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The total isotopic spin operator and its square are determined for the quantized nucleon-antinucleon
field. In the customary configuration space representation, it is found that in the formula for the total
isotopic spin of a system of nucleons and antinucleons, the antinucleons contribute terms with the
transposed negatives of the * operators replacing the corresponding t’s. The form that has been usually
anticipated is found only after a suitable canonical transformation. The results are specifically applied to
a two-particle system consisting of a nucleon and an antinucleon.

Expressions are also obtained for the isotopic spin dependence of the ratio of elastic charge exchange to
elastic noncharge exchange scattering of an antiproton by a proton, and, of the ratio of elastic noncharge
exchange scattering of an antiproton by a neutron and by a proton. These are discussed and evaluated under

certain simplifying assumptions.

I. INTRODUCTION

N a recent article,! Lepore has remarked that if the
eigenstates in a certain representation of the third
component of the isotopic spin operator, 73 for the
proton and neutron are associated with eigenvalues +1
and — 1, respectively,? invariance under electric charge
conjugation requires that the antiproton and antineu-
tron eigenstates in this same representation also be
assigned the eigenvalues +1 and —1.%4 According to
Lepore [ see reference 1, Egs. (13) and (14)], this result
implies that “the rule for composition of isotopic spins
is Ts= T's(particles) — T's(antiparticles),” rather than
the intuitively expected “T'3=T3(particles)4-7'3(anti-
particles).” Unfortunately, this last statement turns out
to be incorrect. As shown below, the appropriate ‘“rule
for composition” of isotopic spins is indeed : 3= T's(par-
ticles)+ T's(antiparticles). The difficulty arises from
Lepore’s failure to establish first the relation between
the physically meaningful total isotopic spin operator
T= (T1,T2,T3) and the no more than mathematically
convenient ‘‘isotopic spin’ operators . To do this
requires a direct examination of a system of many
nucleons and antinucleons.
In the present note, we will determine the isotopic
spin characteristics of a system of nucleons and anti-
nucleons on the basis of a treatment of the associated
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1]. V. Lepore, Phys. Rev. 101, 1206 (1956).

2 The configuration space isobaric spin representation used is
that of W. Pauli, Meson Theory of Nuclear Forces (Interscience
Publishers, Inc., New York, 1946), Chap. 1.

3 Lepore, using a single-particle treatment for the nucleon,
antinucleon, bases this assignment upon the demonstration that
the usual Dirac C, and not Cry, is the required charge conjugation
operator for the nucleon to antinucleon transformation. In this
connection, it should be recalled that in the earlier work of Pais
and Jost (reference 4), it has been shown that Cr,, (their CT)
is to be interpreted as the product of the operators of the charge
conjugation and the charge symmetry transformations; thus Cry,
cannot be expected to describe the effects of electric charge con-
jugation alone.

4 A. Pais and R. Jost, Phys. Rev. 87, 871 (1952).

quantized nucleon-antinucleon field from the point of
view of hole theory. Here, the total isotopic spin of the
nucleon-antinucleon system is interpreted in terms of
the eigenvalues, or equivalently, the expectation values
over the eigenstates, of a suitably chosen quantized
field operator. From the expressions obtained, it is then
possible to find the appropriate form of the total isotopic
spin operators in any particular configuration space
representation.

As an application, our results are used in a simple
phenomenological investigation of the isotopic spin
properties of the scattering amplitude for elastic anti-
proton-nucleon scattering.

II. ISOTOPIC SPIN OPERATORS FOR THE
QUANTIZED FIELD?

For the quantized nucleon-antinucleon field, it will
be recalled that the operator for the total charge (in
units of the proton charge) is given by

QOo=13 f [, 30+re@ldn), (1)

where ¥(r) is the Dirac nucleon quantized field ampli-
tude operator and ¥(r) its Pauli adjoint. The commu-
tator has been introduced to symmetrize the total
charge operator so that its vacuum expectation value
vanishes.

Only charged nucleons can contribute to Qop so that
the operator 3(14-73), with eigenvalues 1 and O for
proton and neutron single-particle states, respectively,
acts as a projection operator selecting out the proton
states. Since ¢/(r) and ¢ (r) are expanded in terms of the
complete single-particle energy spectrum, these eigen-
values of 3(1+73) refer to protons and neutrons in
negative- as well as positive-energy states. Thus, the
2(1+73) and so the 73 eigenvalues associated with a
particular negative-energy state, say, a negative-energy
proton state, a hole in which is interpreted as the

5 This problem has also been considered by M. Suguwara, Bull.

Am. Phys. Soc. Ser. II, 1, 304 (1956), and by J. Hamada and
M. Suguwara, Progr. Theoret. Phys. Japan 8, 256 (1952).
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corresponding antiproton, are the same as the corre-
sponding eigenvalues for a positive-energy proton state.

The form of the total charge operator suggests the
appropriate (and in fact, the only consistent) definition
for the total isotopic spin operator of the quantized
nucleon-antinucleon field:

Top=1 f [P (x)vo, 3o (0)1(dx). @)

This definition forms the basis of the subsequent dis-
cussion.

It is advantageous to obtain an alternate expression
for T,, by expanding the quantized field amplitude
operators ¥ (r) and ¥(r) in terms of a complete set of
orthonormal single particle eigenstates Y. (r), Vi (r)
where

V() =¢P(1)+¢(r)

=2 e @rWir (02 kr Dier e (1),
Y(O) =9 () +PD ()

= Zxr aerJ’kr (l') +Z’k‘rbk‘r‘;kr (r) )

and >_xr and /4, refer to the respective sums over the
positive- and negative-energy single-particle nucleon
states k7. The subscript % denotes all quantum numbers
other than isotopic spin while the notation 7=pmn
corresponding to 73=1, —1 for a nucleon state and
7=7,n corresponding to r3=1, —1 for an antinucleon
state is also employed. As usual, the ax, @k, and by,f,
bi, are interpreted as the creation, annihilation opera-
tors in the indicated states for a nucleon and an anti-
nucleon respectively. Substituting the expansions of
Eq. (3) into Egs. (2) and (1), we have

3)

Top=zk11’ ak‘rtak'r’ (T %‘CI T’)k
- Zlk‘r'r’bkr'rbk‘r’ (T, I %11 T)k
=Zlm' akr*dkr'(Tl%‘vl T')k
_Zlk'r'r’ bk‘rtbk‘r’ (TI %"T[ Tl)k;
Qop=[same as in Eq. (4) but with =, 3= replaced by
3(142s), 342N =31+=)]  (5)
= %Zk‘r d)"fd}"—'% Z’krbkrtbkr_*_ (Top)S,

where the matrix elements involve just the isotopic spin
parts of ¥ (r), Y& (r) and their Pauli adjoints, and
where <7 is the transpose of <.°

(4)

6 Equation (3) can also be written in terms of positive-energy
antinucleon single-particle states ¥, related to the negative-
energy nucleon single-particle states Yy by v 20ti=Cyy,. With
use of the Yyt T,, takes on the same form as in Eq. (4), but
with (7{327|+")x replaced by (r|C3%7C1|+’)r. However, accord-
ing to Pais and Jost (reference 4), invariance under charge
conjugation of the interaction Lagrangian of the nucleon-anti-
nucleon and (x) meson fields demands that C be independent of
the © so that Cx7C1=«T immediately above. Thus, Eq. (4) is
again obtained.
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The operator corresponding to the square of the
total isotopic spin can next be defined as

Top2= TDD : Tom (6)

and can be explicitly expressed in terms of creation and
annihilation operators by Eq. (4). It is readily shown
by direct calculation that Top? commutes with (Top)s
and that both T,2 and (T.p)s commute with the
Hamiltonian operator

H0p= Zkr Ekrakrfakr_l'zlk‘r | Ek-r I bkrTbkr, (7)

where Ej, is the energy eigenvalue associated with
‘I/kr (r)

As a first and very simple application of Egs. (4)-(6),
consider a one-particle system consisting of a proton,
or a neutron, or an antiproton, or an antineutron
described by the eigenstates ¥,=ay, ,/¥o, ¥, = ay, ¥,
Ws=bs, 5o, Vi=by, Vo, where ¥y is the vacuum
eigenstate. Equation (4) then gives

¥,)  (+3%,

\I/n _l\I’n
(Top)ii V- = __i e (8)

p 25D

V) (+iv,

while the eigenvalue of T2 for all four cases is 2. It is
to be noted that our (T,,)s eigenvalues for the anti-
proton and the antineutron eigenstates, —1/2 and
+1/2, coincide with the third component of isotopic
spin “values” which are assigned to the antiproton and
the antineutron in discussions of elementary particle
transformations and interactions.

Consider now the above results as applied to the two-
particle system. The eigenstate of the system when
both particles are nucleons is given by

Yy, v = Qi apr o

while in the case that one particle is a nucleon and the
other an antinucleon, the eigenstate is given by
Yy, ¥=@krberr W0, The eigenvalues of Top? and (Top)s
or, for convenience in calculation, the equivalent expec-
tation values over the associated eigenstates, are deter-
mined in the subspace of the ¥y, »-, ¥u, 5, by use of
Egs. (4), (6):

Eigenstates of Top2, (Top)s (Top? ((Top)s)
\I'N,Nl;l_]_:‘l’p_pll 2 1

Yy, n731,0= 274 (W, W, 1) 0 2 0 ©)
YN N1, 1=V ot 2 -1

Wy, nr30,0= 274 (W p =Ty ) 0 0

\I/N,N;I,IZ\I/p,ﬁ: 2

Uy m,0=2"(¥p 35—V, a): 2

N, 1,0 ( »Dp ) (10)

Yy ¥1,-1=¥y 5: 2 -

YN F00=2" (¥, 54+ ¥n3): 0 0
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As anticipated, we observe, both in the N,N’ and
N,N cases, that (Top?)={Top’}eigenvae=I'(T'+1) with
T=1, 0, corresponding to the isotopic triplet and
singlet states of a two-particle system. However, we
also observe by comparing Eqs. (9) and (10) that the
simple symmetry relations whereby the triplet state
is symmetric and the singlet is antisymmetric under
isotopic spin exchange, no longer hold in the usual
sense for the N,N case. It is of some interest therefore
to consider how the above results appear in the physi-
cally more vivid configuration-space description, and
how they are related to our more intuitive ideas about
isotopic spin.

III. ISOTOPIC SPIN OPERATORS IN
CONFIGURATION SPACE

From Eq. (4), it is readily verified that the appro-
priate form for the total isotopic spin operator in con-
figuration space for m nucleons and p antinucleons is
given by

m u
T=3[3 -2 7], (11)
k=1 k=1
so that
m b
T2=1[3m+3u+2 > <F-2l42 > <T*-2™
k>1 (528
m I
=22 2 <2, (12)
k «x

where we have used the Greek letters to distinguish the
antinucleons. The principal characteristic of these rela-
tions is that the isotopic spin operator = is replaced by
— <7 in the usual addition formula for T when referring
to an antinucleon. If we take the third component of
T in Eq. (11), we immediately obtain the expression

u
k 1
=3 2 T,

k=1

Mz

Ts=3 (13)

k

I
A

since 737=73. In the present configuration space repre-
sentation, Eq. (13) unambiguously expresses the rela-
tion between the T'; operator and the 73 operators. We
see that for a system consisting of only # nucleons,
Ts(particles)=% > ;_1™ 75* whereas for a system con-
sisting of only u antinucleons, T';(antiparticles)=
—3 > «=1* 735 so that corresponding to Eq. (13),
Lepore’s “‘rule of composition” mentioned above should
be corrected to read T;=Tj(particles)4 T's(antipar-
ticles) as intuitively expected.

The isotopic spin properties in configuration space of
the one- and two-particle nucleon systems are well
known and will not be discussed. However, for the
one-particle antinucleon and the two-particle nucleon-

MALENKA AND H. PRIMAKOFF

antinucleon systems, the above equations reduce to

Ts3= _’;‘7'37,: _‘%73: (148‘)
T2= %, (14b)
and
To=3[re—rT<]=3lr—r], (152)
ng%[3_1a.1Ta]
=3[3—rer*—2rory 2 =27 27 «],  (15b)

respectively, where 7, and 7_ are the isotopic spin
raising and lowering operators. The ¢ and « super-
scripts refer to the nucleon and the antinucleon respec-
tively. If we denote the 73 eigenstates? associated with
the individual proton, antiproton by p(a), p(e) and
with the individual neutron, antineutron by #(a), 7(a),

=) 30-C); =0
()

the isotopic spin eigenvalues and eigenstates of T2, T3
for the two-particle nucleon-antinucleon system are
given by

Eigenstates of T2, T; T2 T; =027
x1,1(a,0)=p(a)ii(a): 2 1 -1
x1,0(a,0)=2"p(a)p(a)

—n(a)i(e)]: 2 0 —1
x1,—1(e,0)=n(a)p(a): 2 —1 —1 (16)

xo,0(a,0) =27 p(a)p(a)
+n(@)n(@)]: 0 0 3

These eigenvalues and the form of the associated con-
figuration space eigenstates correspond to the expec-
tation values of the T,,? of Eq. (6) and (Zop)s of Eq. (4)
with respect to the eigenstates of Eq. (10).

An alternative expression of the above results and
one that is probably more in line with our usual intuitive
concepts regarding isotopic spin can be obtained by
introducing a “transformed’” configuration space repre-
sentation” via the canonical transformation

S= (ir2¥), (17)
antinucleons: &
so that for nucleons
ok — {2F} =SehS =1k, (18)
and for antinucleons
— Tt (=T} =5(— =TS 1=1r* (19)

where the curly bracket indicates a transformed
operator or eigenstate. Under this canonical transfor-

7T. D. Lee and C. N. Yang, Nuovo cimento 3, 749 (1956).
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mation, Egs. (11) and (12) for # nucleons and u
antinucleons assume the more anticipated form:

mt
T— (T} =STS-1=} kz_::e", (20)

Te s (T2 = STES- = 1[3(m-Au)+2 3 <21 (21)
k>1

We note that the transformed version of Eq. (14a)
becomes {7'3}=-+3%7; so that {T'5} for a single anti-
nucleon now bears the same relation to 73 as it does
for a single nucleon. We further note that the eigen-
states, p(a), n(a), are unchanged in form by the canon-
ical transformation .S ; while on the other hand, under .S

ﬁ(a)=((l))a—>{ﬁ(a)}=(ifz)z7(a)=—((l)) ,

ﬁ(a)=((1))aﬁ (i) = (in)ﬁ(a)=(;)a.

In the “transformed” representation, it is also seen
that the T2, T; eigenstates of Eq. (16) take on a form
exhibiting isotopic spin exchange symmetry properties
analogous to those of the T2, T; eigenstates of the
more familiar two-nucleon system. For example,

wiea-{(0) (). +().G) )
o == (1) (1), (). o).}

so that {xo,0(a,a)} now appears in a form antisymmetric
under the exchange of the isotopic spin coordinates of
a and « in the same manner as the isotopic singlet
eigenstate of the two-nucleon system.

Because of the similarity of description in the
“transformed” representation of the isotopic spin of
an antinucleon and the ordinary spin of a positron,
experience with electron-positron systems indicates that
the “transformed” representation should be particu-
larly convenient for nucleon-antinucleon systems in
problems involving configuration space treatment of
conservation laws and selection rules.” However, in
quantized field theoretic calculations on nucleon-anti-
nucleon systems, e.g., in those involving computation
of scattering transition probabilities, there appears to
be no obvious advantage in employing the ‘trans-
formed”’ representation in any passage to a configura-
tion space description. This point is specifically demon-
strated in the example considered below.

IV. ELASTIC ANTINUCLEON-NUCLEON SCATTERING

In principle, the cross section for the elastic scat-
tering of an antinucleon by a nucleon can be calculated
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from the charge independent interaction of the quan-
tized (w) meson and nucleon-antinucleon fields:

g¥,0n ] (049), (23)

where, e.g., Oxn=7v;5 O,=1, or Oy=7v5y,, O,=9,.
Thus, the scattering transition operator can only be
composed of terms of the form

TP AYO) GO BY®), (24a)
PP Cey ) GO Dy o), (24b)
FOAYO)GHBYD), (24c)
GO Y- (DD =y o), (24d)

where 4, B, - --D’ are functionals of the operators Oy,
©,. The matrix elements of these terms between initial
and final states of the type considered in Eq. (10),
then leads to an expression for the scattering amplitude,8
(Nfo‘ T! NJV,) Here,

T=ayp:M(1)+B7:M (2)+ar/ N(1)+8;/N(z) (25)

is an operator in isotopic spin configuration space with
the numerical coefficients ay;, Bri, as’, o/ depending
on the nature of the nucleon-meson coupling in Eq.
(23), i.e., on g, Oy, O,, and on the spins, energies, and
momenta of the nucleon and antinucleon in the initial
(7) and final (f) states. The operators M (1), M(x),
N (1), N(x) are defined via the relations

(NN MQ)|NN)=(N;|1|N) (N 1| Ny)

= (N;[1|N)(Ns|1|N:), (26a)
(N/N;|M(z)|N:Ni)= (Ni| 4] INf)_' (Ns1=|NY)
= (Ns|=T|N:)-(Ns|=|N:), (26b)
(NN INQ)|NNy)= (N, 1_‘-77/) (V4 1_) Ny)
= (N;|1[N)(N;[1]Ny), (26¢)
(N/N;|N(=) | NNy = (Nl =| Ny)- (N [=|N)
= (Nfl ‘VT | ]V/) . (le < A’Yl). (26(1)

The matrix elements of 1, =, and =7 in Eq. (26) are
evaluated in Table I, and, using the eigenstates of Eq.
(16), it is easily verified that in the N, N isotopic spin
configuration space, these matrix elements of Eq. (26)
may be reproduced by assigning operators to M(1)-- -,
N (=) as follows:

M(1)=1, (272)
M(z)=3-2T, (27b)
N(1)=2-T (27¢)
NGE)=Tz (27d)

8 Initial and final states of the type of Eq. (10), must be here
interpreted as referring to the presence of two noninteracting
physical or dressed particles, i.e., a physical nucleon and a physical
antinucleon. Similarly, the Y (r), ¢ (r), ¢ (r), ¢ (1) in
Eq. (24) are to be viewed as quantized field creation, annihilation
operators for physical nucleons and antinucleons at r. On the
other hand, the interaction (23) refers to bare particles and the
unrenormalized g.
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TasBLE I. The calculated values of the matrix elements defined in Eq. (26).

N:N;— NN, (VN M) NN (VN M7 |NN:) (NN INQ) NN (VNf | N () | VNG
Pifli — prity 1 -1 0 2
niP; — nyPs 1 -1 0 2
piPs = prPs 1 1 1
niN; — Ny
Pibi — nsiy 0 2 1 —1
il — prbs
27 (pipi—naitis) — 274 (psbr —nsiiy) 1 -1 0 2
274 (pipit+niiis) — 274 (psbr+ngity) 1 3 2 0

Thus, T may be written in the N, N isotopic spin
configuration space as

T= (ayi+3Bri+2as) — (2Br+ar/ —Bs) T2,
or alternatively from Eq. (15)
T=1%Qayitar/438;)+5(28r+as — B ) - <7V, (29)

The forms of 7 in Egs. (28) or (29) now show that the
nucleon-antinucleon elastic scattering process con-
serves the total isotopic spin. This conservation law is,
of course, a special case of the conservation of the total
isotopic spin of the nucleon-antinucleon-pion system
with a charge-independent interaction of the kind given
in Eq. (23).°

In view of the current Berkeley Bevatron experiments
with antiprotons, it is of interest to examine the ex-
pressions for some cross sections immediately deducible
from the T of Eqgs. (28) or (29) and the eigenstates of
Eq. (16). In particular, we may obtain the scattering
amplitudes corresponding to the elastic antiproton-
proton scattering without and with charge exchange,
and elastic antiproton-proton scattering. These are
given by

(28)

(prPr | T| pibi) = arit-Brotasi’+Bs4, (30)
(niif| T'| pipo) = 2Britasd —Brd (31)
(nsps| T\ mips) = opi—Brit2851 . (32)

The above amplitudes suffice to express the following
ratio of cross sections

o (pp—iin) B > o5il 28t api — B |2
o (pp—pp)  TrilesitBritasd +6:7 |7

a(pn—pn)  Lsilayi—Brit26: |
Rn]_)= = P 119 (34)
o(Pp—Dp) ZsilasitBritar/+8: |2

where the > ;;--- runs over all the experimentally
indistinguishable initial and final states. In general, the
magnitudes of R;3 and R,; will depend on the values
of all of the ay;, Bss, ari’, By coefficients. However, there
are some features of current theories pf the pion-
nucleon-antinucleon interaction that may lead to
simple results for Rs5 and R,3. For example, if at the

9 H. A. Bethe and F. de Hoffmann, Mesons and Fields (Row,
Peterson and Company, Evanston, 1955), Vol. II, pp. 55 ff.

Rﬁp

(33)

scattering energies in question, a lowest order calcu-
lation is sufficient to describe the antinucleon-nucleon
interaction with reasonable accuracy, then effectively
the ay; and ay;’ are zero since to order g? the interaction
(23) can only give rise to terms with M (z) and N(x)
in the T of Eq. (25). The cross-section ratios then
would reduce to
2 1il 287851

T T —— (35)

2 ril BB |2

~Zh‘| —Br+26; |2
il Bt

(36)

To order g%, the term in 7 with M (x)[N(x)] and
hence the B,/ corresponds to the so-called nonan-
nihilation [annihilation] “force” illustrated in Fig. 1(a)
[1(b)]. The above ratios give estimates of their relative
importance. These ratios will depend critically on the
character of the nucleon-meson coupling. For instance,
a pure 5 coupling can only connect the “large” and
“small” components of the ¥, (1), Y. (1), so that to
order g2, B;:=0 and only the annihilation “force” is
present.l® The cross-section ratios then reduce to the
simple numerical values

.Rﬁ = 1,

R,p~A4. (37)

Of course, if the higher order terms in g2 are important,
the s theory would require that we use the more
general forms of Egs. (33) and (34).

Another possibility that would simplify the results
is that the hypothesis of “(virtual) nucleon pair sup-
pression” approximately applies to the antinucleon-
nucleon interaction at the scattering energies in question
so that the nonannihilation “force” is predominant.
Then, the important contribution to the scattering
amplitude would come from terms in Eq. (24) generated
by an effective interaction 3g[¥,0:w¢]- 3:¢ which does
not connect the “large” and ‘“small” components of
the ¥, (x), ¥4s (r); here one would have a;/<<ays; and

10 A calculation of the cross section in the s theory for anti-
nucleon-nucleon scattering to order g2 in the scattering amplitude
has been made by K. A. Johnson, Phys. Rev. 96, 1659 (1954).
The factor multiplying the cross section in his Eq. (17) is given
as 1 for T3==1 and 2 for T5=0. According to our Eq. (27d),
it should be corrected to read 2 for T=1, T;=41, 0, and 0 for
T=0, T3=0.
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B7/<<Bs: and the cross-section ratios become
Riz~2 5| 281:|%/ Zpil ayit-Bril %,
Rz~ Y silagi—Byil >/ Xl ayitByi 2.

In this case, if again only the lowest order term in g2
is important so that a;;<<8s:, we would find that

Rﬁ;’;z‘}, Rnﬁzl. (40)

It should be noted that the limiting results for R;s,
Rapin Egs. (37), (40) are particularly simple. If future
experimental determinations of these ratios should tend
to either of the limiting values, we would have a pos-
sible indication of the dominance in the nucleon-anti-
nucleon interaction at the relevant scattering energies
of the lowest order annihilation or nonannihilation
“forces.”

Note added in proof —Certain conclusions, similar to
the foregoing, have recently been obtained by D. Amati
and B. Vitale [Nuovo cimento 4, 145 (1956)]. In order
to compare our results and theirs, we note that the
various nucleon-antinucleon elastic scattering ampli-
tudes, (N,/N,;| T|N:N,), may be expressed in terms of
the scattering amplitudes, a®y;, a©y;, associated with
the nucleon-antinucleon isotopic triplet and singlet
states. Thus Eqgs. (16), (28), and Egs. (30)-(32) yield
(with =1, 0, —1),

a® =[x e 7| T [xy, e di) = (asi—Bri+26"5s)
= (nsps| T|nips)= (psbs| T\ psbs) — (nsity| T| pis)

(38)
(39)

(41a)
and
a®si= ([xo.01s| T|[x0.015) = (ai+3Bss+20 1)
= (psPs| T| ppe)+ (nyfiy| T| pips) (41b)
so that the various cross sections become:
a(pp—Pp)=1b2si |6 sita®yi?
o (Bp—in)=5b 2 s |a®si—a®y[? (42)

o(pn—pn)=>b X s |aWs;|?

where b is the appropriate common factor (b=1 with
suitable normalization). The formulas for the cross
sections in Eq. (42) are seen to be identical with those
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(a) (b)

Fic. 1. Feynman diagrams for (a) nonannihilation and (b) anni-
hilation antinucleon-nucleon scattering in lowest order.

in Egs. (33), (34) when the a©;; a®W;; are expressed
[via Eq. (41)] in terms of the ay;, Bri, &'ssy 812

Equations (35)-(37) and Eqgs. (38)-(40) show that
the approximation of dominance of the lowest order
annihilation or nonannihilation “forces” which corre-
sponds to B's>>Bri, ap, o'si, or, to Br>B'si, agi, o'y,
from Eq. (41), also corresponds to a®;>a;,, or, to
aWy,~ —%a®;;. Again, I. Pomeranchuk [Soviet Phys.
JETP 3, 306 (1956) ; J. Exptl. Theoret. Phys. (U.S.S.R.)
30, 423 (1956)] has recently given an argument which
indicates that at very high energies: |a®;;—a®y,|
&|aWys|. It is also worth mentioning that Eq. (42)
predicts that the various cross sections must be re-
stricted by:

o (Pp—pp)+o(Bp—in)=5{c(pn—pn)+b 3 s a®y| %}
= S0 (pn—pn) (43)

where, as in the relations in Egs. (33), (34), (42), the
relation in Eq. (43) is a direct consequence of the con-
servation of total isotopic spin. Equation (43) thus
constitutes a restriction, arising from charge inde-
pendence, on corresponding experimental values of
a(pp—pp), o(pp—nn), o(pn—pn). This restriction is
reminiscent of an analogous restriction, also arising
from charge independence, which has been derived in
the theory of nucleon-nucleon elastic scattering [by
B. A. Jacobsohn, Phys. Rev. 89, 881 (1953)]:

o (np—np)~+o(np—pn)
=3{oc(pp—pp)+b 21| [a¥s:]np|?}

230 (pp—pp)- (44)



