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Microwave Conductivity of an Ionized Decaying Plasma at Low Pressures*
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Margenau's analysis for the microwave conductivity of an infinite decaying plasma in a uniform fieM is
extended to the case of a bounded plasma in a slightly nonuniform field. It is shown that, if we assume a
power expansion for the electron-collision frequency as a function of energy, the conductivity at low
pressures can be computed as a function of time and position when the spatial and time variations of the
density and energy moments of the electron-distribution function are known. An approximate method,
based on a convenient integration of Boltzmann equation is given to compute these quantities, when inelastic
collisions can be neglected. The steady-state conductivity in the late afterglow of a diffusion-controlled
decaying plasma is thus explicitly determined for two experimental conditions: a plasma filling a cubic
quartz bottle centered in a parallelepiped microwave cavity and a plasma filling a quartz tube of square
cross section in a wave guide. The limit for the validity of the theory set by the appearance of inelastic col-
lisions at high electric fields is investigated.

INTRODUCTION
' 'N this paper we shall extend Margenau's analysis'
- - for the microwave conductivity of an infinite
decaying plasma in a uniform electric field to the case
of a bounded plasma in a slightly nonuniform field.
These are the experimental conditions we meet in
measuring the conductivity of the plasma in a micro-
wave cavity or in a wave guide. We shall limit the
discussion to the case of a decaying plasma at low
pressures, so that the electron-collision frequency is
much smaller than the angular frequency of the applied
field; this case is the most. important one when measure-
ments of microwave conductivity are used to determine
the collision frequency in a gas at low electron energies. "

DISTRIBUTION FUNCTION AND THE
BOLTZMANN EQUATION

To determine the conductivity of a plasma we must
know the distribution F(r,v, t) of the free electrons as
a function of position r, velocity v, and time t. This
distribution is determined by the Boltzmann transport
equation in phase space. We assume that the following
experimental conditions are satisfied: (a) the microwave
electric field E(r) exp(jabot) used to measure the con-
ductivity is the only applied field; (b) the angular fre-
quency co is sufFiciently high so that between cycles the
electrons undergo no appreciable loss of energy or sig-
nificant change in density; (c) over the significant part
of the distribution function v ))v„v,, where v (v),
v, (v), and v;(v) are the collision frequencies of an elec-
tron with a molecule for momentum transfer, excitation,
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Here a(r) = —(e/nt)E(r), a, (r,t) = —(e/nt)E, (r,t), E,
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and ionization, respectively; (d) the electron and ion
densities are low enough so that phenomena like elec-
tron-ion collisions, 4 electron-electron interactions, 5 and
plasma resonance' can be neglected; (e) the amplitude
of the electron oscillations, which is proportional to
E/[&o(v '+co')lj, is smaller than the dimensions of the
container, so that the electrons do not travel com-
pletely across and collide with the walls in every half-
cycle; (f) any dimension of the container is signicantly
larger than the electron mean free path.

With these assumptions the distribution function can
be written7:

F=Fo'+v [Fop+FI' exp(j cto)] /,v(1)
where Fo Fo and FII are functions of r, v, and t (the
variation with t is slow). By substituting Eq. (1) in
the Boltzmann equation, and by separating and
eliminating the various harmonic terms, we obtain (see
Margenau, ' Allis and Brown, 7 Bernstein and Holstein, s

and Rose and Browne for particular cases):

i)Fo /itt (1/3v) (V+a, i—t/vitv) (v'/v ) (V+a, it/vBv)Foo
—(a'/6v') it[v (v '+ Io') 'v'i)Fo'/—itv j/itv
—(m/Mv') it (v v'Foo)/itv (2U/3Mv')—

X & (v~v'&Foo/Bv)»+ (v + v I+arty g)Foo= 0, (2)—
v Fo' ———(vV+a, f)/flv)Fo', (3)
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Fpp4xv'dv. (6)

Equations (2), (5), and (6) form an integro-differential
system of equations for Fp',. Eqs. (3) and (4) give Fp'

Ft from Fp .

MICROWAVE CONDUCTIVITY

Before investigating further the solution of the
Boltzmann equation, we must see how to use this
solution to compute the microwave conductivity of a
plasma. The complex ac conductivity of a plasma
o (r,t) is de6ned as the ratio between the current density
and the electric field that produces the current. The
ac current density is given by the equation~:

~E= —e F,'(tv'/3)dv. (7)

This, with (4), gives

U its average kinetic energy, o. the electron-ion recom-
bination coeKcient, n+(r, t) the positive-ion density,
and UFO' the rate of appearance of electrons at low
energies as a result of excitation and ionization. The
space-charge field is given by Poisson's equation:

V.E,= e(n+ —n)/ep,

where ep is the permittivity of free space and n(r, t) is
the electron density:

where

nwg=4s-(nt/2)' t Fpsv'&'+'&dv (13)

are the energy moments of Fp'. From Eq. (6) we have
'LVO= 1.

Equations (9) and (12) determine the conductivity
as a function of time and position, when the density (6)
and moments (13) are known as functions of these
variables. The next section is devoted to the determina-
tion of these density and moments functions for the
case of a decaying plasma. We limit the discussion to
this case because it is easy and useful when the con-
ductivity measurements are used to determine the
collision frequency for electrons in a gas.

DENSITY AND MOMENTS VARIATION
IN A DECAYING PLASMA

We define the decaying plasma as a plasma in which
there is no production of new ions; more generally, we
assume no inelastic losses or v = v, =q=o. These as-
sumptions are usually satisfied in the late afterglow of
a pulsed discharge. In these conditions also the usual
assumptions of ambipolar diffusion can be made: e+ =e
and F+=I, where j. + and 1" are the dc positive-ion
and electron Qow, respectively; the limits of electron
density, temperature, and size of the container, in which
the ambipolar diffusion theory is valid, have been dis-
cussed by Allis and Rose."

When the density of electrons and ions are set equal,
the space-charge field can no longer be determined
from Poisson's equation and the following procedure
must be adopted. "From Eq. (3), we have

Henceforth we limit the discussion to the low-
pressure case v '((co', with the aid of a partial inte-
gration and of Eq. (6), from Eq. (8) we obtain

r= Fp'(4s v'/3) dv = p'(Dn) pn—E„(14—)
0

o = (e'n/nt&p) (ppp —j),
where pp is the normalized pressure and

(9) where D and p are the electron diffusion coe%cient and
dc mobility, dehned by

p= —(4s./3n), " (v /re p) (r)FpP/av)v'dv (10)
Dn= (4w/3)) Fpo(v4/v )dv,

0

v /~ps=& b, (nsv'/2)'
L=O

and substitute in (10); this gives":

p =+$1+(2t/3) jb)tv(,
L=O

(12)

I Phelps, Fundingsland, and Brown, Phys. Rev. 84, 559 (1951).

is a function of time and position, called the conduc-
tivity ratio.

Let us expand v in powers of electron energy (the
convenience of this expansion will be apparent in the
rest of the paper):

pn= —(4'/3nt) ~ (ciFpP/Bv) (v'/v )tgv. (16)

For the positive ion Aow we have the analogous equa-
tion:

rp ———v (D~n+)+ p+n~E„ (17)

where D+ and p+ are the positive ion diffusion coef-
ficient and dc mobility, generally much smaller than
the corresponding quantities for electrons. Conse-
quently the Row I+ is approximately equal to j. , but
it is much smaller than any one of the two terms on
the right of Eq. (14); these terms must therefore balance

"W. P Allis and D J.. Rose, Phys. . Rev. 93, 84 (1954).
"W. Schottky, Physik. Z. 25, 342 (1924).
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each other, and hence we obtain Lsee reference 2 for Eq. (23)j:

We are now in a position to calculate the di6erential
equations for the density e(r, f) and the moments
tv&(r, f) We. obtain the first multiplying Eq. (2) by
4m''dv, and integrating over velocity space. The result,
using Eqs. (3) and (14), is

Bn/Bt+ V ~ I +nns= 0. (2o)

The equation for the moments is obtained analogously,
multiplying Eq. (2) by 4i(rm /2)' 'v~+" d/vv and inte-
grating over velocity space. In the integration, the
collision frequency v is assumed proportional to v",
h being a constant, which is a cruder approximation
than (11); but we shall see that this approximation
affects only the correction terms for the nonuniformity
in the applied field, and is, therefore, adequate. The
6nal result is

tvi ——-'s (1+2l) (U+Ma'/4o')tvi i

+ (Id /nz) Ii, for l &~ 1, (21)
where

Ii (4v./I) (m/2)'(2l ———h) ' ( 'v'&+& /v„)

)&((1/3v)(V+a, B/vBv) (v'/i )(V+a,B/vBv)Ilp'

+f(V I') —iiB/tB)(F 's/)fs)d .v' (22)

Equation (18) now replaces Eq. (5). The flow is
obtained by substituting (18) in (17). Assuming that
D~ and p~ are independent of position and that D+/p~
= 2U/3e, the distribution for positive ions being
Maxwellian, we obtain

I =—li L(2U/3e) Ve+ (1/P)V(DN) j. (19)

—(3e/2'+)V I'= (U+tvi) Vs++ (2—sh) VN Vwi

+ (1——'h)nV tvi, (23)

Ii (1/v——.&v ) (2tv /3) '{Ll'(-', +l—li)/9fisv„]
X[2i(VI Vwi)/fs+BiV'tvi+Ci(V tvi)'/tvi j

—I'(-s, +l—-', ls) Btvi/tviBf}, (24)
where

g,=2(5—h),

Il i 2(3——+2l 2h—),
(.",=4+2l+4P —6(1+l)h+3hs,

(25)

and v„has to be taken at the velocity (4tvi/3m) f. These
formulas are correct only for h (5/2; outside of this
range some of the integrals used in the derivation
diverge. Also, in this range they can be used only as
far as the resulting I~ are small compared to the other
terms of Eq. (21).

Equations (20) and (21) for l=1, with the aid of
(23), (24), and (25), form a system of two equations in
the unknowns fs(r, t) and wi(r, f), that can be solved
when the boundary conditions of a particular experi-
mental case are given. When e and m~ are known, Eq.
(21) gives the space and time variation of higher order
moments. Finally, from Eqs. (9) and (12) we can
compute o(r, t). The problem of determining the con-
ductivity is thus solved in principle and in the next
section we shall apply this theory to a speci6c experi-
mental case.

From Eqs. (21) and (24) we see that, when Vis/e is
independent of time, a steady-state solution for electron
energies exists for which Btvi/Bt= 0, and all the moments
m~ become independent of time. This is the case in the
experimental conditions we shall discuss in the next
section.

For an infinite plasma in a uniform field and steady-
state conditions for electron energies, diRusion and
space charge field do not exist and I'=I~——0; in this
case we find Margenau's result —that the electron dis-
tribution function is Maxwellian with an average energy
U+Ma'/4u'. This result can be directly derived from
(21) or, in a more general way independent of the
approximation we made for v, solving Eq. (2). This
suggests that, if nonuniformities are small, if electron
energies are near to steady-state values and diffusion
cooling effects can be neglected, " the terms (V I') in
Eq. (20) and Ii in Eq. (21) can be computed assuming
a Maxwellian distribution in velocity for Iio', for the
average electron energy of this distribution we assume
the correct value m~. In this way, with the approxi-
mation D+«D, we obtain from Eqs. (19) and (22)

rs The experimental work of Biondi LM. A. Biondi, Phys. Rev.
93, 1136 (1954)j on rare gases shows that diffusion cooling is
appreciable only at very low pressures, about in the range where
condition (f) stated in the beginning of this paper is no longer
satisfied.

QUARTZ BOTTLE IN A MICROWAVE CAVITY

We shall determine the steady-state conductivity of
a decaying plasma contained in a cubic quartz bottle
of side d centered in a parallelepiped microwave cavity
with sides L, L„, L, along the directions x, y, s. The
applied electric field corresponds to the fundamental
mode TMsii and is directed along the x axis; 0, is the
quantity M(eE/2mco)' at the center of the cavity. We
assume that the field is not modi6ed by the presence of
the electrons, an acceptable hypothesis at the low
electron densities where the present theory is correct,
according to assumption (d) of the first section. The
boundary condition for the density is the usual one:
m=0 at the walls of the bottle. We assume no recom-
bination and no appreciable presence of higher-order
diffusion modes; consequently the decay of e is ex-
ponential in time. In this case Vis/e is independent of
time, and as stated in the last section, the moments m ~

in energy steady-state conditions are independent of
time. We solve the equations of the last section using
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trigonometric expansions in space for e and m~, limiting
these expansions to the first signi6cant term after the
ones for uniform Geld. This is usually a good approxi-
mation, particularly at low pressures. Therefore, we
write

e=es cos(wa/d)[cos(zy/d)+c„cos(3'/d)]
&([cos(zs/d)+c, cos(3zs/d)] exp( —yi), (26)

w~ =w~+ h„wg cos(2z y/d)+d„w~ cos(2z z/d), (27)

and assume that c„, c,«I, and D„m~, A, m~&&eg. We
give anal results only for the average and y com-
ponents; the expressions for the z components are
obtained by interchanging the variables. For the energy
m~, we obtain

ratio:

p=Q [1'(5/2+k)/F(5/2)](1+R )b (2w /3)' .(35)
l=p

E~ is a correction factor for the field nonuniformity,
given by

R~wi= (5—h)8~P(dvwr+A~ wi)

+ (l—q~P) [cos(2zy/d)A„wi+cos(2wz/d)A. wr], (36)

where 8p
——8y=gp=gy=o, and, for /&~2,

~ =2 [1 (3/2+P —h)/1'(3/2+ p)]

—(~—1)l'(5/2 —h)/1'(5/2), (37)

5(l —1)(3—h) 1'(—5/2 h)/F—(5/2) (38).

wi U+C ——(d/L„)C (d/L, )U,
+(5 ") (5/ h)p(~ wi+~ wr)/~(5/ ) ( g) ~ =2 [(»+4P—5h)1"(3/2+A —h)/1'(3/2+A)]

h„wi ——@(d/L„)C (d/L, )[1+5(3—h)I'(5/2 —h)P/
1'(5/2)] '~., (29)

where
p= (M/6m) (z.Z/d)', (30)

2 being the mean free path at the velocity (4$&/3m)&
aQd

C (()= —,'[1+sin(z-g)/z-g], (31)

+(P) = sin(wP)/z. (&'—P). (32)

The parameters for the density are

c„=(3h —11)hs wr/16(U+tar), (33)
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7= ( /d)'(2p+/ )LU+ +l(3—h)(~. +~. )].
(34)

Higher-order moments can be computed and sub-
stituted in Eq. (12); then we obtain the conductivity

As a particular case we have the formulas for p in a
uniform 6eld: evaluating the limit for d going to zero,
we obtain Eq. (35) with R&=0 and w&

——U+U, . Equa-
tions (9), (26), and (35) give the final result: the con-
ductivity of the plasma as a function of time and
position.

The same formulas with a few modifications are valid
for a plasma contained in a square quartz tube of side
d centered in a wave guide of sides I., and I„,when the
wave propagates along the z axis in the fundamental
mode TMp~ and the electric 6eld is parallel to the x axis.
The modifications required are: (a) put c,=h.w~=0;
and (b) replace Eqs. (33) and (34) with

c„=(3h —10)h„wr/16 (U+ wr), (39)

V= (w/d)'(4p+/3s) [U+wr+ :(2 h)~.wr-]. —(4o)

When recombination is present, the solutions are
more complicated; if the loss of electrons for recom-
bination predominates over diffusion losses, we can
assume e uniform and the formulas for this case can be
easily derived.

We have now solved the problem that we have been
discussing, namely, the determination of the steady-
state microwave conductivity of a low-pressure decay-
ing plasma in a nonuniform field, as a function of posi-
tion and time, for the most common geometries. We
shall devote the next section to relating this conduc-
tivity to the integral parameters that are actually
measured in our experiments with resonant cavities or
wave guides. Ke shall then discuss the limit imposed
on the",'theory by the appearance of inelastic collisions
when the electric field is sufBciently strong.

0.4
0 O.l 0.2 0.3 0.4 0.5 0.6 AVERAGE CONDUCTIVITY

Fto 1 N«~ahzeddecayc „,t „t i„„t, „ ith, t,. d/&
The conductivity we measure in. a resonant cavity or

between the sides of the quartz bottle and the cavity. in a wave. guide is a spatial average conductivity (o.),



IONIZED DECAYING PLASMA AT LOW PRESSURES 29

given by~o, w

(o.)= ) oZ'dr
T

@2d+ (41)

I.O

0.9

where 7 is the volume of the cavity or the area of the
wave guide.

For the case of the cubic quartz bottle discussed in
the last section, we obtain:

(a)= (estop/nzco) (2d/prL, ) Op(d/L„) 8p(d/L, .)
X$1+c„Or(d/L„)/Op(d/L„)

+ o' (d!L.)/oo(d/L*))(( )P —) (—f) (42)

where
(-1)"2~ cos(s g)

O.(~) = 1+ (43)
(2m+1)7r 1—L2)/(2rs+1))'
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and (p) is the average conductivity ratio given by the
same Eq. (35), in which E~ is

R(tat ——f-', i'+$(5 —h)8( —-', gg)p) (A„roy+A, tot)

+s (~ r)~p)

Let�(d/L

—)Astor/Oo(d/L )
+O, (d/L, )A,w t/Op(d/L, )) (44).

For the case of the square quartz tube the formulas are
analogous with the modifications already discussed and
o-(d/L. ) = 1.

Formula (42) shows that the average conductivity,
as compared with the conductivity in a uniform Geld, is
a function of the additional parameters d/L„d/I. „,
d/L„h, and P. To see the effects of these parameters on
the conductivity, we plotted in Figs. 1, 2, and 3 the
decay constant y, and the first two coefficients in the
expansion for the average conductivity ratio: (1+Br)tftt,
"D. J. Rose and S. C. Brown, J. Appl. Phys. 2B, 1028 (1952).

Fro. 2. Normalized first coefficient in the expansion for the average
conductivity ratio (1+R&)e& as a function of d/L.

FIG. 3, Normalized second coefficient in the expansion for the
average conductivity ratio (1+Rp)u&P as a function of d/L

i~~p(a) =7'—Vps

where po is the free-space permeability.

(46)

ELECTRON-ENERGY RANGE IN WHICH
THE THEORY IS VALID

In the previous sections we neglected the eGects of
inelastic collisions; this is correct until the average
electron energy m» is less than a certain value lV. In

(1+X&)wP, respectively, as a function of the ratio d/L,
for a cubic cavity and for the case U,»U. The values
of the ordinates are normalized to unity for d/L~,
which represent the uniform field limit. The highest
and lowest curve of any graph delimit a region in which
fall all the curves for the range —2(h&2 and any
values of p.

Finally we recall the relation between (a) and the
parameters which are generally measured at microwave
frequencies. If we have a microwave cavity, we
measure Acop, the change in the resonant frequency cop,

and h(1/Qz), the change in the reciprocal of the loaded
Q, from the condition of no plasma. We have, for small
perturbations,

(-)/"=-.~(1/Q.)-»A-' (45)

Obviously the measure of Qz, with the plasma present
must be performed without changing the amplitude of
the 6eld in the cavity. In a wave guide we measure the
complex propagation constant with the plasma y„and
without the plasma yp, there we have
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iO-

9-

7

In this equation we must know only the derivative at
of Po and, since at this point the distribution

function for the inelastic region has to join that for the
elastic one, we can substitute the derivative of the latter
in Eq. (48). From the discussion given in the previous
sections and because we are discussing a case in which
the effect of inelastic losses is still very small, we are
justified in assuming a Maxwellian velocity distribution
in the elastic region.

To determine the energy 8", we equate the power per
electron going into inelastic losses, computed in the way
just mentioned, to one hundredth of the power absorbed
per electron, which is ma'(v )/2eoP, when v '«co'.
When the usual assumption that v varies as v" is
introduced and the average (v ) is computed using a
Maxwellian distribution in velocity, we end with the
following equation for 8:
(el;/W) (em, /W) &'+"'~' exp( —3el,/2W)

= (2/3) ~'+"&~'I'(3/2+k/2)/100. (49)

FIG. 4. Ratio of the first excitation potential I, and the maximum
electron energy 8' as a function of h.

this section we shall derive 8" as the value of mq at
which the fraction of the absorbed power going into
excitation and ionization becomes appreciable; let us
say, one percent.

If the average energy loss in ev per inelastic collision
is I;, the power per electron which goes into excitation
and ionization will ',be 'e;((v,)+(v;)) where the angular
brackets indicate averages over the distribution
function. To determine (v ) and (v,), we have to know
the distribution function in the inelastic region; in
this region the inelastic collisions dominate all other
collision processes, so that the differential equation for
the steady-state distribution function can be derived
from Eq. (2) neglecting di&usion, recoil, and thermal
energies terms, as well as q and u. Then we obtain

(v,+v;)Fp' (a'/6p'v') aLv„v——'aFp'/Bv7/pjv. (47)

Multiplying both terms by 4m.v'dv and integrating from
v, (the electron velocity corresponding to the potential
I, where excitation starts to take place) to infinity, we
obtain

(v.)+(v;)= $2pra'v (v,)v,'/3—pp'A&7(aF pP/av) p=p. . (48)

In this formula u; is not exactly known, but it is not
very much larger than n„and the Gnal result is rather
insensitive to it. In Fig. 4 the quantity el,/W is plotted
verses h, for the case I;=I . We can conclude that the
theory discussed in this paper is correct for electric-
fields less than approximately 2~m (W—U) '/eM'*.

CONCLUSION

In this paper we have given the formulas for com-

puting the steady-state conductivity of a low-pressure

decaying plasma contained in a quartz bottle, centered
in a microwave cavity or in a wave guide. Knowing the
Geld at the center of the cavity and the electron-collision

frequency as a function of the velocity, we compute the
average electron energy Co& and the Grst-harmonic terms
Azv~ for the spatial distribution of the electron energy,
using formulas (28) and (29) for the particular geometry
that we have discussed. The average conductivity,
which we measure experimentally, can be computed by
means of the formulas (42), (35), and (44). These same
formulas can be used reciprocally to determine the col-
lision frequency for slow electrons in a gas when the
conductivity is measured as a function of the applied
Geld. We shall discuss this application in the following

paper. '


