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Phase Space Calculations~t

G. E. A. FIALHof
Columbia University, Negro York, New York

(Received April 19, 1956)

A new approach is used for the calculation of volumes in phase space, using the saddle point approximation
to solve the integrals. Thermodynamic concepts of temperature, free energy, and entropy are used. Results
are compared with the nonrelativistic, extreme relativistic, and Fermi approximations. Applications are
made to several systems expected (by the Cell-Mann and Pais scheme) to result from collisions usually
produced in laboratory. A rough empirical method of calculation is also given.

I. INTRODUCTION
' 'N processes involving elementary-particle reactions,
& - where the matrix elements are unknown, some in-
formation can nevertheless be obtained by using the
statistical model introduced by Fermi. For this model,
the values of the phase space volume are needed. Up to
now, several approaches have been used for these
calculations. Fermi' gives the volume in the non-
relativistic approximation without or with momentum
conservation (this last case is referred to here as the
N.R. approximation); and, for processes in which
nucleons and pions result, he treats the pions as extreme
relativistic and the nucleons as nonrelativistic, and con-
siders that only the nucleons satisfy the condition of
momentum conservation (this approach is referred to
here as the F approximation). Lepore and Stuart' do the
calculations for the extreme relativistic case with rno-
mentum conservation' (referred to here as the E.R.
approximation). Christian and Yang4 make calculations
of momentum distribution of pions for multiple meson
production, where the phase space volume is calculated
by numerical integration.

In this paper a different approach is used. The
particles are treated relativistically and the momentum
conservation is shared by all particles. The approxima-
tion method used is to solve the integrals by the saddle
point method. This corresponds to Fowler's statistical
mechanics approach and is roughly equivalent to
Stirling s approximation. In this way, thermodynamical
quantities such as temperature, entropy, and free energy
will be de6ned for the system. The results improve as the
number of particles increases. Comparison of this calcu-
lation with the two extremes of energy approximations
(N.R. and E.R.) and with all values of energies when

*This work is part of the requirement for the degree of Doctor
of Philosophy at Columbia University.

f Supported in part by the joint program of the OfBce of Naval
Research and the U. S. Atomic Energy Commission.

f Lieutenant-Commander (Brazilian Navy) and Centro Brasi-
leiro de Pesquisas Fisicas, studying at Columbia University on
behalf of the Brazilian Research Council.' E. Fermi, Progr. Theoret. Phys. (Japan) 5, 570 (1950).

s J. V. Lepore and R. N. Stuart, Phys. Rev. 94, 1724 (1954).' The author is indebted to Professor T. D. Lee for calling his
attention to an error in formula (20) of reference 2. The factorial in
the numerator is (4n —4)! instead of (4n —3)!.

4 R. Christian and C. N. Yang, Brookhaven National Labora-
tory Report BNL, 1953 (unpublished).

II. DERIVATION OF FORMULAS —A

If angular momentum conservation is disregarded the
momentum space volume per unit energy range, in the
c.m. system, is

dgN(W, O)
=(27r) 4

dW

f10)

X dp, exp( —ep, —i) W;), (1)

where e is a small positive quantity.
The last integral can be evaluated, ' giving:

2~'m;')
tI&

Hs&'& (———m, ()ts—a') &j)s- s
I

2Ht'r'L —m, (X —as) &]

its; ()t' —o') &

where c=|and the B's are Hankel functions.
The a integration in (i),

(2)

+re
fQ

+CO

d g;I;=2 o'da exp(P; lnI, ),

only two particles come out (this case can be solved
exactly), permits the introduction of a semiempirical
correction for the case of a small number of particles
resulting.

This paper is designed to facilitate these phase-space
calculations, and, therefore, the formulas are prepared
for numerical evaluations. Thus, decimal logarithms
(log) are used throughout, except in the derivations of
the formulas in Sec.II where natural logarithms (ln) are
used. Several tables and numerical examples are given.

In Sec. VII the phase-space volumes are given as a
function of the total kinetic energy of several systems of
particles. Sections V through X are self-sufhcient, in
order that readers, not interested in mathematical
derivations, can go directly to these sections. Every-
where the pion mass is taken as the unit of mass and
c= i.

The related problem of momentum distribution for
one of the particles coming out is treated in Sec. VI.

328



P HASE SPACE CALCULATIONS 329

TABLE I. Values of the functions a(x) and d(x). TABLE II. Values of the function b(pm) for masses of
several particles.

1.233
1.213
1.205
1.201
1.199
1.198
1.197
1.197
1.197

4.523
4.526
4.531
4.537
4.453
4.274
4.035
3.675
3.401

0
0.01
0.02
0.04
0.1
0.2
0.4
1
2

1.400
1.397
1.396
1.392
1.380
1.364
1.341
1.298
1.259

4
10
20
40

100
200
400

1000

3.163
2.981
2.907
2.865
2.846
2.835
2.831
2.829
2.829

1.303 1.303 1.303
2.300 1.302 1.303
1.286 1.302 1.302
1.253 1.302 1.302
1.172 1.273 1.284
1.081 1.224 1.249
0.965 1.161 1.182
0.825 1.029 1.072
0.748 0.913 0.955
0.705 0.812 0.847
0.673 0.725 0.743
0.662 0.690 0.701
0.657 0.671 0.678
0.655 0.660 0.661
0.653 0.655 0.656
0.652 0.654 0.654
0.651 0.652 0.653
0.651 0.651 0.651

1.303 1.303
1.28 i 1.288
1.244 1.256
1.181 1.199
1.061 1.090
0.947 0.973
0.838 0.864
0.738 0.752
0.698 0.707
0.677 0.681
0.661 0.662
0.656 0.657
0.654 0.654
0.653 0.653
0.651 0.652
0.651 0.651
0.651 0.651
0.651 0.651

0
0.01
0.02
0.04
0.1
0.2
0.4
1
2
4

10
20
40

100
200
400

1000

1.303 1.303
1.274 1.278
1.231 1.238
1.163 1.174
1.033 1.050
0.919 0.934
0.814 0.828
0.726 0.733
0.691 0.695
0.671 0.674
0.658 0.659
0.656 0.656
0.654 0.654
0.652 0.653
0.651 0.651
0.651 0.651
0.651 0.651
0.651 0.651

can then be performed by the saddle point method,
which is given by the condition:

P, r) lnI, /fo). =0.

The logarithmic derivative of I; is proportional to a,
so this condition is satisfied by 0-=0. The a. integration
becomes, after evaluation:

those without primes, being simply related to the
quantities used in this section.

Substituting (2) in (7) and (8), these become:

(2B)& exp(P, lnI, —
s ln P;(—c)' lnI, /c)a') } =s.

If this last expression is substituted in the ) integral
in (1), it finally becomes, after the substitution iX=p: a'(m, .p) =in(2~&(m, .p)&[iII,(u(im, p)

—2IIt~" (im, P)/m, P)+m, P—
ssin(1+m, P), (9)

The p integration in (3) can likewise be evaluated by
saddle point, given by the condition r)(pW pF)/r)p=—0,
or

(3)W = r) (pF)/r)p =F+pc)F/r)p.

This relation gives the total energy W as a function of
the variables F and P and permits the identification of P
as the inverse temperature 1/kT, with k the Boltzmann
constant and F the free energy. The quantity kP (W F)—
=S is then the entropy.

The evaluation of (3) gives:

dQv(W, O)/dW= —(2B.) '~'i~ dP exp(PW PF), —(3)

where the function Ii is defined by

PF= (P, ln—I,——,
' In P, (—r)' inI, /r)a') ).=a;q= p. (4)

b'(m, P) =3—m,P+m, P

—IIst'l (im;P) 2+, (10)
IIt'n (im, P) m, P

A'(m, P) = a'(m, P)+ ', ln(1+-m, P),

&'(m, p) = b'(m, p)+1+m,p,

(11)

(12)

whose numerical values are given in column 1 of Table I
and the ~ column of Table II. These functions, as they
are bounded and have little variation, are very adequate
for tabulation purposes. Results for a(m, P) and b(m, P)
with other values of m, can then be obtained by inter-
polation. Those of b(m, P), corresponding to the particle
masses given in Table V, are tabulated in the other
columns of Table II.

Then the new functions:

are defined and evaluated, the results being given in
Tables IV and VI for the related functions 2 and B.

Also the bounded function

dQA (W 0)/dW= (2s.) 'es'~(r)'$/kr)P') '*

To evaluate this expression the following functions
are defined:

D"(m, P) =d" (m,P)+ 15m,P/2, (14)

d" (X)=$([b'(X)+1]'+X[2b'(X)—3j} (13)
a'(m, P) =m,P+31nP+[lnI, j, s, ;q=p is tabulated in Table I, column 2 to facilitate the

( + ~P)~ ( ) calculation of the function
b'(m, p) = —p'[rl' inI, /r)a'j =o o =p —(1+m,p), (8)

where the prime is here used to denote the represented
quantity multiplied by the natural logarithm of 10;
a'= a ln10, for example, and D"=D(ln10)'. This device
facilitates the use of natural logarithms in this section,
but expresses the final results with decimal logarithms
and exponentials of 10, which are more adequate for
numerical computation. All the tabulated quantities are

which is tabulated in Table III for the set of masses
given in Table V.

When (9) and (12) are substituted in (4), the latter
becomes:

PF=g;(a'(m, P) —3—ln(m, P) m,P+ ssin(1+m, P)—)
+3 lnP —ss Jn(Q; 8'(m, P) )+3 Q; inm, ,
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TABLE III. Values of the function D(pm) for masses of
several particles.

0
0.01
0.02
0.04
0.1
0.2
0.4
1
2
4

10
20
40

100
200
400

1000

4.523
4.593
4.554
4.579
5.039
6.113
8.564

16.46
29.85
56.74

137.5
272.2
541.5

1349
2696
5390

13470

4.523
4.596
4.559
4.562
4.947
5.889
8.059

15.12
27.16
51.35

124.0
245.2
487.6

1215
2427
4850

12122

4.523
4.597
4.568
4.557
4.876
5.752
7.754

14.15
25.51
48.03

115.7
228.6
454.4

1132
2261
4518

11291

4.523
4.607
4.574
4.554
4.774
5.460
7.101

12.57
21.99
40.97
98.06

193.2
383.6
954.8

1907
3811
9523

4.523
4.590
4.604
4.573
4.714
4.810
5.539
8.208

13.06
22.97
52.96

103.0
203.1
503.6

1004
2006
5010

4.523
4.540
4.559
4.594
4.594
4.557
4.601
5.090
6.230
8.821

17.13
31.20
59.45

144.3
285.8
568.7

1417

4.523
4.534
4.548
4.586
4.606
4.571
4.571
4.858
5.664
7.554

13.78
24.44
45.89

110.4
217.9
432.9

1078

dQiii(W, O)/d W
= (2~) '(loge)'P "~ "10"(B'S/kBP') & (15.)

The last term of this expression can be calculated by
observing, from the definition of S, that

1 82S

k BP'

The exact calculation of BE/BP from (24) will give
quite an elaborate expression for numerical evaluation,
but this can be approximated if the quantity $ is defined
by

which, substituted in (5), gives for the kinetic energy:

PE= p(W Z;—,)=2, b'(,p) 9—
+P; D"(m;p)/P, 8'(m, p),

and the expression (24) follows.
The entropy will then be given by:

S/k =PE++,A'(m, P) 21n P;B'(m—,P) 3(N 1—) InP, —

and with the definition (25) of the function X, (5)
becomes:

parameter $ so that the curves intersect at the point of
interest. If, as an approximation, we consider that they
have the same tangent at this point, or, what is the
same, that the parameter $ has a slow variation, then

p'(B/Bp)E= (N 1)p—'(B/BP)L~'(p)/p j, (»)
(a function of p) is, on using (16), the inverse of the
function b(x) of the argument pE loge/(N —1).

If we define the functions

g (N,P) = log( (loge):P '~+'(N 1)——l)
(given in Table VII) and

&PE loge((N —1)j
=

2 log( —0'( B/ Bp)Lb'(p)/pj)+log4 '

(given in Table VIII), then the logarithm of expression
(15) becomes the expression (26) without the last term.

The small variation of the function p gives us confi-
dence in the above approximation, as both sides of (17)
have the same limits for P—+0 or P—+~.

III. CORRECTION OF THE SADDLE POINT
APPROXIMATION

The saddle point approximation method gives good
results for large N. For small N some discrepancy is to
be expected. To check the error, it is possible to compare
the saddle point approximation for all N with the N.R.
and E.R. approximations and, in the critical case N= 2,
to compare the saddle point approximation with the
exact calculation.

N.R. case—To get this approximation, the Hankel
functions must be replaced by their asymptotic ex-
pansions' when p~~, and the formula worked out. The
relation between temperature and energy becomes
PE~32(N 1) as expected, an—d the volume in momen-
tum space is

P= kP, and PE= (N—1)b'(P) (16)

The functions PE and (N —1)b'(P) have curves of
similar shape, and the above relation (16) adjusts the

dQ —(2~) ~~(N i)—
dW

+3N/2 —5/2

CN. R., (18)
(3N/2 —5/2)!

TABLE IV. Values of the function B(pm) for masses of
several particles.

ParticIes

which agrees with the direct calculation on the X.R.

TABLE V. Masses of the particles as used in this paper.
0
0.01
0.02
0.04
0.1
0.2
0.4
1
2
4

10
20
40

100
200
400

1000

1.737
1.749
1.748
1.762
1~ 880
2.180
2.902
5.294
9.394

17.64
42.44
83.78

166.5
414.5
828.0

1655
4136

1.737
1.749
1.746
1.757
1.856
2.112
2.751
4.889
8.573

16.00
38.31
75.53

150.0
373.3
745.5

1490
3723

1.737
1.750
1.747
1.754
1~ 842
2.074
2.658
4.638
8.063

14.97
35.75
70.40

139.7
347.7
694.2

1387
3467

1.737
1.751
1.748
1.750
1.816
1.992
2.467
4.109
6.987

12.81
30.32
59.55

118.0
293.4
585.6

1170
2924

1.737
1.749
1.751
1.748
1.760
1.822
2.014
2.796
4.257
7.289

16.48
31.84
62.59

154.8
308.6
616.0

1538

1.737
1.740
1.745
1.753
1.750
1.745
1.769
1.987
2.216
2.983
5.502
9.810

18.48
44.52
87.95

174.8
435.4

1.737
1.740
1.743
1.749
1.751
1.749
1.748
1.836
2.049
2.601
4.478
7.737

14.42
34.11
67.11

133.1
331.2

Particles m/m

9.52
8.57
7.98
6.73
3.54
1
0.76

m in Mev

1329
1195
1115
938
495
139.5
106

~ G. N. Watson, Bessels Functions (Cambridge University
Press, New York, 1952), p. 198, Eqs. (5), (6).
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limit except for the correction factor:

f'3N —3 q
&N+' I'(-,'N —-', )

&3N —5i r, (-;N —-,')

TABLE VII. Values of the function 23 (N,p) for several muitiphcities
of particles.

2 3 4

where F,(N+1) is Stirling's approximation (23/e) "(22m)&
for the gamma function I'(n+1). The correction CN.R.
approaches one for large N and for small N has the
values:

N
CN. R.

2
0.957

3
1.014

4
1.013

5
1.011

6
1.009

7
1.008

These are quite good approximations, even for
small N.

E.R. case—In this approximation (P~O), the Hankel
functions are substituted for by means of the expres-
sions'.

0.01
0.02
0.04
0.1
0.2
0.4
1
2
4

10
20
40

100
200
400

1000

3.457
2.855
2.252
1.457
0.855
0.252
0.457-1
0.855—2
0.252-2
0.45 7—3
0.855-4
0.252—4
0.457-5
0.855-6
0.252—6
0.457-7

9.306
7.801
6.296
4.306
2.801
1.296
0.306-1
0.801—3
0.296—4
0.306—6
0.801-8
0.296-9
0.306—11
0.801-13
0.296—14
0.306-16

15.218
12.810
10.402
7.218
4.810
2.402
0,218—1
0.810—4
0.402-6
0.218—9
0.810-11
0.402-14
0.219—17
0.810-20
0.402—22
0.218-25

21.156
17.844
14.533
10.156
6.844
3.533
0.156-1
0.844—5
0.533-8
0.156-12
0.844-16
0.533-19
0.156-23
0.844-27
0.533—30
0.156-34

limit, except for the correction factor:

27.107
22.893
18.678
13.107
8.893
4.678
0.107-1
0.8936
0,678-10
0.107-15
0.893-20
0.678-24
0.107-29
0.893-34
0.678—38
0.107-43

34.068
27.950
22.833
16.068
10.950
5.833
0.068-1
0.950-7
0.833-12
0.068-18
0,950-24
0.833-29
0.068-35
0.950-41
0.833-46
0.068-52

and

2%'(v) —2 lnX
irrH &'&(2Xi) = g X'",

(v t)2

and C=0.577 is Euler's or Mascheroni's constant.
The temperature-energy relation becomes PE

=3(N—1), and the volume in momentum space is

dQ ( ) N 1—(4N 4)!E3N—3

CE.R. (»)
d W L 2) (2N —1)!(2N —2)!(3N —4)!

which agrees with the direct calculation on the E.R.

TABLE VI. Values of the function A (pm) for masses of
several particles.

0
0.01
0.02
0.04
0.1
0.2
0.4
1
2
4

10
20
40

100
200
400

1000

1.400
1.440
1.478
1.552
1.732
1.957
2.257
2.746
3.158
3.590
4.174
4.621
5.070
5.666
6.117
6.568
7.165

1.400 1.400
1.436 1.434
1.470 1.465
1.537 1.528
1.704 1.488
1.918 1.893
2.207 2.175
2.686 2.646
3.094 3.051
3.524 3.479
4.107 4.061
4.554 4.509
5.002 4.956
5.597 5.551
6.048 6.002
6.500 6.453
7.097 7.050

Particles
1V K

1.400 1.400
1.427 1.416
1.455 1.430
1.508 1.459
1.639 1.541
1.832 1.661
2.100 1.856
2.551 2.221
2.949 2.579
3.372 2.979
3.952 3.544
4.397 3.984
4.846 4.430
5.441 5.023
5.891 5.473
6.342 5.924
6.939 6.521

1.400 1.400
1.403 1.405
1.409 1.408
1.418 1.414
1.442 1.433
1.483 1.463
1.560 1.523
1.750 1.676
1.975 1.875
2.281 2.152
2.775 2.619
3.188 3.021
3.620 3.447
4.205 4.029
4.653 4.476
5.102 4.924
5.698 5.519

I Jahnke-Ende, Tafeln Hoherer Fuektioeen (B. G. Teubner,
Leipzig, 1952), p. 136, p. 19.

1 ~ 0'(v)++(v+1) —2 lnX—2rH1&'& (2Xi) =—X Q X'",
X =o v!(v+1)!

where
@(0)= —C,

4'(v) = —C+1+-', .+—,

1 ) f (3N—4) 'N 1I' (2N —1) '
CE R

N) E3N —3) E2N —2)

TABLE VIII. Values of the function P(x).

0.651 1.694
0.655 1.687
0.660 1.691
0.665 1.694
0.670 1.698
0.675 1.701
0.680 1.704
0.685 1.707
0.690 1.710
0.695 1.713
0.700 1.715

0.710 1.720
0.720 1.725
0.730 1.729
0.740 1.734
0.750 1.739
0.760 1.744
0.770 1.749
0.780 1.753
0.790 1.757
0.800 1.761
0.810 1.764

0.820 1.767
0.830 1.770
0.840 1.773
0.850 1.776
0.860 1.779
0.870 1.782
0.880 1.784
0.890 1.787
0.900 1.790
0.920 1.795
0.940 1.800

0.960 1.804
0.980 1.808
1.000 1.811
1.025 1.816
1.050 1.819
1.075 1.823
1.100 1.825
1.150 1.829
1.200 1.833
1.250 2.834
1.303 1.834

I', (4N —3) I'(2N) F (2N —1) I'(3N —3)
X

I'(4N —3) I', (2N) I', (2N —1) I', (3N —3)

This correction approaches 1 for large N, but for
small N it departs too much from 1 to be disregarded,
being 0.580 for N= 2. The function

Z(N) =logCE.R (N)/logCE R (N=2)

is given in Table IX.
N=2 case—In this case the formula can be ana-

lytically integrated, giving:

dQ/dW= (2r/2) $(W' —tn12 —ms')' —42nt'ms']&

X (1 L(rn12 rn22)/W272) (20)

The exact calculation has been made for processes in
which the particles 2m, N~, AE, ZE, and 2Ã come out.
The differences between log(dQ/dW) =I. calculated by
this process and L calculated by the saddle point
method are plotted in Fig. 7 as a function of the relation
between the kinetic energy and the sum of the masses
E/p rn. These differences fall pretty well on the same
curve rl(E/g m). If we assume that for other values of
N the corrections have the same functional dependence
on E/p rn, then with (20) these corrections are given by
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TABLE &X. Function lN) of the number of particles that dp, /W, are invariants, so (21) becomes
multiply the correction for the saddle point calculated value of
L (=logdg/dip).

dQ~(w', P')/dw'=
~

s(P, p,)s(P; w,—w) g dp, .
~=I W,

2
3
4
5
6
7
8
9

10
11
12
13

1
0.624
0.462
0.361
0.298
0.251
0.219
0.193
0.173
0.157
0.143
0.130

14
15
16
17
18
19
20
25
30

100
1000

0.122
0.116
0.106
0.101
0.094
0.087
0.082
0.066
0.058
0.031
0.002

This, with the replacement of the 6 functions by their
Fourier transforms, and with

W, '= y(W —vp, ,),
becomes

dQ~(W', P')/d W

= (2z-) 4 dXe'"'")~de

ii(E/P m) (E), which is the last term of expres-
sion (26).

IV. DERIVATION OF FORMULAS —B

t. t' i pi*i
X g ~~ y~ 1— ~dp, exp{—iup —ilaw, ), (22)

W;)

If the total energy-momentum is W', P'WO, the dQ~(w' P')/dW'
volume in momentum space per unit energy range is

dQ~(w', P')/dw'

N
~6(P' —g; p )8(P; W —W') g dp . (21)

=y~(2m) 4)I dhe*'~)t du

J, Jj„)iv

X~1- Z —'+"Z '-+ arrl„(23)j
Under a I.orentz transformation in the I-direction:

where I; is defined in (2) and
C]$ 944—p ) Ql4= —84l= Z'KP

&

~
—2 1 ~2 W2/W12 (W~2 P~2)/W&2

the product 6(P' —P, p, ')8(P, W, ' —W') and the ratio

0 0.000
0.02 0.004
0.03 0.007
0.04 0.012
0.05 0.016
0.06 0.020
0.07 0.024
0.08 0.028
0.09 0.034
0.10 0.040
0.11 0.044
0.12 0.050
0.13 0.055
0.14 0.059
0.15 0.064
0.16 0.068
0.17 0.072
0.18 0.076
0.19 0.080
0.20 0.084
0.22 0.090
0.24 0,095

E/Z m

0.26 0.100
0.28 0.104
0.30 0.109
0.32 0,113
0.34 0.118
0.36 0.122
0.38 0.126
0.40 0.130
0.42 0.135
0.44 0, 140
0.46 0,143
0.48 0.146
0.50 0.149
0.52 0.153
0.54 0.156
0.56 0.160
0.58 0.163
0.60 0.166
0.65 0.173
0.70 0.178
0.75 0.184
0.80 0.189

E/2 m

0.85 0.195
0.90 0.200
0.95 0.204
1.0 0.208
1.1 0.213
1.2 0.218
1.3 0.223
1.4 0.228
1.5 0.232
1.6 0.234
1.7 0.236
1.8 0.239
1.9 0.242
2.0 0.244
2.2 0.247
2.4 0.250
2.6 0.253
2.8 0.256
3.0 0.259
3.5 0.263
4.0 0.268
4.5 0.272

E/'Z m

5.0 0.275
5.5 0.277
6 0 279
7 0.282
8 0.284

10 0.285
15 0.284
20 0.283
30 0 278
40 0.274
50 0.271
60 0.268
80 0.264

100 0.260
150 0.256
200 0.252
300 0.248
400 0.245
600 0.242
800 0.240

1000 0.238
0.232

TABLE X. Difference q between the exact value of L
(=logdQ/dW) and L calculated by saddle point in case of two
outgoing particles, as a function of the relation between the
kinetic energy E and the total mass Z m of the system. For XW2
this correction must be multiplied by =(E), as given in Table IX.

exp{—e p;—ilaw, )dp, .
W;

In the o integration in (23), the terms depending on J;
can be taken out of the integral and evaluated at the
saddle point, giving zero results. The only remaining
term is the one independent of J;, and expression (31)
results.

To obtain the correction to be applied to expression
(31), the exact integrals of the terms depending on J;
must be evaluated. It is then readily seen that the terms
with an odd number of J's are zero, and the result is a
sequence in even powers of v.

In the worst case of this saddle point approximation,
when 1V=2, the correction for (31) can be analytically
integrated, giving7

dQ (W', P')/dW'= C(w'/W)'dQ, (W,O)/dW,

where

(r )
' 1—2 (mP+m2')/W'+ (mi2 —mP)/H"

bc) 1—(mi2 —m P) '/W'

This result shows that (31) still is a good approxi-
mation.

7 M. M. Block (unpublished).
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V. THERMODYNAMIC DISTRIBUTION

In a system of S particles of masses m& . m,' m&,
with a total kinetic energy E, it is possible to de6ne an
equilibrium temperature P = 1/kT (k= Boltzmann con-

stant) given by:

pE loge=+, b(m;p)

+P;D(m,P)/P, B(m,P) 3—90.9, (24)

2.5

2.0

I I I Ill] I I I I I Ill[ I I I I I III(

where b(m;P), D(m, P) and B(m,P) are functions given in

Tables II, III, and IV as functions of P, with masses

corresponding to several particles as given in Table V.'
Then the auxiliary function

l.5
IO

E/(N-Ij

y=PE loge++, A (m,P) —(3/2) log+, B(m,P) (25)

can be calculated, with A (m,p) as given in Table VI.
The volume of the momentum space per unit energy

range, when the total momentum is zero and the total

Fio. 2. Relation between mean kinetic energy PE/(N 1)j in-
m c' units and temperature (=1/kP; k=Boltzmann constant) as
a function of the mean kinetic energy, for systems consisting of:
(a) 4 pions; (b) 2 nucleons and 2 pions; (c) 1 nucleon, 1 hyperon
(Z), 1 heavy meson (E), 1 pion; (d) 4 nucleons.

For P=0.2 we have:

3.0

2.5

I I I I I III I I I I I I I II I I

Table
II

III
IV
VI
V

Function
b=

D=
B=
A=

m/m =

Nucleon

0.973
5.460
1.992
1.832
6.73

Pion

1.224
4.557
1.745
1.483
1

Z b= 3.170
2 D= 15.477
ZB= 5729
Z A= 5.147

2 m/m =14.46

then formulas (24) and (25) yield PE loge=1.963 and
X=5.973. From Tables VII to X we find:

2.0 Arguments

X=3, P=0.2
PE loge/(X 1)=0.981—
E/2 m=1.56
%=3

Table
VII

VIII
X

IX

y=2.801
P = 1.808
0 =0.233
"=0.624

l0 F00

Fio. 1. Relation between mean kinetic energy pE/(ly' —1)] in
m c'units and temperature (=1/kIS; k=Boltzmann constant) as a
function of the mean kinetic energy, for systems consisting of:
(a) 3 pions; (b) 1 nucleons and 2 pions; (c) 2 nucleons and 1 pion;
(d) 3 nucleons.

energy is t/t/', is given by:

L= log [dQ~ (W,O)/d Wj= r1P(NP) /[PE loge/(N 1)]- —
+x+~(E/2, m, )=-(N), (26)

Therefore, finally, with formula (26), we obtain L= 7.111
or dQ/dW=1. 29X10'.

VII. APPLICATIONS

In the processes of collision of two particles, the 7r p,
rr n, 7r+m, w+p, pp, and prr collisions are easily obtained

3.0—

where the functions P, IP. .. and ri are given respectively'

in Tables VII, VIII, IX, and X.
2.5

VI. NUMERICAL EXAMPLE

Consider the case where two nucleons and one pion
come out. Relation (24) gives p as an implicit function

of E. It is then preferable to start with a value of P and

get the corresponding E. The choice of a convenient p
can be facilitated by inspection of Figs. 1, 2, and 3
where graphs of PE/(N 1) as a function of—E/(N 1)—
are given for several sets of outgoing particles.

8H. A. Bethe and F. de HofFmann, 3fesons and Fields (Row,
Peterson, and Company, New York, 1955), Vol. II, p. 374.

2.0

l.5 i0
p/(N f)

IQO

Fio. 3. Relation between mean kinetic energy PE/(N —1)7 in
m c' units and temperature (=1/kP; k =Boltzmann constant) as a
function of the mean kinetic energy, for systems consisting of:
(a) 5 pions; (b) 2 nucleons and 3 pions; (c) 1 hyperon (A or Z),
1 heavy meson (X), and one pion; (d) 1 nucleon and 2 heavy
mesons (E); (e) 1 hyperon (0) and 2 heavy mesons (E); (f) 1
nucleon, 1 hyperon (Z or A) and 1 heavy meson (K).
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TABLE XI. Summary of momentum space volumes per unit of energy range. The logarithm of these volumes is given by the difference
~L=L—LN. R. (where LN. R. =s+t logE is the N.R. approximation), as a function of the relation between the kinetic energy E of the
system and the kinetic energy E;, for which the N.R. and the K.R. approximations are the same.

System
-log(E/E~)

0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40
0.44
0.48
0.52
0.56
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.40
2.80

logE;=

3N

0.970
0.920
0.880
0.842
0.804
0.762
0.718
0.678
0.640
0.608
0.574
0.538
0.510
0.482
0.462
0.412
0.362
0.322
0.282
0.228
0.170
0.130
0.200
0.070
0.030
0.020

1.467

3.862

2N~

1.152
1.100
1.058
1.000
0.950
0.900
0.850
0.804
0.770
0.730
0.692
0.652
0.608
0.574
0.542
0.470
0.400
0.330
0.280
0.204
0.150
0.104
0.070
0.044
0.022
0.012

1.126

2.838

N2m.

1.198
1 ~ 138
1.080
1.032
0.980
0.932
0.886
0.842
0.792
0.754
0.714
0.680
0.642
0.604
0.578
0.494
0.420
0.346
0.298
0.220
0.162
0.120
0.084
0.060
0.024
0.012

0.821

1.924

0.982
0.924
0.866
0.842
0.778
0.732
0.688
0.650
0.618
0.590
0.554
0.524
0.496
0.470
0.442
0.388
0.342
0.302
0.270
0.220
0.164
0.124
0.092
0.070
0.034
0.018

0.639

1.378

1.062
1.030
0.998
0.968
0.942
0.908
0.880
0.860
0.830
0.802
0.778
0.748
0.720
0.690
0.660
0.596
0.524
0.458
0.398
0.280
0.186
0.120
0.076
0.052
0.024
0.016

1.271

3.372

02K

1.022
0.980
0.930
0.880
0.840
0.796
0.754
0.718
0.680
0.644
0.622
0.584
0.552
0.528
0.500
0.440
0.360
0.330
0.296
0.224
0.166
0.120
0.080
0.058
0.034
0.022

1.306

3.339

1.000
0.950
0.902
0.868
0.822
0.774
0.736
0.702
0.670
0.638
0.602
0.580
0.542
0.520
0.496
0.438
0.382
0.330
0.292
0.222
0.172
0.130
0.092
0.064
0.030
0.018

1.387

3.620

NXK

2.022
0.960
0.904
0.860
0.818
0.770
0.738
0.698
0.662
0.624
0.598
0.564
0.536
0.504
0.482
0.424
0.372
0.324
0.294
0.230
0.176
0.134
0.096
0.062
0.030
0.018

1.395

3.646

1.012
1.152
1.090
1.032
0.980
0.912
0.856
0.814
0.762
0.726
0.690
0.660
0.624
0.600
0.576
0.514
0.462
0.404
0.358
0.264
0.198
0.134
0.096
0.062
0.030
0.016

1.055

2.624

1.228
1.180
1.140
1.086
1.042
0.988
0.940
0.900
0.856
0.808
0.762
0.728
0.640
0.644
0.620
0.552
0.492
0.424
0.372
0.274
0.202
0.140
0.096
0.064
0.050
0.016

1.060

2.640

System
-1og (E/E g)

0.04
0.08
0.22
0.16
0.20
0.24
0.28
0.32
0.36
0.40
0.44
0.48
0.52
0.56
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00
2.40
2.80

logE; =

2N

0.452
0.438
0.399
0.373
0.346
0.321
0.299
0.280
0.263
0.250
0.236
0.222
0.202
0.290
0.180
0.151
0.129
0.108
0.089
0.063
0.046
0.036
0.030
0.022
0.020
0.019

2.229

2.040

0.772
0.751
0.731
0.709
0.690
0.670
0.648
0.624
0.603
0.580
0.558
0.538
0.521
0.500
0.483
0.440
0.398
0.350
0.306
0.238
0.178
0.126
0.082
0.059
0.031
0.018

0.642

1.160

1/2

0.535
0.515
0.495
0.481
0.468
0.451
0.438
0.422
0.408
0.393
0.382
0.370
0.356
0.346
0.332
0.306
0.282
0.259
0.238
0.201
0.170
0.141
0.112
0.084
0.045
0.025

0.401

0.798

0.582
0.564
0.542
0.529
0.512
0.494
0.480
0.468
0.450
0.438
0.423
0.411
0.398
0.385
0.372
0.345
0.321
0.299
0.274
0.231
0.185
0.145
0.112
0.084
0.039
0.014

1.102

1.848

0.582
0.560
0.540
0.521
0.505
0.489
0.475
0.458
0.442
0.430
0.412
0.400
0.386
0.376
0.368
0.344
0.318
0.294
0.270
0.222
0.180
0.144
0.112
0.084
0.040
0.013

1.092

1.834

1.392
1.317
1.254
1.200
1.216
1.050
0.990
0.918
0.849
0.810
0.753
0.727
0.663
0.624
0.594
0.513
0.448
0.366
0.324
0.246
0.189
0.135
0.099
0.072
0.033
0.021

1.609

5.349

2N2x

2.725
1.650
1.563
1.497
1.428
1.350
1.275
1.200
1.128
1.074
1.017
0.960
0.897
0.837
0.780
0.669
0.567
0.480
0.393
0.282
0.198
0.126
0.087
0.060
0.033
0.027

1.138

3.227

7/2

1.428
1.338
1.263
1.197
1.134
1.050
0.990
0.930
0.867
0.816
0.762
0.720
0.675
0.627
0.588
0.513
0.444
0.375
0.313
0.228
0.277
0.232
0.099
0.066
0.033
0.015

0.781

2.623

NZKx

1.689
1.608
1.539
1.464
2.395
1.326
1.254
1.197
1.131
1.080
1.020
0.963
0.912
0.855
0.810
0.708
0.612
0.525
0.453
0.345
0.243
0.168
0.114
0.078
0.036
0.021

1.319

4.045

2N3m.

2.232
2.096
1.980
1.826
2.796
1.684
1.596
2.500
1.404
1.324
1.248
1.168
1.084
1.024
0.960
0.804
0.680
0.560
0.472
0.324
0.228
0.140
0.084
0.064
0.040
0.028

1.172

3.370

1.872
1.740
1.624
1.536
1.488
1.364
1.280
1.204
1.128
1.072
1.008
0.932
0.872
0.808
0.760
0.640
0.540
0,456
0.392
0.284
0.196
0.136
0.100
0.076
0.040
0.024

0.887

1.662
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TABLE XII.Summary of momentum space volumes per unit energy range. The logarithm L of these volumes is given by the difference
L=L—La, R. (where Lz.z, g=+r logE is the N.R. approximation), as a function of the relation between the kinetic energy E of the
system and the kinetic energy E;, for which the N.R. and the E.R. approximations are the same.

System
loj (B/8;)

0
0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00

logE; =

3N

1.022
0.976
0.924
0.860
0.808
0.752
0.712
0.668
0.606
0.566
0.530
0.440
0.348
0.296
0.224
0.180
0.156
0.104
0.062
0.058
0.052
0.048

1.467

2Nm.

1.212
2.152
1.100
1.044
0.982
0.920
0.862
0.816
0.762
0.720
0.678
0.578
0.498
0.422
0.360
0.302
0.260
0.180
0.122
0.084
0.060
0.054

1.126

N2x

1.268
1.220
1.170
1 ~ 110
1.052
0.998
0.944
0.882
0.842
0.792
0.750
0.654
0.558
0.470
0.396
0.338
0.288
0.206
0.140
0.096
0.056
0.024

0.821

1.042
0.964
0.910
0.836
0.782
0.740
0.690
0.636
0.598
0.560
0.516
0.438
0.360
0.280
0.236
0.198
0.162
0.110
0.032
0.044
0.030
0.020

0.639

N2K

1.096
1.024
0.956
0.904
0.842
0.782
0.728
0.682
0.630
0.582
0.540
0.448
0.378
0.304
0.256
0.204
0.162
0.104
0.070
0.056
0.042
0.036

1.271

—0.541

02K

1.090
1.040
0.980
0.920
0.850
0.796
0.752
0.698
0.656
0.620
0.580
0.520
0.460
0.418
0.368
0.330
0.298
0.232
0.180
0.138
0.112
0.098

1.306

Nit K

1.058
0.966
0.896
0.818
0.754
0.690
0.638
0.590
0.552
0.520
0.488
0.420
0,358
0.302
0.252
0.206
0.170
0.202
0.060
0.040
0.036
0.030

1.387

NZK

1.090
1.038
0.974
0.910
0.856
0.798
0.742
0.682
0.640
0.598
0.556
0.460
0.372
0.290
0.242
0.204
0.178
0.122
0.080
0.058
0.044
0.040

1.395

1.270
1.220
1.176
1.116
1.070
1.022
0.978
0.922
0.868
0.820
0.768
0.662
0.550
0.440
0.364
0.302
0.250
0.160
0.104
0.094
0.052
0.038

1.055

1.296
1.250
1.182
1.118
1.042
0.976
0.930
0.878
0.830
0.790
0.750
0.644
0.552
0.460
0.384
0.306
0.254
0.170
0.116
0.078
0.050
0.036

1.060

System
&og (&/&')

0
0.04
0.08
0.12
0.16
0.20
0.24
0.28
0.32
0.36
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.60
1.80
2.00

logE;=

2N

0.479
0.451
0.420
0.391
0.368
0.342
0.321
0.301
0.285
0.271
0.253
0.225
0.200
0.274
0.156
0.140
0.129
0.102
0.081
0.062
0.505
0.045

1.229

0.792
0.761
0.728
0.700
0.662
0.631
0.598
0.562
0.531
0.502
0.471
0.404
0.343
0.289
0.243
0.210
0.172
0.120
0.081
0.059
0.041
0.031

0.642

0.552
0.522
0.499
0.470
0.440
0.411
0.382
0.358
0.332
0.309
0.282
0.238
0.193
0.162
0.135
0.116
0.099
0.072
0.051
0.036
0.022
0.017

0.401

0.605
0.582
0.558
0.524
0.491
0.462
0.429
0.401
0.371
0.352
0.325
0.275
0.228
0.189
0.159
0.130
0.109
0.080
0.059
0.044
0.031
0.025

1.101

0.605
0.588
0.522
0.520
0.489
0.460
0.430
0.401
0.379
0.359
0.340
0.290
0.242
0.201
0.161
0.132
0.110
0.080
0.057
0.041
0.030
0.025

1.092

4N
d,L=

1.482
1.410
1.317
1.224
1.140
1.050
0.978
0.906
0.843
0.825
0.747
0.624
0.513
0.420
0.348
0.282
0.231
0.150
0.108
0.090
0.081
0.075

1.609

2N2x.

1.806
1.743
1.677
1.608
1.548
1.455
1.362
1.323
1.197
1.116
1.026
0.900
0.753
0.633
0.510
0.426
0.309
0.195
0.150
0.126
0.117
0.108

1.138

1.518
1.443
1.386
1.308
1.233
1.146
1.074
0.993
0.924
0.864
0.792
0.660
0.534
0.423
0.357
0.297
0.243
0.165
0.205
0.069
0.036
0.027

0.781

NEK~

1.776
1.686
1.593
1.506
1.416
1.323
1.233
1.167
1.104
1.047
0.963
0.813
0.675
0.558
0.474
0.396
0.327
0.219
0.147
0.093
0.069
0.060

1.319

2N3~

2.364
2.260
2.164
2.060
1.952
1.844
1.732
1.624
1.528
1 AHA

1.364
).204
1.040
0.846
0.724
0.596
0.484
0.336
0.236
0.196
0.100
0.064

1.167

1.976
1.886
1.804
1.704
1.592
1.472
1.380
1.280
1.188
1.100
1.016
0.844
0.688
0.560
Oozxx
0.372
0.300
0.196
0.132
0.084
0.044
0.020

0.887

0.196 —1.896 —3.661

21

in the laboratory. Momentum space calculations for all
of the sets of two or three particles resulting from such
collisions and compatible with the Gell-Mann and Pais'
scheme of selection rules are presented in this paper.

9 M. Gell-Mann and A. Pais, Proceedings of the Glasgow Confer-
ence on Nuclear and M'eson Physics (Pergman Press, London and
New York, 2955).

Calculations were extended for all compatible sets of
four particles resulting from the pe collision, as these are
useful in reference to the antiproton production on the
Berkeley Bevatron. "Also calculations were made on the
2, 3, 4, and 5-pion systems because of their interest as

' Chamberlain, $egrh, Wiegand, and Ypsilantis, Phys. Rev. 100,
947 (195$).



336 G. E. A. F IALHO

IO

I I & I I I I
[

I I For larger N, see formulas (18) and (19) with CF. a
=CN.R.= i.

The energy of the crossing point between the two
approximations is then readily found from the equations:

X=2,
/=3,
X=4,
E=S,

logE, = M+0.703,

logE, = -', M+0.878,

logE, = iaM+0. 983,

logE, = ~r M+ 1.062.

(30)

I. . . I

0
I og ( E/rf)~ )

Fro. 4. Variation of L=logdg/dW with logE for a system
consisting of 2 nucleons and 1 pion. The straight lines represent:
N.R., the nonrelativistic approximation; E.R., the extreme rela-
tivistic approximation; F, the Fermi approximation, where the
nucleons and pions are treated respectively as N.R. and E.R.
particles and only the nucleons share the momentum conservation.

reference curves (since the pion mass is here taken as
unity) or for eventual calculations on annihilation
processes.

The relations between temperature and energy as
calculated by (24) are given in Figs. 1, 2, and 3 because
they are useful as an orientation for the choice of a
temperature corresponding to a convenient energy range
in any new process.

The logarithms (decimal) L of the momentum space
volumes are given in Table XI, XII as a correction to
the N.R. and E.R. approximations, because this gives a
better tabulation than the volume itself, which is an
increasing monotonic function of the energy. The N.R.
and E.R. approximations are given by formulas (27)
and (28), and the quantities s, t, q, and r for the different
systems are given in Tables XI and XII. The results for
two-particle systems are included, although these are
calculated with the exact formula (19),because they are
useful as references. Figure 4 gives L for the system of
two nucleons and one pion; the N.R. E.R., and F
approximations are there represented by straight lines.

If, as in Tables XI and XII, AL denotes the difference
between L calculated by saddle-point and by the N.R.
and E.R. approximations, then the curves of AL/(N 1)—
vs E/E, do not much differ. Figure 5 was obtained by
taking a mean of all calculations in this paper. If this
curve is used for any other calculation, then a value of
DL and so of L is readily obtained. This method of using
a mean curve (Fig. 5) is inexact and the resulting calcu-
lation will be relatively crude. Nevertheless, this pro-
cedure represents an improvement over the N.R. and
E.R. approximations.

As an illustration, let us examine again the example of
Sec. VI. Now we start with the kinetic energy E= 22.6.
For two nucleons and one pion, relation (29) gives
M = 0.496, which, substituted in (30), gives logE;
= 1.126. Then in Fig. 5, with log(E/E~) = 0.228, we get
DL=0.842, this di6erence being referred to the E.R.
case. This approximation is LH a ——6.230, giving (with
the above value of AL) 7.072 or dg/dW=11. 8X10'.
This value is to be compared with the saddle point
result 12.9)&10', the E.R. result 1.70)&10', and the
N.R. result 0.352)(10'. For the same energy the Fermi
approximation gives 36.3X10'.

IX. MOMENTUM DISTRIBUTION

If the total energy-momentum is W', P'/0, the
volume in momentum space dQ~(W', P')/dW' is related
to the volume with zero total rnornenturn by a Lorentz
transformation, which, within the saddle point ap-

VIII. ESTIMATION OF MOMENTUM
SPACE VOLUMES

The logarithms of momentum space volumes in the
N.R. and E.R. approximations are:

N.R. LNQ s+t logE, , .— (27)

(28)E.R. LE.R.=q+ r logE,

where s= s'+-,'M,

M=+, logsrs, log(g, s—rr;), (29)

S =
2

1.250
1/2

0.196
2

3
2.094
2

—0.541
5

4
2.526
7/2

—1.986
8

5

2.710
5

—3.661
11

and s', t, q, and r are functions of the number of particles
N. These functions of N are (when m =c= 1):

0 -I 0
I og( E/ E;)

Fro. 5. Variation of rsL/(1V 1) es log(E/E;), where aL=L-
—Lg. R. for the curve marked N.R. and AL=L —LK.R. for the
curve marked E.R. ; E; is the total kinetic energy of the system for
which LN. R. ——LF.R. , L= logdQ/dW; LN. ~. and Lq. R. are the N.R.
and E.R. approximations of L. The values of AL in this figure are
the average of all the values calculated in the present paper and
summarized in Tables XI and XII.
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W= (W" P"—)l. (32)

In the statistical model, Fermi' considers that the
square of the matrix element is simply proportional to
(0/V) N, where V is the normalizing volume and () is the
volume resulting from the contraction of the sphere of
interaction Qs ——47rRs/3. The I,orentz contraction factor
is (2/W') times the mass of the nucleon, with W' the
total energy and R the Compton wavelength of the pion
(h/pc= 1.4X10 "cm). With this assumption, the cross
section for one particle corning out with an energy W*
and momentum p* in the range dp* will be proportional
toll

s~(w' p*)
= 47r(Q/hs) p*'(W' —W*)" 'dQ~ (W 0)/dW (33)

where
W= L(W' —W*)'—(p' —p*)']'*, (34)

and W', p' are the total energy and momentum of the
system. The total cross section is proportional to

S//'(W')= (0/h')(W'/W)~dQv(WO)/dW (35)

where W is given by (32) with W' substituted for W'.

.5

4
p/m c

Fro. 6. Momentum distribution of mesons for nucleon-nucleon
collision at I9.835 m c in the c.m, system (2.2 Bev in Laboratory
System). The curves have been normalized to unit area.

"The statistical factors for the multiplicity of particles are not
included here.

proximation, gives:

dQ/v(W', P')/dW'= (W'/W)~dQ/v(W, O)/dW, (31)

where
~ 2

E

IJJ

I~~'1~~' 'e 'I ~s
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FIG. 7. DiA'erence q between L=logdg/dW calculated by the
exact formulas and calculated by saddle point approximation.
E=kinetic energy of the system, Z m sum of particle masses
(m =c=1). The points are for the systems: (a) 2 pions; (b) 1
nucieon and 1 pion; (c) 1 hyperon (Z) and 1 heavy meson (E);
(d) 1 hyperon (A.) and 1 heavy meson (E); (e) 2 nucleons.

log(0/hs) = log(2m/vQs/hsW')
=0.05918—2,

and, from Table XI, with E= W—P, m, = 17.49—13.46
=4.05 for two nucleons: logE;= 1.229, log(E/E~)
= —0.622, t=-,', s= 2.040, one gets ~L=0.173, and L=s
+—,

' logE+sr. = 2.157. Finally, with E=3, logQ/hs

=0.5918—2, p~=2, W=17 49 W' —W*=17.599, and
I.= logLdQ//(W, O)/d W]= 2.517, formula (33) gives logS
=0.401—2.

In this way the curves S ns p"/nz c for the production
of two nucleons and 1, 2, or 3 pions were obtained. They
are represented in Fig. 6, where each curve is normalized

to unit area.
These curves agree, within the precision of graphing,

with the ones obtained by Christian and Yang's4

numerical calculations and serve as a check on the
present approximation method.

The author wishes to thank his sponsor, Professor
Robert Serber, for suggesting this problem and for his

guidance and encouragement during the course of the
work.

X. NUMERICAL EXAMPLE

As an example, let us compute the cross section in the
center-of-mass (c.m. ), system for a nucleon-nucleon
collision at the c.m. energy W'= 19.835 (2.2 Bev in the
lab System), in which two nucleons and one pion of
momentum p*= 2m c result. With m = c= 1, we have:
W*= (p*+m c')'*=2.236, W' —W*=17.599. Since p'
=0, p' —p*= —2. Then, also, from (34), W=17.49,


