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Phase-Shift Analysis of 310-Mev Proton-Proton Scattering Experiments*
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The results of a phase-shift analysis of proton-proton cross-section, polarization, and triple-scattering
experiments at 310 Mev are reported. From an extensive search five satisfactory solutions have been
found. Three additional solutions that give fair fits to the data are also reported.

1. INTRODUCTION

'HE difhculties encountered in field-theoretical
attempts to understand nucleon-nucleon inter-

actions have led to the less ambitious hope that a
phenomenological potential model for these interactions
could be found. Although there has been considerable
effort along these lines, ' no appreciable success has been
obtained except in restricted energy regions. ' Because
of this failure to correlate the experimental facts by
means of potential models, the value of information
that may be obtained from a direct analysis of the data
has become increasingly important. The importance
derives both from the insight it provides for the con-
struction of particular models and from the possibility
of using the information in phenomenological treat-
ments of more complex problems.

A standard method of extracting information from
results of scattering experiments is to find sets of phase
shifts that reproduce the experimental data. This
approach, which has been valuable in the study of
pion-nucleon interactions, ' has also been used in the
analysis of high-energy proton-proton experiments. ' In
the hundred-Mev region these efforts have been
impaired, however, by limitations in the amount of
experimental data that was available. These limitations
imposed severe and unrealistic restrictions upon the
number of phase shifts that could be considered. ' Now
that p-p triple-scattering experiments have been per-
formed the situation is considerably more favorable.
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5 For a discussion the restrictions imposed by the requirement
that the number of phase shifts be less than, or at worst equal to,
the number of independent experimental quantities (see the
introduction in reference 8).

Whereas previously the phase shifts were effectively
limited to S, P, and D waves, it now is feasible to
include also the F, G, and B waves. Such an analysis has
been carried out with the aid of electronic computers,
principally the MANIAC located at I.os Alamos. The
results are reported in this paper.

The discussion begins in Sec. 2 with an account of
the method by which the experimental data were
treated. In Sec. 3 a discussion of equations that
express the observed quantities in terms of phase shifts
is given. Section 4 contains a description of the
method by which solutions were found, and a discussion
of the extent to which the search for solutions can be
considered exhaustive. The accuracy to which the
phase shifts are determined is also discussed in this
section. The final section contains a discussion of the
results, and comments concerning their interpretation.

2. TREATMENT OF EXPERIMENTAL DATA

The general theoretical foundation of the analysis is
provided by t;he work of Wolfenstein, 7 and the experi-
mental details may be found in the accompanying ex-
perimental papers. ' The purpose of this section is to
discuss the manner in which these data were used.

The general policy in the treatment of the data was
to leave them in the form in which they were originally
provided by the experiments. In keeping with this
approach absolute values for the total cross section and
the 90' (c.m. ) differential cross section were used as
input data, whereas at other angles the ratio of the
differential cross section, Io, to its 90' value was used.
The observed polarization and triple-scattering param-
eters P, D, E, and 3 at particular scattering angles
were taken directly as input data, as opposed to
previous analyses4 in which, for example, IOP rather
than P was used. Another way in which our treatment
differs is that the differential cross section and polariza-

Thaler and Benston, Klein, and also Garren use S and P
phase shifts. Ohnuma and Feldman include 'D and 'F2 and Villi
and Clementel include these and also the P~ —'F2 mixing param-
eter. The inclusion of the 'F&, without 'F& and 'F4, can be justified
by arguing that the 'P& —'F& mixing causes the 'F2 to behave
like a P wave at low energies. Recently the effects of F waves
and to some extent G and H waves has been investigated by Hull,
Ehrman, Hatcher, and Durand, Phys. Rev. 103, 1047 (1956).

7 Lincoln Wolfenstein, Phys. Rev. 96, 1654 (1954).
Chamberlain, Segre, Tripp, Wiegand, and Ypsilantis, pre-

ceding paper LPhys. Rev. 105, 288 (1957lj.' J. E. Simmons, Phys. Rev. 104, 416 (1956)~
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tion data are not first reduced to coeKcients of a power
series expansion in cos8 but the original measurements
at particular scattering angles are used directly. One
advantage of this is that, in general, better fits to the
original data are obtained. In addition, the analysis of
the errors in the phase shifts, arising from errors in the
experimental data, is simplified because all experimental
errors may be treated as independent.

The values of the experimental quantities are col-
lected in Table I. The experimental errors quoted there
contain both the statistical and estimated systematic
contributions. It will be noticed that four of the dif-
ferential cross-section points at small angles are marked
by asterisks. These data, obtained by Fischer and
Goldhaber, " extend into the region where Coulomb
e6ects and higher partial waves are expected to become
important and they were not used in the first part of
the search program, but were introduced only at a
later stage, as is discussed in Sec. 4. In addition the
three A measurements were also introduced at a later
stage, for this experiment had not yet been performed
when the analysis was begun.

It should be mentioned that the laboratory-system
energy of the p-p collision in the polarization and
triple-scattering experiments was about 310 Mev,
whereas the cross-section measurements were made at
the full beam energy of 340 Mev. In our analysis this
difference was completely ignored and the cross-section
data were treated as if the measurements has been
made at 310 Mev. This procedure is at least partially
justified by the observed insensitivity of the proton-
proton differential cross section to variations of energy
in this region.

3. BASIC EQUATIONS

The theory of polarization and triple-scattering ex-
periments for the two-nucleon system has been de-
veloped by Wolfenstein' and by Wolfenstein and
Ashkin. " In their treatment the scattering is described

by a matrix M, in spin space, defined by the equation

f;(e,y) =Q M;;a, .

The a; are the amplitudes of the various spin states in
the incident plane wave and the f;(e,&) are the scat-
tering amplitudes for these states. Summation signs
will be over repeated indices unless otherwise stated.
The matrix elements M;; are functions of the center-
of-mass scattering angles (8,&), and they completely
describe the scattering. Using the formalism of Wolfen-
stein and Ashkin, the quantities measured in the
polarization and triple-scattering experiments may be

' D. Fischer and G. Goldhaber, Phys. Rev. 95, 1350 (1954).
These four data were selected from their more numerous data on
the basis of estimated systematic errors and consistency with the
independent measurements of Chamberlain, Pet tengill, Segre, and
Wiegand, Phys. Rev. 95, 1348 (1954)."L.Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952).

TABLE I, The 36 experimental measurements used in this
analysis are recorded. The asterisk denotes the Fischer-Goldhaber
Coulomb interference data (see Sec. 2). The values predicted by
a representative solution are also shown for comparison.

Designation'

I.(9o )
r(8O.2')
r (71.4')
r(64.0 )
r(60.8 )
r(52.4 )
r(44.8')
r(36.O )
r(31.9')
r(23.4')
*r(18.6')
*r(14.8')
*r(».3 )
*r(9.1 )
s(76.2')
s {63.9')
s(53.4 )
s(42.9')
s(32.3')
s(21.6')
3(80.5')
&(65.2 )
t(52.0')
t(36.5 )
t(25.8')
t(23.0')
u(8O. 1')
u(7O. 9 )
u(54. 1')
u(41.8')
N(34.4')
Q(22.3')
8(76.3')
8(51.4')
8(25.4 )

Experimental value

22.24 ~0.70 mb
3.72 &0.19 mb
1.045&0.039
0.971&0.032
0.958&0.032
1.013&0.041
0.997a0.035
1.008+0.026
1.074&0.040
1.031&0.031
1.098&0.033
1.024m 0.078
1.038~0.086
0.935%0.108
1.078+0.091
0.613&0.108
0.635w0.068
0.633&0.052
0.760a0.040
0.837&0.060
0.891&0.067
0.528+0.063
0.497~0.048
0.467&0.060
0.544m 0.081
0.701~0.055
0.755w0.079
0.752~0.114
0.381+0.088
0.322~0.058
0.»1&0.076—0.175&0.084—0.330&0.142
0.382~0.078
0.016~0.088—1.542~0.363

Calculated
value

(Solution 4)

22.13 mb
3.72 mb
1.005
1.004
0.991
0.985
0.980
1.000
1.042
1.061
1.083
1.072
1.041
1.010
1.065
0.527
0.568
0.649
0.748
0.848
O.955
0.529
0.475
0.488
0.574
0.723
0.779
0.579
0.517
0.251
0.060—0.004—0.068
0.386—0.004—1.414

r(x) =—Io(x)/Io(90 ); s(x) —=P(x)/sinx cosx; t(x) =—1 —D(x); u(x)=—R(x)/cos(x/2); v(x) —=A (x)/sin(x/2).

expressed in terms of the M;, . These formulas are given
in Table II." '4

The formulas for the observables in terms of phase
shifts may now be obtained by expressing the M;; in
terms of the phase shifts. Since the phase shifts are
related to the S matrix elements, one needs the relation
between the S matrix and the 3f matrix. The S matrix
may be expressed as the sum of the unit matrix and the
R matrix, where the R matrix satisfies an equation
which in the lsm~m, representation is

f'(lsm~m, )=P R(lsm~m, ; 1's'm~'m, ')g(t's'm~'m, ') (3.2).
'~ The equations given in Table II were derived from the non-

relativistic formalism of Wolfenstein and Ashkin. The two Pauli
amplitudes appearing in this formalism may, however, be rein-
terpreted as the two amplitudes that appear in the relativistic
treatment of the problem. When triple-scattering experiments are
considered, some modihcations of the nonrelativistic formulas are
introduced by this reinterpretation. For a discussion of this point
see Henry P. Stapp, Phys. Rev. 103, 425 (1956).

"Henry P. Stapp, University of California Radiation Labora-
tory Report, UCRL-3098, August, 1955 (unpublished).' L. Wolfenstein, in Annual Reviews of Nuclear Science {Annual
Reviews, Inc. , Stanford), Vol. 6. We thank Professor Wolfenstein
for having made available to us the manuscript of this paper.
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TABLE II. The expressions for the various experimental param-
eters as functions of the M matrix elements are given. The sub-
scripts 1, 0, —1, s on the matrix elements refer to the three triplet
states S,=+1, 0, —1 and to the singlet state respectively. The
z axis is taken along the incident beam direction. The 3f;; are
functions of the usual polar and azimuthal center-of-mass scat-
tering angles 8 and p. Since the left-hand sides of the above equa-
tions are independent of p, the expressions on the right have, for
simplicity, been evaluated at @=0.For a detailed derivation of
these equations see reference 13. The dependence of the polariza-
tion correlation parameters C„and Cgp upon the 3f matrix
elements are also included for completeness. A discussion of
these parameters may be found in references 13 and 14.

Io=klMxxl'+llMooI'+AIM-I'+AIM oI'
+s l Mon l'+k [Mx-i l'

IOP= (V2/4) Re/i (M&o M—oi) (My& —Mi i+Moo)*]

Io(1 D) = r'I —M»+M&
+,'lM&, -Mi —

r Moo—l'+g lMio+Moil'

=$ Re
~

Moo+(cos8 —1) ~(M»+M»+M-)*
cos (8/2) sin8 p

rv2Mio V2Moi)

( sing sin8 )
rIOA ~~101—= —k Re

~

Moo+(cos8+1)
sin (8//2) sing )

X (F11+~1 1+~-)*
r v2Mio v2Moi)

+
~

(Wi+Mx-i)*
i, sin8 sin8 )

IOCx~ ={l Moi
l

s—
l
Mio l

'}/2 sin8

r, (1 C„)—k(„IM=,I2+ .IM»yM, , Is)

R(10lm;; lOlm;) =—Rt,

R(lij m, ; l1jm, ) —=R(, ,

R (j+1, 1,j, m,", g~1, 1,j, m;) =—R+&=R',
(3.8)

where

M (lsmrm. ; s'm, ')
= (ik) ' exp( —',i7—rl] P R (lsmrm„ l's'Om, ')

XexpL-', ill']Ls-(2l'+1)]&. (3.6)

The most convenient phase shifts are those related to
the R matrix elements in the Isjm; representation.
These matrix elements are related to the matrix elements
appearing in Eq. (3.6) by means of the Clebsch-Gordan
coefficients's C&,(j m;; mim, ) according to the equation

R(lsmim„ 1's'm&'m, ') =P' C&, (j m,", mtm, )
XR(lsj m;; l'sj''m, ')C&, (j 'm,'; m&'m, '), (3.7)

where the prime on the summation symbol indicates
no sum on l, s, l', and s'. The convenience of the 1, s, j,
m; representation derives from the fact that the total
momentum j, its s component m, , and the spin angular
momentum s are constants of the motion, ' and the R
matrix therefore contains no oG-diagonal elements in
these indices. Furthermore the invariance of R with
respect to spatial rotations implies that the R matrix
elements are independent of m, . The nonzero R matrix
elements R(lsjm, ", l's'j'm ) may therefore be abbre-
viated as

Here f'(ls mim) and g(lsmtm, ) are defined by the fol-
lowing equations:" "
P' '(8,$,r)~ r' P exp[—i(kr —,'7rl) 5——

Xg(lsmim, ) Yg"'(8,y)x,
P"(8,$,r)~r ' P expL+i(kr ——',sl)]

Xf'(ismim, ) Yi"'(8 P)x, . (3.3)

The f'(lsmrm, ) in these equations are connected to the

f, (8,&) appearing in Eq. (3.1).The latter are defined by
the equation

P'(8,&,r) r' exp(ikr) f,"—(8)y) " (3 4)

where the f;(8,&) in the singlet-triplet representation
have been written f,~ (8,$). From the definitions in

Eqs. (3.1) to (3.4) and the familiar expansions of the
incident plane wave into spherical harmonics, " one
obtains the relation"

M, , (8,y) —=M. . . . (8,y)
=P Yi '(8,&)M(lsmpn„s'm, '), (3.5)

' The symbol —represents equality in the limit r—+~. The
p' '(B,p,r) is the asymptotic incoming part of the wave function
and P"(8,p,r) is the asymptotic scattered wave. The I"& (8,@)
are the spherical harmonics as defined by Blatt and Weisskopf
(see reference 16) and x, ~ is the spin-state basis vector. The range
of the potential is assumed finite; Coulomb effects will be included
later.

~6 J. Blatt and V. Weisskopf, Theoretical %unclear Physics (John
Wiley and Sons, Inc. , ¹wYork, 2952).

where the equality of R+& and R & is a consequence of
the symmetry of the S matrix. Using some properties of
the Clebsch-Gordan coeKcients Eqs. (3.6) to (3.8)
combine to give

M(l000, 00) = (ik) 'Lir(21+1)]&Ri,

M (l, 1, m, ' —m„m„1,m, ')

1+1
= (ik) '( Q Ls.(2l+1)]'C&i(j, m, '; m, ' —m„m, )

X C&, (j, m, '; Om, ')R„PL—s.(2l'+1)7'
j=l+1)1

XC»(j, m, '; m, ' m„m, )—C& i(j,m, '; Om, ')R&}, (3.9)'
where l'=—2j 1= i+2= j+—1. The M(lsmim„s'm, ') that
are not of the forms given in Eq. (3.9) are identically
zero.

The matrix elements given in Eq. (3.9) refer specifi-
cally to the case of two distinguishable nucleons. When
the nucleons are identical the antisymmetrized M
matrix, M'= (1—TS)M, should be used in place of M."
Here T and S are the spin- and space-exchange opera-
tors. This replacement takes into account the antisym-
metry of the wave function and also the fact that the

' The spin is constant in the p-p system because of conser-
vation of parity and the antisymmetry of the wave function. For
the e-p system it will be constant if isotopic spin is conserved,
which is assumed here.
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particles are indistinguishable. Explicit formulas for the
M matrix elements may be obtained by evaluating the
Clebsch-Gordan coefficients in Eq. (3.9). These for-
mulas, specialized to the proton-proton system, are
given in Table III. The Coulomb sects are also
included there.

The Coulomb part of the interaction has been treated
in the nonrelativistic approximation. In this approxi-
mation the equations above continue to be valid
provided the quantity (kr) appearing in Eqs. (3.3) and
(3.4) is replaced by (kr n ln2—kr). Here n= e2/I'ggg

—(137/) ', where P is the laboratory velocity of the
incident proton divided by the velocity of light. The S
matrix defined in this way gives the scattering due to
the combined nuclear and Coulomb eR'ects, and in the
limit of no nuclear potential it becomes the pure
Coulomb-scattering matrix S,—=R,+1.

Owing to the singular nature of the Coulomb con-
tributions, it is convenient to express the R matrix in
the form

R=S—1

= (S—S.)+ (S,—1)
=n+R, .

(3.10)

The matrix n =—S—S, may presumably be analyzed in
terms of partial waves, since S diGers from S, only by
nuclear sects, and these are expected to vanish for
large /. The contribution of R„on the other hand, is not
analyzed into partial waves but is treated exactly and
contributes the Coulomb scattering amplitude,

fc(8)= {expL—i22 ln-', (1—cos8)5). (3.11)
k (1—cos8)

The expressions for the M;, that are given in Table III
are functions of fc(8) and the matrix elements of n

The matrix elements of n can be expressed in terms
of phase shifts. Owing to the unitarity condition the
diagonal elements Sg—=Rg+1 and Sg;=Rg,+1 for l=j
are pure phase factors. Consequently the corresponding
matrix elements of a may be expressed

TABLE III. The antisymmetrized M matrix elements for the
p-p system are expressed as functions of the Coulomb scattering
amplitude fg(8) and the matrix elements of a. The amplitude
fz(8) is defined in Eq. (3.11), and the expressions for the matrix
elements of o. in terms of phase shifts are given in Eqs. (3.12)
through (3.15). The al; for j&0 and the n& for j&0 are defined
to be zero. The Pl (8) are the associated Legendre polynomials,
p =Ak is the center-of-mass momentum.

(2l+1)
kf-(84) =fo(S)+fo(~ e)+—2(gk) ' & Pg(&)I

even 1 ( 2 )
Mgg(gg4) =fo(8) fo(gr—8)+—2(gk) ' Z Pg(e)

oddl

(1+2) (21+1g (l 1~—
I-g 1+1+.

I
I-g 1+I.E4) E4) ' E4)

——,'((1+1)(l+2) 54 1+1 ', Dl —-1)1—5ggg 1 1—
~pp(8, $) =fc(8)—fg(x —8)+2(ik) ' Z Pl(8)

oddl

(l+1) (l )x
I I g, 1++I —

I g, g-+2L«+1)(1+2)5' "'
&2) '

+&E(1—1)(l)5' ' '

v2 (1+2)
Mggg(gtg, gk) =2(gk) gege z Pg'(e)

I lgg' '+'
oddl 4 g,l+1)

v2( 2l+1 ) v2(l 1)—
+

I Iggg 1+
4 kl(1+I)) 4 E l )

&2 (l+2) & &2 (l 1
g
&—

1+

4 gal+1) 4( l )
(v2) (v2)

M (gg, gag)=12(lk) 'e 'e Z g'(gg)
I

—
I g, g+, —I

—
I

g, g

wdl q4) q 4)
v2 (1+2) & v2 (l 1)&-

I
ggg+1

I I

ggg-g

4(1+1) 4 ( l )

gMg-g(e, 4) =2(gk) 'e "e & Pg'(lg)
I

—
I

1, 1+1
oddl (4(l+ 1))

( 2l+1 ) (1)
—I-g. 1+I —I-g. 1-1

(41(1+1)) (4l)
g2i bl g2 i@l

7

nl. =e""—e"~' for l= jJ7
(3.12) —-', Dl+1) (l+2)~ag+1 ,'P(l 1)15~—12g 1t-—

where

l
4 g

=—
2)g

—glgg= P arctan(N/x). (3.13)

(8,y)=m (8, —q),
M 1g(8,y)=M1 1(8, —4t),

3fo (8,y) = —M, , (8, —y),
M1p(8,y) = —M 1p(8, —y).

The matrix elements of n between the states with
I= j~1 may be expressed, following Blatt and Bieden-
harn, '8 by

An alternative expression for these matrix elements,
which is useful in the analysis of Coulomb contributions
and the interpretation of the results, is

cos2e.e2'gggg- '+sjnse e2'ggg+gg e214'g+1, —
g J )

n'=-' sin2e (e"+ e1"111+'1).2

(3.14)

n;~g , cos2e, e. x=p(2i5;+1, ,) exp(2i4,—+1),
(3.15)

ng=i sin2e;exp/i(hg+2, ,+5; g,)5

18 J M. Blatt and L. C. Biedenharn, Phys. Re . 86, 399 (1952) The Phase shifts appearing in this second definition, Eq.
and Revs. Modern Phys. 24, 258 (1952). (3.15), will be called bar phase shifts in distinction to
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the Blatt a,nd Biedenharn (BB) phase shifts defined by
Eq. (3.14). The bar phase shifts for the states that do
not involve mixing are the same as the BB phase shifts
defined in Eq. (3.12).

The phase shifts defined by Eqs. (3.13) to (3.15)
include both Coulomb and nuclear contributions. If
there were no nuclear effects these phase shifts would
become just the pure Coulomb phase shifts 4&. When
both nuclear and Coulomb forces are present, it is
useful for some purposes to remove the Coulomb con-
tributions from the phase shifts and consider only the
nuclear part. Such a separation is possible, however,
only if special assumptions are used. If, for instance,
the Coulomb force can be assumed to act only outside
the region about the origin in which the nuclear effects
occur, and if the WEB approximation is valid in this
outside region, then the bar phase shifts that would be
obtained if the Coulomb potential were removed
(leaving the nuclear potential unchanged) are given by
the equations

(3.16)

The phase shifts 8~ and e~ defined by these equations
will be called the nuclear bar phase shifts. The equations
for the nuclear Blatt and Biedenharn phase shifts
derived from the same set of assumptions are consider-
ably more complicated than Eqs. (3.16). They may
be derived from Eq. (3.16), and the equations that
relate the BB phase shifts to the bar phase shifts. These
relations are given in the appendix, where it is also
shown that for weak potentials the bar phase shifts are
proportional to the matrix elements of the potential.
Consequently they become small in the limit of weak
potentials, and will —for special types of potentials—
obey corresponding interval rules. These properties are
not shared by the BB parameters. For convenience
both the nuclear bar phase shifts and the original (non-
nuclear) BB phase shifts are reported in the table of
results.

One point concerning the relativistic Coulomb con-
tributions should be mentioned. As stated above, the
treatment of the Coulomb effects is nonrelativistic.
However, the relativistic corrections are not completely
neglected. Although the exact relativistic form of the
Coulomb interaction is not known, Garren4 has calcu-
lated the lowest-order field-theoretical relativistic cor-
rections and finds that they do not contain the singular
factor (1—cose) ' which characterizes the nonrela-
tivistic term. If the relativistic effects are indeed non-
singular they need not be separated for special treat-
ment, as was the nonrelativistic term, but may be
combined with the nuclear effects in the term that is
expanded in partial waves. The nuclear phase shifts
would then contain not only nuclear effects, and the
remnants of the nonrelativistic Coulomb effects that
arise from the approximations made when the Coulomb
contributions were subtracted, but also the contribu-
tions from the relativistic Coulomb corrections.

4. SEARCH PROGRAM

The formulas collected in Tables II and III allow the
various observables to be expressed in terms of the
phase shifts. These functions will be denoted by y„(h),
where e denotes the particular observable. The corre-
sponding experimental values will be denoted by y„.
Following the method used by Fermi, ' a search was
made for phase shifts which minimized the expression

where e„ is the experimental error in the measurement
of y„. The procedures were quite similar to those used
by Fermi. Both the grid method (in which only one
phase shift is changed at a time) and the gradient
method' were used. The gradient method was replaced
in the later stages by a new search method devised by
Davidon. " The search program consists of taking a
large number of random sets of phase shifts and using
various combinations of the above searching procedures
to obtain from each random set of phase shifts a cor-
responding solution. These solutions are set, s of phase
shifts such that an increment of & (1/64) ' in any phase
shift gives a larger value of OR(6).

The work was divided into three stages. In the first
stage the results of the A experiments and the Coulomb
interference measurements were not included in the
data, and the theoretical forms included neither
Coulomb effects nor the contributions of G and H
waves. The number of random starting sets of phase
shifts used in this stage was 360. The corresponding
solutions were grouped into 34 tight clusters whose
members were the same in all phase shifts to within
approximately 0.2'. The various clusters evidently cor-
respond to different relative minima. Of the 34 minima
all but tv o were obtained three or more times. Of the
two, one was obtained twice and the other only once.
The A data, which were not available at the beginning
of the analysis, were then incorporated and the 34
minima were used as the starting points for the second
phase of the search program. Two independent search
procedures (grid and Davidon) were used independently
to obtain solutions from the 34 starting points. The
solutions obtained from a particular starting point by
means of the two procedures were not the same in all
cases, but from each procedure alone we obtained from
the 34 starting points just 19 different final solutions,
and these 19 solutions were the same for the two pro-
cedures. Each of these 19 solutions was obtained from
at least five of the original 360 random starting points
(even if only the grid search or only the Davidon search
from the 34 intermediate minima is considered). Of
these 19 solutions the best seven are significantly
superior to the remaining twelve. The search was there-

"William C. Davidon, Bull. Am. Phys. Soc. Ser. Il, 1, 51
(1956).
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TABLE IV. The eight best solutionp obtained after the introduction of the Coulomb eHects, the G and H wave contributions, and the
Fischer-Goldhaber Coulomb interference data. The values of 26 are recorded. The column headed "BB"are the Blatt and Biedenharn
phase shifts defined by Eqs. (3.10) through (3.14) of the text. They are the total phase shifts and include both Coulomb and nuclear
effects. In the absence of nuclear forces they reduce to the Coulomb phase shifts 4 &. In the column headed "Nuclear bar" are the values
of twice the nuclear bar phase shifts defined in Eqs. (3.15) and (3.16). In the absence of nuclear forces these phase shifts reduce to zero.

Type
Solution 1 (5K =17.9)

Nuclear bar BB
Solution 2 (9R =21.7)

Nuclear bar BB
Solution 3 (5K =23.8)

Nuclear bar BB
Solution 4 PR =24.5)

Nuclear bar BB

lg
'D2
'G4
3P
3Pi
3F
'Hs
'H6
3P2
3F2
C2

'F4
3H4

—20.2~5.0'
25.7~1.4'
2.0'

—28.6~4.3'
—53.3~2.6'
—8.8~2.1

0.2'
2.6'

32.2~1.9'
1.6~2.0—1.9~1.1'
6.3~1.0'
2.9
2 03

—20.2a5.0
27.6&1.4'
4.6'

—27.4~4.3—52.0~2.6'
—6.5~2.1

3.0'
5.5'

33.6~1.9'
3.8~2.0'

—7.5~4.1'
9.9&1.0'
4.5'

—57.5'

—39.0m 3.9'
8.7&1.2'
2.6'

—72.ia3.8'
—23.4m 2.0'

0.5w0.7'
—2 ~

7'
2.7'

37.6~2.1'
—1.0a2.3—18.6a1.7'

5.0a1.5'
4.2'

—3.0'

—39.0~3.9'
10.6~1.2'
5.2'

—70.8&3.8'
—22.2~2.0'

2.8a0.7'
0.1'
5.5'

46.3~1.5'
—6.0+1.8'

—46.2~3.1'
10.2~1.5'
4.2'

—87.5'

—21.9~4.9'
26.6~1.5'
2.2'

—8.1~2.7'
—39.5a1.6'
—5.1~1.1'

1.8'
—1.2'
45.1~1.2'

—4.0~1.1'
3.5~0.8'
1.0a0.9—2.2'

—1.8'

—21.9~4.9
28.5~1.5'
4.8'

-6.9~2.7'
—38.2~1.6'
—2.8~1.1'

4.7'
1.7'

46.7~1.3'
—2.0~1.1

8.6~2.0
4.2~0.9—0.2'

—53.5'

—53.9~3.9
9.7&1.2'
2.1'

—50.7a3.8'
—14.5~2.0

3.1~0.7—1.7'
—1.6'
46.2~2.1'

—2.7~2.3—15.0~1.3
5.2~ 1.5—1.4'

—1.8'

—53.9W3.9'
11.6~1.2'
4.7'

—49.4~3.8'
—13.2~2.0

5.4&0.7'
1.2'
1.3'

51.5~1.5'
—4.5w1.8'

—33.4~3.1'
8.0&1.5'
1.0'

—31.1'

Type
Solution 5 (BR =34.2)

Nuclear bar BB
Solution 6 (9R =34.6)

Nuclear bar BB
Solution 7 (5K =41.3)

Nuclear bar BB
Solution 8 (3R =52.3)

Nuclear bar BB

lg
'D2
'G4
3po
3P~
3F3
3H3
3H6
3P2
3F2

3F4
3H'4

64

94.4&3.7
1.8~0.9'
5.8'

75.0~3.7'
9.9~1.8'

—7.5~1.5'
—0.9'

1.2'
13.4~1.0'

—29,8&2.0'
6.7a0.6
2.8a0.5'
2.3'

—3.6'

94.4a3.7
3.6~0.9'
8.4'

76.2~3.7
11.2+1.8'

—5.2~1.5'
2.0'
4.0'

15.6a0.7—28.5~2.1'
18.1a3.8
8.7a0.5'
1.5'

—90.8'

—0.5+4.6'
25.7+1.2'

—2.1'
—129.4+3.8'
—26.8&1.8'

6,1+2.2'
—3.9'

0.6'
16.3&1.0'

-4.2+1.4'
—0.4~1.2'

6.5+0.5'
44o
2.6'

—0.5+4.6'
27.7~1.2'
0.6'

—128.2~3.8'
—25.5~1.8'

8.4~2.2'
—1.0'

3.5'
17.5~1.0'

—1.9~1.3'
—2.1~6.2'
10.8&0.5'
5.4'

73.8'

23.7&4.1—0.6~2.4
3 ~

1'
7.4~4.6

71.0~1.9'
—11.5~1.7—1.1'

1.2'
8.0~0.7'

—26.0~1.7'
—0.9~1.4'

3.2~0.5'
0.0'

—2.7'

23.7+4.1
1.2~1.7
5.8'
8.7~4.6'

72.3~1.9'
—9.1~1.4'

1.8'
4.1'
9.2~0.7'

—23.7&1.7'
—3.1a4.9'

7.3~0.5
1.2'

—64.3'

57.2a5. 1
9.5w 1.6—0.6'

134.0&6.7'
18.9~2.2'

—14.9a1.5
0.5'
1.0'
4.3~1.1'

—17.5w1.5'
—1.0~1.6'

4.5&0.5'
1.6'

—1.2'

57.2+5.1'
11.4~1.6'
2.0'

135.2~6.7'
20.1~2.2'

—12.6&1.5'
34'
3.9'
5.6~1.1'

—15.3&1.5'
—5.6a7.1

7.3~0.5'
4.0'

—46.9'

fore continued until these seven had been obtained five
additional times from new random points, the A data
now being included. All the solutions obtained from the
60 new random points were included among the 19
solutions previously found.

For the third and final stage of the search program,
the Coulomb effects and the contribution of 6 and H
waves were introduced into the theoretical forms and
the data were augmented by including measurements
for which 0 was less than 20'. For these angles the
Coulomb effects and higher partial waves would be
expected to become important. The work was shifted
from the MANIAC to the IBM 704 to accommodate the
increased complexity of the problem. No large-scale
search was attempted. The 19 MANIAC solutions,
suitably adjusted to account for the inclusion of
Coulomb effects, were used as starting points for both
the grid and the Davidon search procedures. The two
procedures led to the same final solutions in all but
four cases. Except in these four cases the final solution
did not differ significantly from the corresponding
starting points, the differences being of the order of 3'
or less in all phase shifts. From the seven best MANIAC
solutions eight final solutions were obtained (in one
case the grid and Davidon procedures led to different

solutions). These eight solutions, which are significantly
better than the other solutions obtained, are recorded
in Table IV. The errors quoted in the results were
derived from the error matrix. The treatment of errors
is the same as was used by Anderson, Davidon, Glicks-
man, and Kruse, " and the method is adequately
described in their paper. The error matrices were corn-

puted for the MANIAC solutions and have not been
recalculated for the final "704" solutions. For this
reason errors for the G and JI phase shifts are not given.

5. DISCUSSION

The comparison of the values of the experimental
quantities predicted by the five best solutions to the
measured values are shown in Figs. 1 through 5. Except
for the two small-angle points in the R experiment, the
fit of all these solutions is good.

The solutions may also be evaluated by comparing the
values of OR with the value expected from statistical
considerations. If the true phase shifts for partial waves
higher than H waves were really zero, and if the errors
are statistical, then the most probable value of OR

at that relative minimum which lies in the neighborhood

0 Anderson, Davidon, Glicksman, and Kruse, Phys. Rev. 100,
279 (1955l.
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of the true solution is the difference between the number
of observables and the number of phase shifts. This is
36—14=22. There is a 90% chance that 5R will be
larger than ~14 and smaller than ~34. The probability
that BR)34 is 5% and the probability that it is
greater than 40 is ~2%. The values of 5K for the
solutions listed are given in Table IU. The four best
solutions are seen to have BR in the range 17 &5R &24,
and the four fair solutions have 5K in the range 34 &5K
&53. The solutions not listed have 5R&62.

It is natural to see to what extent the phase shifts
corresponding to the same / value obey the interval
rules for L S and the tensor forces. If the potential
were due to a sum of central and L S forces, then in
the Born approximation we would have

~10 ~11=1P&= 2, ~

~11 ~12

~32—~33=3P3=
~33—~34

(5 1)

Only Solutions
approximately.
p3 ——0.70&0.32,

2 and 4 satisfy these relations even
Solution 4 gives p1=0.60&0.08 and
in close agreement with the interval

40 60
e (deg)

FIG. i. Differential scattering cross section as a function of
center-of-mass scattering angle, 8, as predicted by phase shift
solution 3. Nearly identical curves are obtained for solutions 1,
2 4 and 6. Experimental values are shown for comparison.)

-2-
I I I I I I I I I I I I I

80 l20
8 (deg)

l60

~g. 3. Plot of D vs 8 for solutions 1, 2, 3, 4, and 6. Experimental
values are shown for comparison.

rule; and Solution 2 gives p1=0.80&0.08 and p3=0.33
~0.53 in fair agreement. However, the mixing param-
eters, which would be zero if only central and L $
forces were present, are rather large in the j=2 states
for both Solutions 2 and 4. A large mixing parameter
would indicate the presence of a tensor force. The
interval rules that would obtain if only tensor and
central forces were present are

pr ———5/2, ps ———27/20, (5.2)

but neither of these relations is satisfied even approxi-
mately by any of the solutions.

The failure of the simple interval rules seems to
indicate that either the spin-dependent forces must
contain important contributions of more than one type
or that the forces are sufficiently strong to invalidate
the Born approximation results even in sign and order
of magnitude. The latter possibility is being studied by
Gammel and Thaler, who are investigating the possi-
bility that the tensor force is strong enough to cause
the 'E() phase shift to change sign. The 310-Mev data
can be satisfactorily explained in this way, but it is
not known whether an energy- and charge-independent
potential can be found.

I.Q

.6-

Cb

O

E'

CL

6'—2 ~ 2

-2-

1

8020 40 60
8 (deg)

Pro. 2. Plot of P/sinScose ss SI for sointions 1, 2, 3, 4, and 6.
Experimental values are shown for comparison.

-4-

I 600 40 80 I20
e (de@)

FIG. 4. Plot of R es 8 for solutions 1, 2, 3, 4, and 6. Experimental
values are shown for comparison.
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APPENDIX. SUBTRACTION OF COULOMB EFFECTS

For those partial waves in which the angular mo-
mentum is a constant, nuclear phase shifts may be
defined by

Fxo. 5. Plot of A us 8 for solutions 1, 2, 3, 4, and 6. Experimental
values are shown for comparison.

Additional restrictions on the p-p phase shifts may
be obtained from a study of the reaction p+ p —+ s+d."
The analysis of this reaction, which is given in reference
8, shows Solutions S, 7, and 8 to be unsatisfactory. The
remaining five solutions are therefore preferred. There
are several characteristics common to the five good
solutions. All have negative 'So phase shifts and positive
'D2 and 'G4 phase shifts. This suggests that in the
singlet state there is a repulsive hard core surrounded
by an attractive potential. In the triplet states the 'Eo
and 'I'~ phase shifts are negative, whereas the 'E2 phase
shifts are large and positive. This suggests that L S
forces are more important than the tensor forces unless
the tensor forces are very strong. Indeed it had been
concluded previously by Gammel and Thaler, on the
basis of an extensive machine analysis of the solutions
reported in an earlier (unpublished) version of the
present work, that combinations of central and tensor
forces alone could not produce any of the reported
sets of phase shifts unless potentials strong enough to
produce resonances were used. Similar conclusions have
also been reached byWolfenstein" from a direct analysis
of the experiments near 90'.

The present analysis has been restricted to the
Berkeley p-p experiments near 300 Mev. It is to be
expected that the extension to lower energies and, with
the assumption of charge independence, to the ep-
system would provide a means of selecting from among
the solutions that have been obtained. The use of dis-
persion relations to select from among the possible
solutions —a method which has been very useful in the
case of pion-nucleon phase shifts —, has not been possible
because the extension of dispersion relations to p-p
interactions has, as yet, not been achieved.
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(s),= i

|'exp(i5'-i, ~)

0

0 ) f cos2», i sin2», y

exp(i8;+i, ;)) (i sin2», cos2», )
(exp(ib; i ~)

xi
0

0
l. (A4)

exp(sb;+i i)j
The conversion between nuclear phase shifts and total
phase shifts is simple when the bar phase shifts are
used. One finds

(A.5)

where the C i are defined in Eq. (3.13). Under the con-
dition that the Coulomb interaction can be considered
confined to a region outside the nuclear region and that
the WKB approximation is valid in this outside region,
the 8~ defined by Eq. (A.1) are the phase shifts that
would be obtained from the pure nuclear interaction
alone. The same result may also be obtained for the
case where mixing occurs if the nuclear phase shifts
are defined in terms of a nuclear 5 matrix 5~, which is
related to the S matrix by the matrix equation

Siii ——Lexp( —iC))SLexp( —iC)j, (A.2)

where 4 is the diagonal matrix whose elements are C~.
The nuclear 5 matrix, SN, may be expressed in terms
of nuclear phase shifts by means of the same equations
as were used to express the S matrix in terms of the
original (total) phase shifts. By using Eq. (A.2) the
relations between the nuclear and total phase shifts
may then be derived. The expressions for the Blatt
and Biedenharn nuclear phase shifts in terms of the
Blatt and Biedenharn total phase shifts are quite
complicated for those phase shifts which involve mixing.
An alternative method of defining phase shifts in the
coupled case is to write the S matrix in the form

S= (expi8) (exp2i») (expib), (A.3)

where 6 is the diagonal matrix with elements Bg, and
~ is a symmetric matrix with zeros on the diagonal. For
the two-by-two case this gives
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To obtain the nuclear Blatt and Biedenharn phase
shifts, one may use Eqs. (A.5) together with the equa-
tions connecting the Blatt and Biedenharn phase shifts
to the barred phase shifts. These equations are:

&~+~, ~+~ -~, = ~~+~, ~+ ~ -~,

sin(5; ~, ,—5,+~, ,) = tan2e, /tan2e, ,

sin(8, ~, ,—8,+~, ;)= sin2e, /sin2e, .

(A.6)

The mixing parameter e; has a simple interpretation. It
gives the proportions into which an incoming beam in
one channel (partial wave) divides between the two

outgoing channels. It measures therefore the degree to
which / is not conserved. Equations (A.6) show that e,
does not give a good indication of the degree to which l
is conserved, since it becomes large when the phase
shifts 8~, become small in comparison to e. Furthermore,
the parameter e; depends upon the phases of the basis
vectors in terms of which the S matrix is defined. " Its
value is, therefore, a reflection more of the mathe-
matical conventions than of the actual physics.

Another set of parameters that have been used to
describe the scattering in the coupled states are the
real parameters x;+&,„y,, defined by writing the
asymptotic forms of two independent solutions to the
coupled equations in the form"

tions is a consequence of the Wronskian condition. A
chief advantage of these parameters is that in the Born
approximation they have the simple forms'4

x;„,,= —(j~1, jl Vl j~1, j),
y = U —1,i I—VI&+1, z)

= —0+1 jlvlj —1,j) (A.8)

yx~ ——cos'e tan5, ~~, ,+sin'e tan8, ~,, ;,
y, = —,

' sin2e(tan8; &
—tanb, +z).

The reciprocal equations are

tan2e, =2y, /(x, &, x,,+&—,), ,

tan8jy1j= k(,xj 1, j+xj+1,j—
WL(x;, ;—x;+, ,)'+ (2y,)']'}.

(A.10)

(A.11)

where V is the potential in units of the center-of-mass
energy of the system. The matrix elements are defined
as

GO
r

(&jl Vlf'j')= ll d(kr) de&(r)Y;&."~(8y)v
0 4

XVp),"~ (8&)F) (r'). (A.9)

They are independent of m; if V is invariant under
rotations. These parameters are related to the Blatt
and Biedenharn phases shifts by the equations'5

u, ~, , (r) F, , (r) +,x i, ,G, i(r),
+j+L,(r)=y G +~(r)

,'( r)=, y ~G~~(&),

~,+i, (r)=F +~(r)+x+~, &+~(r). (A.7) y~~ &~ (A.12)

For small phases shifts, where the sines and tangents
of 6,+&, may be replaced by their arguments, one finds
from a comparison of Eqs. (A.6) and (A.11) the cor-
respondence

Here r 'F~(r) and r 'G~(r) are the regular and irregular
solutions of the Coulomb radial partial-wave equations"
and the r 'u&, (r) are the radial wave functions in the fj
channel. The fact that y, is the same for the two solu-

~ J. L. McHale and R. L. Thaler, Phys. Rev. 98, 273 (1955).

The barred phase shifts, like the x and y, are therefore
proportional to the matrix elements for weak inter-
actions.
"Roy Yhaler (private communication)."John Gammel (private communication).


