p+E, be infinite at r=E. This singularity results from
the assumption of equal ion and electron densities. In
the actual case this assumption is not valid near the
wall and a space charge sheath forms. ' Our assumptions
are equivalent to the requirement that the densities of
electron and ions be high enough so that the thickness
of the sheath is negligible.

If the rate of ionization is directly proportional to
the electron density, and if diffusion is the only loss
mechanism for the electrons and ions, then the con-
tinuity equation may be written as
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where v is the ionizat, ion rate per electron. Defining a
diffusion loss rate per electron, P, by the equation

FIG. 3. Radial field and mobility vs radial distance. The dashed
curve is for the classical case of constant ion mobility; the solid
curves are for field-dependent ion mobility with aV, /PR =2.63.

Introducing the dimensionless variables,

1.0

Pn=& I,
p= (P/Po) l2 405r/R=. p„r/R, g

=—V/V. ,

o=dq/dp=RI'. !p„U„ (12)

0.8

where p„ is the value of p at the wall, and performing
the indicated differentiation, Eq. (11) becomes
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FIG. 2. Relative diffusion rate vs the discharge parameter
aV, /pR. The curve is for zero axial field; the open circles are
points calculated including an axial field as specified in the text.

we have in a, steady discharge P= v, and in an afterglow
decaying exponentially with a time constant r, /=1/T.
The use of the diffusion loss rate per electron, P, makes
the present theory and results applicable to both cases.
Previous work4 has shown that in the case of mobility,
constant at its zero-field value, p~= p, 0, the solution of
Eq. (9) gives

Po ——go V, (2.405/R)', (10)

for a long cylinder of radius E.
Combining Eqs. (5), (7), and (9) yields, for cy-

lindrical geometry,

1d
Pg

—v/ve —— (rp Ee—v/ rve)

rdr
' W. P. Allis and D. J. Rose, Phys. Rev. 93, 84 (1954).
4A. von Engel and M. Steenbeck, Elektrische Gasentladungen

(Verlag Julius Springer, Berlin, 1934), Vol. 2, p. 82 ff; L. B.
Loeb, Basic Processes of Gaseous Electronics (University of
California, Berkeley, 1955), p. 507.

Since the ion mobility at any point in the tube is
assumed to be a function only of the field at that
point, we can express p+/po as a function of E or of
the dimensionless field variable, e. Once this has been
done, Eq. (13) can be integrated to find the value of p„,
at which p+e becomes infinite as required by the
boundary conditions at r=R.

Recent data for helium, neon, and argon' ' show that
within the accuracy indicated by Fig. 1,

p+= poD+a(E/p) j ',

where a and po are constants given in Table I. In
terms of our dimensionless field variable,

p+/po= (1+Ao) ',

where A = aV,p„/pR.
The results of the integration of Eq. (13) using Eq.

(15) are shown in Fig. 2. Here P/go= (p„/2. 405)' is
plotted as a function of A/p =aV,/pR, so as to make
the results applicable to any gas for which Eq. (14) is
a satisfactory approximation. As aV,/pR increases, the
reduction in ion mobility with field is increasingly
effective, resulting in a decrease in the relative rate of
ion loss, P/Po. It is found that at the largest value of
aV,/pR considered, the diffusion loss is reduced by a
factor of four from the value for constant mobility.

Figures 3 and 4 show the eRect of a variable ion
mobility on the electric field and on the spatial variation
of the ion and electron densities. The solid curves are
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E,/p=i/2u; and aV,/pR=1. 40, E,/p=i/a. The re-
sults are shown in Fig. 2 as open circles. For the
former case, it is seen that inclusion of the axial field
reduces p/po about 7% below the va, lue calculated with-
out axial field. We estimate that for axial fields satis-
fying the empirical inequality, E /p ~&u '(aV, /pR) 1, the
reduction in the diff'usion loss rate due to the axial field
is limited to about 10%, i.e. , p( E)/p o&~ 090p( 0)/p 0

DISCUSSION
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Fro. 4. Radial density distribution curve. The dashed and solid
curves correspond to those in Fig. 3.

drawn for the case of aV,/pR=2. 63, while the dotted
curves show the usual solutions for a constant mobility,
i.e., a=0. The average electron energy, V„ the tube
radius, R, and the zero field mobility, p, o, are the same
in both cases. Figure 3 shows that the radial field is
reduced in the case of variable ion mobility. The
variation of ion mobility with radius is also shown.
The electron density, shown in Fig. 4, is everywhere
greater in the case of variable ion mobility. Calculations
show that the product my+ is identical in the two cases
to within 26%, so that by Eq. (7), the particle currents,
and hence the diffusion rates, are approximately in the
ratio of the radial electric fields.

p~/go= [1+2( '+ .') ]—*, (16)

where e, =RE/p„V, .
Numerical integration of Eq. (13) using Eq. (16) for

p+/po, was performed for two cases: aV,/pR=0. 270,

SOLUTION FOR POSITIVE COLUMN

In a positive column there is an applied axial field as
well as the radial space charge field. In a uniform
positive column the axial field, E„ is independent of
radius and its eff'ect on the radial diffusion can be taken
into account by substituting the resultant field,
(E'+E,')', into Eq. (14). Equation (15) now becomes

The calculation of the ambipolar diffusion loss of
electrons and positive ions for the case in which the
ion mobility decreases with increasing electric field
strength shows that the loss rate per electron may well
be a factor of three lower than the rate calculated
assuming the ion mobility to be constant at the zero
field value. Furthermore, the calculations show that
for moderate axial fields the low diffusion rate is
essentially unchanged from the value obtained neg-
lecting the axial field.

As an example of the application of this theory to a
practical case, we shall consider a helium discharge
operating at 0.5 mm and 20 ma in a tube of 1-cm
diameter. For these conditions our experiments show
that V,=6 volts, so that aV./pR=0. 86; from Fig. 2,
we see that the diffusion loss rate is reduced to 0.44po
by the action of the radial field on the ion mobility.
The measurements give E,/p=17 volts/cm-mm Hg,
while the limiting value of the preceding section is 23;
we therefore conclude that the existing diff'usion loss
rate in this case is between 0.40pp and 0.44pp.

In this calculation we have completely neglected the
space charge sheaths studied by Allis and Rose. '
Approximate calculations show that the eff'ects of these
sheaths are important for the lower currents used in
low pressure helium discharges, i.e., less than 5 ma in
the case cited above. Accordingly, the results obtained
in this paper should be used with caution until the
complete t:heory has been worked out.
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