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Isotopic Spin and Antinucleon-Nucleon Scattering~

B.J. MALENKA1' AND H. PRIMAKOFF
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The total isotopic spin operator and its square are determined for the quantized nucleon-antinucleon
field. In the customary configuration space representation, it is found that in the formula for the total
isotopic spin of a system of nucleons and antinucleons, the antinucleons contribute terms with the
transposed negatives of the c operators replacing the corresponding c's. The form that has been usually
anticipated is found only after a suitable canonical transformation. The results are specifically applied to
a two-particle system consisting of a nucleon and an antinucleon.

Expressions are also obtained for the isotopic spin dependence of the ratio of elastic charge exchange to
elastic noncharge exchange scattering of an antiproton by a proton, and, of the ratio of elastic noncharge
exchange scattering of an antiproton by a neutron and by a proton. These are discussed and evaluated under
certain simplifying assumptions.

I. INTRODUCTION quantized nucleon-antinucleon field from the point of
view of hole theory. Here, the total isotopic spin of the
nucleon-antinucleon system is interpreted in terms of
the eigenvalues, or equivalently, the expectation values
over the eigenstates, of a suitably chosen quantized
field operator. From the expressions obtained, it is then
possible to find the appropriate form of the total isotopic
spin operators in any particular configuration space
representation.

As an application, our results are used in a simple
phenomenological investigation of the isotopic spin
properties of the scattering amplitude for elastic anti-
proton-nucleon scattering.

' 'N a recent article, ' Lepore has remarked that if the
~ ~ eigenstates in a certain representation of the third
component of the isotopic spin operator, v. 3, for the
proton a.nd neutron are a,ssociated with eigenvalues +1
and —1, respectively, ' invariance under electric charge
conjugation requires that the antiproton and antineu-
tron eigenstates in this same representation also be
assigned the eigenvalues +1 and —1.'' According to
Lepore [see reference 1, Eqs. (13) and (14)], this result
implies that "the rule for composition of isotopic spins
is Ts= Ts(particles) —Ts(antiparticles), " rather than
the intuitively expected "Ts= Ts(particles)+Ts(anti-
particles). "Unfortunately, this last statement turns out
to be incorrect. As shown below, the appropriate "rule
for composition" of isotopic spins is indeed: Ts Ts(par-——
ticles)+ Ts(antiparticles). The difIIculty arises from
Lepore's failure to establish first the relation between
the physically meaningful total isotopic spin operator
T= (TI,Ts, Ts) and the no more than mathematically
convenient "isotopic spin" operators ~. To do this
requires a direct examination of a system of many
nucleons and antinucleons.

In the present note, we will determine the isotopic
spin characteristics of a system of nucleons and anti-
nucleons on the basis of a treatment of the associated

II. ISOTOPIC SPIN OPERATORS FOR THE
QUANTIZED FIELD'

For the quantized nucleon-antinucleon field, it will
be recalled that the operator for the total charge (in
units of the proton charge) is given by

Q„=-', t g(r)ys, -I, (1+r,)P(r)](dr),

where P(r) is the Dirac nucleon quantized field ampli-
tude operator and P(r) its Pauli adjoint. The commu-
tator has been introduced to symmetrize the total
charge operator so that its vacuum expectation value
vanishes.

Only charged nucleons can contribute to Q,„so that
the operator -', (1+rs), with eigenvalues 1 and 0 for
proton and neutron single-particle states, respectively,
acts as a projection operator selecting out the proton
states. Since tf (r) and P(r) are expanded in terms of the
complete single-particle energy spectrum, these eigen-
values of —', (1+rs) refer to protons and neutrons in
negative- as well as positive-energy states. Thus, the
—', (1+r&) and so the rs eigenvalues associated with a
particular negative-energy state, say, a negative-energy
proton state, a hole in which is interpreted as the
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Atomic Energy Commission, and the Office of Scientific Research.

$ Permanent address: Department of Physics, Tufts Univer-
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'Lepore, using a single-particle treatment for the nucleon,
antinucleon, bases this assignment upon the demonstration that
the usual Dirac C, and not Cri, is the required charge conjugation
operator for the nucleon to antinucleon transformation. In this
connection, it should be recalled that in the earlier work of Pais
and Jost (reference 4), it has been shown that CT1, (their CT)
is to be interpreted as the product of the operators of the charge
conjugation and the charge symmetry transformations; thus Cr&,
cannot be expected to describe the effects of electric charge con
jugation alone.

4A. Pais and R. Jost, Phys. Rev. 87, 871 (1952).

~ This problem has also been considered by M. Suguwara, Bull.
Am. Phys. Soc. Ser. II, 1, 304 (1956), and by J. Hamada and
M. Suguwara, Progr. Theoret. Phys. Japan 8, 256 (1952).
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The operator corresponding to the square of the
total isotopic spin can next be defined as

corresponding antiproton, are the same as the corre-
sponding eigenvalues for a positive-energy proton state.

The form of the total charge operator suggests the
appropriate (and in fact, the only consistent) definition
for the total isotopic spin operator of the quanti
nucleon-antinucleon field:

(6)

Lf(rho, l~4 (r)3(«).

and can be explicitly expressed in terms of creation and
annihilation operators by Eq. (4). It is readily shown
by direct calculation that T,o' commutes with (T,o)o

(2) and that both T„' and (T„)o commute with the
Hamiltonian operator

This definition forms the basis of the subsequent dis-
cussion.

It is advantageous to obtain an alternate expression
for T,o by expanding the quantized field amplitude
operators P(r) and P(r) in terms of a complete set of
orthonormal single particle eigenstates it„,(r), pk, (r)
where

4 (r) =4'+'(r)+4' '(r)
=p„ak,pk, (r)+p'„, bk, teak, (r),

(3)
W(r) =4' '(r)+4'+'(r)

=p., a„, ti( k, (r) +p' k, b k, it k, (r),

and pk, and p'k, refer to the respective sums over the
positive- and negative-energy single-particle nucleon
states kr. The subscript k denotes all quantum numbers
other than isotopic spin while the notation r=p, n
corresponding to r~=i, —1 for a nucleon state and
r= p,n corresponding to r3=1, —1 for an antinucleon
state is also employed. As usual, the ak, t, ak, and bk, t,
bk, are interpreted as the creation, annihilation opera-
tors in the indicated states for a nucleon and an anti-
nucleon respectively. Substituting the expansions of
Eq. (3) into Eqs. (2) and (1), we have

T.o=Zk„ak, tak, (rl o~lr')k
—2'„,.b„tb„.(r'I -'&

I &)k

(4)
=2k- ak.'ak" (rl-'&Ir')k

—2''" bk 'b' (r
I o"I

r') k,

Q,o =
I
same as in Eq. (4) but with —',~, -', ~r rePlaced by

l(1+ ) l(1+ ')=l(1+ )j. (5)

&.o= Qk, K.ak, 'ak, +Q'k,
I
&k,

I
bk, 'bk. ,

where Ek, is the energy eigenvalue associated with
il „(r).

As a first and very simple application of Eqs. (4)—(6),
consider a one-particle system consisting of a proton,
or a neutron, or an antiproton, or an antineutron
described by the eigenstates %„=uk „t%'p, O' =8k tCp,
4„-=bk „- 0'p, 0'-=bk, „- 4p, where 4'p is the vacuum
eigenstate. Equation (4) then gives

r@
p

(T")o ~n

+1+
1@
2 n
1+
2 p

+o%'-

while in the case that one particle is a nucleon and the
other an antinucleon, the eigenstate is given by
+N ~=ak, tb„, t%'o. The eigenvalues of T,o' and (T,o)o
or, for convenience in calculation, the equivalent expec-
tation values over the associated eigenstates, are deter-
mined in the subspace of the O'N N, +N N, by use of
Eq' (4), (6):

while the eigenvalue of T„' for all four cases is 4. It is
to be noted that our (T„)o eigenvalues for the anti-
proton and the antineutron eigenstates, —1/2 and
+1)2, coincide with the third component of isotopic
spin "values" which are assigned to the antiproton and
the antineutron in discussions of elementary particle
transformations and interactions.

Consider now the above results as applied to the two-
particle system. The eigenstate of the system when
both particles are nucleons is given by

+N, N' &kr &k'r' ~0)t

2+kr akim akr 2 2 kTbkr bkr+ (TOP)81

where the matrix elements involve just the isotopic spin
parts of pk, (r), pk, (r) and their Pauli adjoints, and
where ~ is the transpose of ~.'

Equation (3) can also be written in terms of positive-energy
antinucleon single-particle states PI„' " related to the negative-
energy nucleon single-particle states pl„by pk, '"~i=Cd&, . With
use of the fk

' T p takes on the same form as in Eq. (4), but
with (r)~zr (r'lk replaced by (r~ CosrC '~ r'l k. However, accord-
ing to Pais and Jost (reference 4), invariance under charge
conjugation of the interaction Lagrangian of the nucleon-anti-
nucleon and (~) meson fields demands that C be independent of
the c so that Cz~C '=a~ immediately above. Thus, Eq. (4) is
again obtained.

Eigenstates of T„', (T,o)o

+N, N', 1, 1 +p, y' ~

+rr, rv'to=2 '(+y, , ,~++~, r ):
+N, N', 1, —1 +n, n' ~

4'rr rr, o o
——2—l(+r „.—+„„):

+N, N 1 1 +p, n ~

+rv, 7;t, o=2 '*(+,, r —+., ;):
+N, P;1,—1 +n, $ ~

+xÃ;o, o=2 *(+„.r++~, o):

2

2

2

0

1

0
(10)

(T"') ((T") )
2 1

2 0

2

0 0
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As anticipated, we observe, both in the X,X' and
N,N cases, that (T„')= {T„,'}„s,„,,,i„,= T(T+1) with
T= 1, 0, corresponding to the isotopic triplet and
singlet states of a two-particle system. However, we

also observe by comps, ring Eqs. (9) and (10) that the
simple symmetry relations whereby the triplet state
is symmetric and the singlet is antisymmetric under
isotopic spin exchange, no longer hold in the usual
sense for the E,X case. It is of some interest therefore
to consider how the above results appear in the physi-
cally more vivid configuration-space description, and
how they are related to our more intuitive ideas about
isotopic spin.

III. ISOTOPIC SPIN OPERATORS IN
CONFIGURATION SPACE

From Eq. (4), it is readily verified that the appro-
priate form for the total isotopic spin operator in con-
figuration space for m nucleons and p antinucleolis is

given by

T ALP ~k P ~r»]

antinucleon systems, the above equations reduce to

1 T 1T3 2 T3 2%3)

2=3
(14a)

(14b)

(15a)

f 1 l )1) (01
where p(a) =

] /, 1i(n)=
/ ), »(a)=

/&oi.
' (oi.'

t'0 ~

»(n)=
/

&1) . '

= 2[3—ra r3 2r~'—r~ 2r '—r ], (15b)

respectively, where r+ and v. are the isotopic spin
raising and lowering operators. The a and n super-
scripts refer to the nucleon and the antinucleon respec-
tively. If we denote the 73 eigenstates' associated with
the individual proton, antiproton by p(a), p(n) and
with the individual neutron, antineutron by»(a), n(n),

so that

«=1
the isotopic spin eigenvalues and eigenstates of T', Ta
for the two-particle nucleon-antinucleon system are
given by

T'=-', L3r»+3@+2 Q ~k ~'+2 Q ~r» ~r"

m—2QP~" ~ "] (12)

where we have used the Greek letters to distinguish the
antinucleons. The principal characteristic of these rela-
tions is that the isotopic spin operator z is replaced by
—zr in the usual addition formula for T when referring
to an antinucleon. If we take the third component of
T in Eq. (11), we immediately obtain the expression

(13)

since 7.3 = r3. In the present configuration space repre-
sentation, Eq. (13) unambiguously expresses the rela-
tion between the T3 operator and the ~3 operators. We
see that for a system consisting of only ns nucleons,
T3(particles)= —,

' pk=& r3 whereas for a system con-
sisting of only p antinucleons, T3(antiparticles) =

so that corresponding to Eq. (13),
Lepore's "rule of composition" mentioned above should
be corrected to read T3= T3(particles)+ T3(antipar-
ticles) as intuitively expected.

The isotopic spin properties in configuration space of
the one- and two-particle nucleon systems are well
known and will not be discussed. However, for the
one-particle antinucleon and the two-particle nucleon-

Eigenstates of T', T3

X, ,(a,n) =p(a)n(n):

xi, o(a,n) = 2-'[p(a) p(n)
—»(a)n(n)]:

Xi,-i(a,n) =»(a)f (n):

xo, o(a,n)=2 '[P(a)1 (n)

+»(a)n(n)]:

T2

(16)

These eigenvalues and the form of the associated con-
figuration space eigenstates correspond to the expec-
tation values of the T,~' of Eq. (6) and (T,~) 3 of Eq. (4)
with respect to the eigenstates of Eq. (10).

An alternative expression of the above results and
one that is probably more in line with our usual intuitive
concepts regarding isotopic spin can be obtained by
introducing a "transformed" configuration space repre-
sentation' via the canonical transformation

so that for nucleons

antinucleons: «

~k ~ {~k} 5'~kg —I ~k

and for antinucleons

(18)

7 T. D. Lee and C. N. Yang, Nuovo cimento 3, 749 (1956).

~T» ~ { ~T»} 5 ( ~T»)g I ~» (19)—
where the curly bracket indicates a transformed
operator or eigenstate. Under this canonical transfor-
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mation, Eqs. (11) and (12) for rn nucleons and p
antinucleons assume the more anticipated form:

T —+ {T}=sTs'=-', Q ~", (2o)

T' ~ {T'}=ST'S '=-'I 3(nr+ii)+2 P ~" ~']. (21)

We note that the transformed version of Eq. (14a)
becomes {Ta}=+-',ra so that {Ta} for a single anti-
nucleon now bears the same relation to ra as it does
for a single nucleon. We further note that the eigen-
states, p(a), n(a), are unchanged in form by the canon-
ical transformation S; while on the other hand, under S

(» . /01
7&( )=I I {7()}=(~ )7&( )=—

I

Eo) . Ei) .
(22)

r» . (»
n(cr) =

I I
—+ {n(cr)}= (ir2)n(a) =

I

&1). &0) .
In the "transformed" representation, it is also seen

that the T', T3 eigenstates of Eq. (16) take on a form
exhibiting isotopic spin exchange symmetry properties
analogous to those of the T', T3 eigenstates of the
more familiar two-nucleon system. For example,

f 1 l (11 (0) (0'&
xo, o(~,~)=2 '

I I I I +I.Eo).&0). &1).&1).

f 0'& (0) (11
{xo,o(a,~)}=—2 '

I

EOJ. &1) . Ei).Eo) .
so that {xp p(a, rr) }now appears in a form antisymmetric
under the exchange of the isotopic spin coordinates of
c and o. in the same manner as the isotopic singlet
eigenstate of the two-nucleon system.

Because of the similarity of description in the
"transformed" representation of the isotopic spin of
an antinucleon and the ordinary spin of a positron,
experience with electron-positron systems indicates that
the "transformed" representation should be particu-
larly convenient for nucleon-antinucleon systems in

problems involving configuration space treatment of
conservation laws and selection rules. 7 However, in

quantized 6.eld theoretic calculations on nucleon-anti-
nucleon systems, e.g. , in those involving computation
of scattering transition probabilities, there appears to
be no obvious advantage in employing the "trans-
formed" representation in any passage to a configura-
tion space description. This point is specifically demon-
strated in the example considered below.

IV. ELASTIC ANTINUCLEON-NUCLEON SCATTERING

In principle, the cross section for the elastic scat-
tering of an antinucleon by a nucleon can be calculated

from the charge independent interaction of the quan-
tized (~) meson and nucleon-antinucleon fields:

I;,'[&,-O&v~&p] (O.y), (23)

where, e.g. , O~=y5, 0 =1, or O~ ——pe„, 0 =8„.
Thus, the scattering transition operator can only be
composed of terms of the form

(&p(+&g&p(
—

&) (&p(
—

&g&p(+&)

(&p(+&Cg&p(
—

&) . (it (—&Dg&p(+&)

(&P(
—&gr&P(—&) g/(+&73'&P(+&)

(g, (-&c'g&p(—
&) . (&p(+&D'g&p(+&)

(24a)

(24b)

(24c)

(24d)

M(1) =1,
M(~) = 3—2T'-,

.V(1)= 2—T2,

X(~)= T-".

(27a)

(27l))

(27c)

(27d)

Initial and final states of the type of Eq. (10), must be here
interpreted as referring to the presence of two noninteracting
physical or dressed particles, i.e., a physical nucleon and a physical
antinucleon. Similarly, the &p~ &(r), p~ &(r), p~+&(r), &pi+&(r) in
Eq. (24) are to be viewed as quantized field creation, annihilation
operators for physical nucleons and antinucleons at r. On the
other hand, the interaction (23) refers to bare particles and the
unrenormalized g.

where 3, 8, .D' are functionals of the operators H~,
0 . The matrix elements of these terms between initial
and final states of the type considered in Eq. (10),
then leads to an expression for the scattering amplitude,
(cVqNf

I
&I &;iV;). Here,

Qf 'M(1)+pf 'M(~)+nf N(1)+pf'1V(r) (25)

is an operator in isotopic spin configuration space with
the numerica, l coefl&cients cry, , Pr;, tran, ', rrf,

' depending
on the nature of the nucleon-meson coupling in Eq.
(23), i.e., on g, O»r, C), and on the spins, energies, and
momenta of the nucleon and antinucleon in the initial
(i) and final (f) states. The operators M(1), M(~),
X(1), 1V(~) are defined via the relations

(+f+f
I
M (1)

I
K&;)= (K

I

1
I i') p'f

I
1

I &i)
yrjI 1 I/')yf

I

1 IiV ) (26a)

9f+f I
M (~) I

i *iV') = (&' (
~

I
&f) ' (7t f I

~
I
V;)

=(&fI~' K) Pf[~IK), (26b)

95+f I
iV ( 1) I

&'iV*)= (&r
I
1

I
iVr ) (X I

1
I V')

= (&f I1I &r) (&'I1IiV') (2«)

(7)(f+f
I
iV(~)

I
V'iV') = (&r

I
~

I
&f) (iV'I e

I
iV';)

=(X If~ IEr) (X;I~I',). (26d)

The matrix elements of 1, ~, and zr in Eq. (26) are
evaluated in Table I, and, using the eigenstates of Eq.
(16), it is easily verified that in the X, X isotopic spin
configuration space, these matrix elements of Eq. (26)
may be reproduced by assigning operators to M(1)
X(~) as follows:
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TABLE I. The calculated values of the matrix elements defined in Eq. (26).

N;N; ~ NfNf

PjAj + PfAf
nsPi nf Pf
PtPs ~ PfPf
njAs ~ nf Af

Ps Pi ~ nfl
n'&' ~ PfPf

2 &(p,p; —n;n;) ~2 &(pfpf njNf)
2 &(p;p;+n;n;) ~ 2 &(pfpf+npTf)

(NIN(~M(1) [N;N;)

1
1

1

(NINI ~M(s) ~N;N;)

—1—1

1

—1
3

(NINr ~
N (1) ~

N; N;)

0
0
1

(NINI~N(s) ~NiN;)

2
2
1

Thus, W may be written in the 1V, N isotopic spin
configuration space as

q = (af,+3';+2' ) (2Pf—,+nr Pr —)T'& (28)

or alternatively from Eq. (15)

&= 2(2nf, +a/ +3''')+2(2pf'+af*' Pr*')~"—~' . (29)

scattering energies in question, a lowest order calcu-
lation is sufhcient to describe the antinucleon-nucleon
interaction with reasonable accuracy, then electively
the nf; and nf are zero since to order g' the interaction
(23) can only give rise to terms with M(z) and X(z)
in the V' of Eq. (25). The cross-section ratios then
would reduce to

D'I 2pr' Pr''I'—
R„-g=

Zi' I Pr'+Pr' I'

The forms of V' in Eqs. (28) or (29) now show that the
nucleon-antinucleon elastic scattering process con-
serves the total isotopic spin. This conservation law is,
of course, a special case of the conservation of the total
isotopic spin of the nucleon-antinucleon-pion system
with a charge-independent interaction of the kind given
in Eq. (23).'

In view of the current Berkeley Bevatron experiments
with antiprotons, it is of interest to examine the ex-
pressions for some cross sections immediately deducible
from the V' of Eqs. (28) or (29) and the eigenstates of
Eq. (16). In particular, we may obtain the scattering
amplitudes corresponding to the elastic antiproton-
proton scattering without and with charge exchange,
and elastic antiproton-proton scattering. These are
given by

(35)

Pr'+2P-
R„y=

Z~' I Pr'+Ps,' I'
(36)

To order g', the term in V' with M(~)[N(~)] and
hence the Pr;[Pf„'] corresponds to the so-called nonan-
nihilation [annihilation] "force" illustrated in Fig. 1(a)
[1(b)].The above ratios give estimates of their rela, tive
importance. These ratios will depend critically on the
character of the nucleon-meson coupling. For instance,
a pure p& coupling can only connect the "large" and
"small" components of the it~, (r), ps, (r), so that to
order g', pf; ——0 and only the annihilation "force" is
present. " The cross-section ratios then reduce to the
simple numerical values(prpr I ~l p p*) ari+Pfi+'a&i +P&i ~

(ttf r I ~l p'p')= 2p/, +nf, pf;, —

(gfpy I
v'I n;p~) =nr, pr;+2pr—

(30)

(31)

(32)
(37)R„-y=1, R„p=4.

Of course„ if the higher order terms in g' are important,
the p5 theory would require that we use the more
general forms of Eqs. (33) and (34).

Another possibility that would simplify the results
is that the hypothesis of "(virtual) nucleon pair sup-
pression" approximately applies to the antinucleon-
nucleon interaction at the scattering energies in question
so that the nonannihilation "force" is predominant.
Then, the important contribution to the scattering
amplitude would come from terms in Eq. (24) generated
by an effective interaction age, o;~P].r);P which does
not connect the "large" and "small" components of
the f„,(r), fs, (r); here one would have ar «nf; and

The above amplitudes sufBce to express the following
ratio of cross sections

Z~' I 2pr*+ r'' Pr''I'—o (pp—&ne)
(33)

o(pp pp) Zti I nfi+Pfi+~fi +Pfi I'

where the Pf;. runs over all the experimentally
indistinguishable initial and final states. In general, the
magnitudes of R„-„- and R„„-will depend on the values
of all of the nr, , Pf;, nf, Pf coefficients. However, there
are some features of current theories Iof the pion-
nucleon-antinucleon interaction that may lead to
simple results for R-„- and R „-. For example, if at the

"A calculation of the cross section in the p5 theory for anti-
nucleon-nucleon scattering to order g' in the scattering amplitude
has been made by K. A. Johnson, Phys. Rev. 96, 1659 (1954).
The factor multiplying the cross section in his Eq. (17) is given
as 1 for T3=&1 and 2 for T3=0. According to our Eq. (27d),
it should be corrected to read 2 for T=1, T3 ~1, 0, and 0 for
T=O, TI=O.

'H. A. Bethe and F. de Hoffmann, Mesons and Fidds (Row,
Peterson and Company, Evanston, 1955), Vol. II, pp. 55 ff.

rr(ptt~ptt) Pr, I nI, —Pr, +2'
Z„„-= =,(34)

o(pp pp) Efi I
~fi+Pfi+nf& +Pr'I''
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pf, '«pf; and the cross-section ratios become

.=--Zx'I Pf'I'/Zi*l~f'+Pf'I',

+my Efi Io&f~ ~f' I /Zf~ I+fi+Pf~

(38)

(39)

N N

Nf N

a"'f'= ([xo.o]f I &I [xo.o]') = (~f'+3Pf'+2~'f')
(Pfpf I &I P p ')+ (nfrtf

I &I P'p~)

so that the various cross sections become:

o(PP pP) = 4b Zf* I
a"'f~+a'"f'I2

o (pp —&nn) = -,'b Qf; I
a'If; a"'f,

I

'—

a(pn~pn) = b Zf' I
a&'&f 'I

(41b)

(42)

In this case, if again only the )owest order term in g'
is important so that nf,&&pf;, we would find that

R„-„-=4, R„y=|. (40)

It should be noted that the limiting results for R„-„-,
R„„-in Eqs. (37), (40) are particularly simple. If future
experimental determinations of these ratios should tend
to either of the limiting values, we would have a pos-
sible indication of the dominance in the nucleon-anti-
nucleon interaction at the relevant scattering energies
of the lowest order annihilation or nonannihilation
"forces."

Note added in proof. Certai—n conclusions, similar to
the foregoing, have recently been obtained by D. Amati
and B.Vitale [Nuovo cimento 4, 145 (1956)].In order
to compare our results and theirs, we note that the
various nucleon-antinucleon elastic scattering ampli-
tudes, (NfNfl 1'IN+;), may be expressed in terms of
the scattering amplitudes, a"'f;, c("f;, associated with
the nucleon-antinucleon isotopic triplet and singlet
states. Thus Eqs. (16), (28), and Eqs. (30)—(32) yield
(with t=1, 0, —1),

a'"f'= ([x&, ~]f I &I [x&.~]')= (~f Pf~+2P'f )
= (nfl f I &In'p') = (pfpfl &I p'» ') (nfnrl &I p—'» ')

(41a)
and

N) Nt

Fzo. 1. Feynman diagrams for (a) nonannihilation and (b) anni-
hilation antinucleon-nucleon scattering in lowest order.

in Eqs. (33), (34) when the a"&f;, a'"f, are expressed
[via Eq. (41)] in terms of the nf pf 'cx f pf, . ''

Equations (35)—(37) and Eqs. (38)—(40) show that
the approximation of dominance of the lowest order
annihilation or nonannihilation "forces" which corre-
sponds to p'f;»pf Qf o&'f„or, to'pf »p f o&f &'l f;',
from Eq. (41), also corresponds to a"&f;»a&'&,„or, to
a&'&f, = —3a&"f,. Again, I. Pomeranchuk [Soviet Phys.
JETP 3, 306 (1956);J.Exptl. Theoret. Phys. (U.S.S.R.)
30, 423 (1956)] has recently given an argument which
indicates that at very high energies: la'"f, —a&'&f,

l« la&'&f, l. It is also worth mentioning that Eq. (42)
predicts that the various cross sections must be re-
stricted by:

o(pp Pp)+o(pp nn)=2(a. (Pn~Pn)+b Qf;I '"f, l'}
=l (»» ) (43)

where, as in the relations in Eqs. (33), (34), (42), the
relation in Eq. (43) is a direct consequence of the con-
servation of total isotopic spin. Equation (43) thus
constitutes a restriction, arising from charge inde-
pendence, on corresponding experimental values of
o (pp —&pp), o (pp—&nn), a(pn&p n). This restriction &s

reminiscent of an analogous restriction, also arising
from charge independence, which has been derived in
the theory of nucleon-nucleon elastic scattering [by
B.A. Jacobsohn, Phys. Rev. 89, 881 (1953)]:

where b is the appropriate common factor (b= 1 with
suitable normalization). The formulas for the cross =2{&f(PP PP)+b Zf&l [a"&f&]»l }
sections in Eq. (42) are seen to be identical with those = 2o(PP PP) (44)


