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Microwave Determination of the Probability of Collision of Electrons in Neont
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The theory for computing the microwave conductivity of a plasma discussed in the previous paper can
be used for determining the collision probability for momentum transfer of slow electrons when the con-
ductivity ratio of a plasma is measured as a function of the applied Geld. The conditions required for having
a pressure independent conductivity ratio and steady state electron energy for a given field are investigated.
The convenience of using two independent fields for measuring the conductivity and changing the electron
energy is shown. Conductivity ratios measured in the afterglow of a pulsed discharge in a microwave
resonant cavity are given for neon and neon contaminated with argon. The collision probability for
momentum transfer in neon computed from these data as a function of the electron velocity joins Ramsauer's
and Kollath's measurements for higher electron velocities.

INTRODUCTION

' 'N a recent paper Gould aIid Brown' used a microwave
.. method for determining the probability of collision
for momentum transfer of slow electrons in helium by
measuring the microwave conductivity of a plasma as
a function of the electron energy. The same method has
been used for neon and the results will be discussed in
this paper.

We shall use the theory for the microwave conduc-
tivity of a plasma we discussed in the previous paper'
which from now will be indicated as (I); the same
symbols are used. In (I) we found that for a plasma in a
quartz bottle centered in a microwave cavity the
average conductivity ratio (p) in steady-state is given
by (in this paper w means w&):

=Q)1'(5/2+1)/I'(5/2) )(1+2 )b (2S/3) ' (1)
L=O

where w and R& are, respectively, a space average elec-
tron energy and a correction factor for the nonuniform
6eld; they are given in (I) as Eqs. (28) and (44). The
quantities b~ are the coefficients of an expansion of the
electron collision frequency v as powers of the electron
energy (see Eq. (11) in (I)j. When we change the
amplitude of the applied field, we change the average
electron energy to; if we represent the measured (p)
versus w curve as an expansion in powers of w we can
expect to find the coeKcients br from (1), comparing
the two expansions and from them to compute v (v) or
the collision probability P (v)=ppv v.

This can':. be done only if Rg is independent of w, as
for the uniform field case. Nevertheless, the fact that
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R& depends on w is not a very serious difficulty, because
R& is only a correction factor and a rapidly converging
trial and error method can be used. An analogous dif-
ficulty arises because w and R~ depend on the unknown
collision frequency through the parameters h and P.
According to Figs. 2 and 3 of (I) we could practically
ignore these dependences if d/1. &0.2, but in this range
the effect of the plasma would be (in our experimental
conditions) too small for a good measurement of
D(1/Q&). Therefore, we used a bigger quartz bottle
and found another way to limit the dif6culties. The
dependence on h does not present a serious obstacle if
we use a trial and error method; the dependence on P
is of a more diflicult nature. The parameter P is propor-
tional to the square of the mean free path, which is
inversely proportional to the pressure; this means
that (p) is also pressure dependent. This fact complicates
the discussion of the experimental data, but we shall
show that we can avoid this difliculty if we work in a
convenient pressure range.

In the zero-pressure-limit formula (1) gives a certain
expression for the conductivity ratio; the zero pressure
limit corresponds to P—&~, D„ro, h,w, c„, c,—+0 or, in
other words, a uniform electron energy is found through-
out the bottle. We can determine a range of pressures
from zero to a maximum value p in which (p) does
not diGer from the zero-pressure value of more than
the experimental error we expect in the measurements.
In this range (p) is practically pressure-independent.
We have to investigate how the condition pe &p fits
with the other limits for pressure. The range in which

the theory given in (I) is correct is limited at high

pressure by the condition v '&(cu' and at low pressure

by the conditions of no appreciable diGusion cooling
and mean free path less than any dimension of the
container. If the experimental conditions are such that

p falls in this range, we have a region in which we can
use the zero-pressure-limit formula and (p) is pressure-
independent. Our conductivity measurements in neon
have been performed in this region and from now on we

will limit the discussion to this case.
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We can conclude that by choosing a convenient low-
pressure range and by using a trial and error method to
account for the dependence of Rg on Co, and of R~ and
IN on h, we can determine the coeKcients b~ from the
measured conductivity ratio as a function of the applied
Geld. Equation (11) of (I)'gives the collision frequency
for momentum transfer. Before presenting the use of
the method for the speci6c case of neon we want to
discuss how to satisfy experimentally the steady-state
energy assumption on which the theory given in (I) is
based.

STEADY STATE ENERGY CONDITIONS

Most of the assumptions made in (I) are satisfied in
the afterglow of a pulsed neon discharge when measure-
ments are performed at microwave frequencies. How-
ever, one of them needs more caref ul investigation. We
have assumed that the energy moments of the distri-
bution function Fo' are independent of time, which is
equivalent to saying that the electron average energy
Co has reached the steady state value corresponding to
the applied field at that moment. We shall derive the
conditions the experiment must satisfy to make this
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FIG. 1. Time necessary for the electrons to reach the energy
0.99 (U+ 0) starting from the gas energy U, plotted versus the
ratio of energies it/U and for various vaiues of h. The time is
measured in units of M/2mv (U).

X t ""(1+QIU ') 'd-l, -(3)

which gives the time t in which the electron energy
reaches the value w In Fig..1 the quantity (2m/M) r „(U)t
for tv=0.99(U+Q) has been plotted versus Q/U for
diGerent values of the exponent h. From these curves
we know how much time must elapse after the 6eld has
been applied before the electron energy has reached the
steady state value within one percent. Actually, in this
specific case the Maxwellian hypothesis used in (I) to
compute Eq, (24) is not very satisfactory, and we
cannot expect the curves to give more than an approxi-
mate value for the time.

Unfortunately our experimental conditions are much
more involved since the power absorbed by the cavity
changes with time. The held frequency is constant, but
the cavity resonant frequency changes due to the
change in the electron density during the decay. We
measure the conductivity ratio at the moment t=0
when these two frequencies coincide. The electron
energy at that moment tv(0) has to be very near to
U+Q(0), in order to insure the validity of the assumed
conditions. To 6nd when this is true we must solve Eq.
(2) with the proper law for Q(t). Assuming the unl'oaded

Q a constant in time, which represents a good approxi-
mation to the actual experimental case, we can write
the equation for Q(t) as the equation for the power in
a detuned cavity:

Q (i)=Q (0)/(1+ L2Q~o (i)/"7} (4)

Here Rrp(/) is the detuning, or the difference between
the Q.eld frequency and the resonant frequency. When
the density decay is controlled by ambipolar diffusion,
and we neglect higher order diffusion modes, we can
approximately express the detuning as:

q(t)«, (5)1

p

assumption acceptable. Some rough approximations are
made to simplify the problem.

We assume a decaying plasma infinitely extended
and in a uniform time varying microwave field, with no
recombination and for which all the assumptions made
in (I) are correct; the energy moments of the distri-
bution function now depends on time and not on space.
From Eqs. (21) and (24) of (I), for l= 1, we obtain:

~~(i)/« = Li"(5/2)/I' (5/2 —h/2) 7
X (2m/M) v„(tv) LU+Q(t) —m (t)7, (2)

where v (tv) is the collision frequency at the velocity
$4w(t)/3m7 and Q(t) =MLeE(i)/2mco7'.

A simple case of interest would be when the 6eld is
applied at t=0 and is constant thereafter; at t=0 we
assume w= U. Solving Eq. (2) for this case we have:

(2m/M) v„(U) t=[I' (5/2 —h/2)/I' (5/2) 7

p to/U
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where Aa&s(0) is the resonant frequency shift at t=0
from the condition without plasma and y is the density
decay constant in a plasma with the electron energy m.
For 7 we use Eq. (34) of (I), which at the zero-pressure
limit becomes:

y(t) = ( /d)'(2 /e)LU+w(t)7. (6)

When Eqs. (4), (5), and (6) are substituted into (2),
this becomes an integro-differential equation for w(t),
which can be written using dimensionless variables in
the following form:

/~gyLr (5/2)/r (5/2 —h/2) 3

) 2- —1

+~~ exp —(- (1+1)&( —1
I

=o (&)

where the dimensionless variables are:

I'(5/2 —h/2) (3d) s mv
rtlf

5(3—h)r(5/2 —h) &2 ) w

$= (2m/M)v (U)t, {=w/U,

A =U(0)/U, 8= $2QA~o(0)/coal'

C= (M/2m) (v3s/pod)'(D+ps)/Lv„(U)/ps].

We assume also the boundary condition {= 1 when
t—+—, which means energy equilibrium between
electrons and gas in the absence of the applied 6eld.
We can now restate our problem as follows. Given the
range of values of A and C over which measurements
have to be made, 6nd the maximum value of 8 for
which l (0) differs from (1+2) of a given fractional
amount (we shall assume one percent). This can be
solved numerically and in the experiment we shall
choose Q and A&us small enough to make 8 less than this
maximum value. For neon one finds that this can be
accomplished only by choosing a rather low value for
Q, when actually we would like to have a high Q cavity
for a good measurement of p. This difficulty can be
solved' by using two independent fields corresponding
to two different modes of the cavity: one with a low Q
for the purpose of controlling the electron energy
(heating mode), the other with a high Q, but much less
power than the first, for measuring the conductivity
ratio (measuring mode).

Rigorously the discussion just given is not sufficient
to insure that the energy steady state is reached in our
experiment. An additional condition has to be satisfied,
namely that the time constant for energy redistribution
due to density and energy gradients is small compared
to the time during which the heating 6eld is effective.
The time constant for the energy redistribution r„can
be computed from Eq. (24) of (I) and the result is, in
the zero pressure limit:

This last condition is always well satis6ed in our experi-
ment, the time constant being of the order of a micro-
second or less.

CONDUCTIVITY RATIO WHEN TWO FIELDS
ARE PRESENT

When the power in the measuring mode is much less
than the power in the heating mode all the formulas of
(I) from (26) to (38) are correct, provided U, is referred
to the heating mode. When we average over the cavity,
(p) is still given from (1), but R~ is no longer Eq. (44)
of (I).

Here we give the formulas for the average energy Co

and the correction factor E.~ in the zero pressure limit,
and when the heating mode has the electric 6eld parallel
to the x axis and the measuring mode has its electric
Geld parallel to the s axis.

w= U+{4(d/L„)C (d/L, )+(1—h/5)(3 —h) '

XL+ (&/L,)C'(&/L.)+C'(&/L„)+(&/L.)311., (10)

wEi LI'(5/2)—/—5 (3—h) I'(5/2 —lg) i
X{$(5—h) 5 —

n /2 —
(n /2) o' (d/L, )/eo(d/L. )j

xe(d/L„)c (d/L, )+L(s—h) s,—&,/3j
XC(~/L„)~(d/L, )&U.. (»)

EXPERIMENTAL RESULTS FOR NEON

The method discussed has been used in the deter-
mination of the collision probability in neon. The experi-
mental procedure for this kind of measurements has
been described in detail in the paper by Gould and
Brown'; no significant modifications have been intro-
duced. The geometrical dimensions of the cavity and of
the bottle are 1.,=6.90 cm, 1.„=7.51 cm, L,=6.28 cm,
d=2.82 cm; the resonant frequency for the heating
mode is 3000 Mc and the resonant frequency for the
measuring mode is 2840 Mc. The electron densities
in the plasma were of the order of 10' to 10' cm '.

According to the analysis presented in the introduc-
tion, the pressure must be bigger than 1 mm Hg to
prevent diffusion cooling' and less than the pressure
corresponding to the most stringent of the two condi-
tions v '«co' and P)3. For a given (p) and a given
Aces, the change A(1/Qr, ) is proportional to the pressure
Lformula (1)j; this means that it is better to work at
the highest pressures in the allowed range. The measure-
ments have been made at pressures from 13 to 5 mm
Hg, the lowest for the highest electron energies. In this
pressure range, except at high electron energies, the
decay in pure neon is controlled by recombination; we
found in (I) that it is diflicult to determine the electron
density distribution for this case, and we prefer to work
when diRusion is controlling the decay. Dissociative
recombination is prevented in neon by adding a small
amount of argon4 (from 0.01 to 0.1 percent); this

s M. A. Biondi, Phys. Rev. 95, 1136 (1954).
4 M. A. Biondi, Phys. Rev. 83, 1078 (1951).
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FIG. 2. Average conductivity ratio (p) as a function of electron
energy. Solid line: (p) vs U+ 11„the electron energy at the center
of the cavity in an equivalent uniform plasma, for neon con-
taminated with argon. Short-dash line: (p) ss U+11, for pure
neon. Long-and-short-dash line (p) vs rp, an average electron
energy through the cavity. The average scattering of the indi-
vidual data from the curves is two percent.

amount is so small that no appreciable change in elec-
tron collision probability is expected.

Equation (7) has been discussed numerically to
determine the conditions for which energy steady state
has been reached within one percent at the time of
measurements. Having D~ps=150 cm' sec ' mm Hg,
C&0.027 and 1.5&h&1.9, we found that 8 must be
less than 3 for 1&A &10, and less than 1.5 for 10&A
(50. Consequently we chose Q=220 and Acus(11
Mc for the first range, Acro&8 Mc for the second one.

The neon used was a commercial "spectroscopically
pure" sample obtained from Air Reduction Sales Co.
When we improved its purity using the method of
cataphoresis' we found that (p) was a function of the
post-discharge time, as if the neon metastables excited
during the discharge would remain for a long time in
the afterglow and by ionization would produce electrons
with higher energies than the other plasma electrons.
Only without the heating field the eGect could be
observed.

The measured (p) is plotted as a function of U+11,
in ev in Fig. 2, both for neon and for neon with argon.
The average scattering of the individual data from the
curves is two percent. The measurements have been
performed at post-discharge time larger than 1 milli-

' R. Riess and G. H. Dicke, J. Appl. Phys. 25, 196 (1954).

FIG. 3. Electron collision probability for momentum transfer
in neon as a function of electron velocity. Solid line: curve deter-
mined by the microwave method. Crosses: measurements by
Ramsauer and Kollath. Dashed line: average curve through their
data.

second to insure energy equilibrium between electrons
and gas in the absence of the applied field. The two
curves coincide for high values of U+Q„because there
diffusion becomes the dominant loss process also in
pure neon. At low energies the curve for pure neon
deviates from that for neon plus argon as if the density
was uniform through the cavity, in agreement with a
recombination decay. By applying the method of this
paper, the collision probability in neon has been com-
puted from the measurements in neon plus argon. In
Fig. 2 an intermediate step is also shown, the (p) sersus
Cu curve; this curve is stopped at S", which in our case
is 2 ev.

In Fig. 3 the computed collision probability as a
function of electron velocity is shown as a solid curve.
The curve has been limited between the velocity for
which the integrand p e(8Fs/cIv) in the conductivity
ratio formula Lsee Eq. (10) in (I)$ is a maximum at
Co= U and the velocity for which the same expression
is a maximum at w=S'. The crosses represent the
results computed by Barbiere' from measurements by
Ramsauer and Kollath, ' using an electron beam method;
the dotted line is their average. The agreement between
the results obtained with the microwave and the elec-
tron beam method can be considered satisfactory.
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