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F16. 1. Decay of gallium spin samples. Decay curve of a spin-0
sample and a spin-§ sample. The decay serves to identify the
specific even-4 and odd-4 isotopes as Ga® and Ga®, respectively.

bardment of copper in the Berkeley 60-inch cyclotron,
and identification made from a half-life analysis of beam
exposures taken at appropriate values of radio-fre-
quency and magnetic field (Fig. 1). The observed decay
is in good agreement with assignments in the litera-
ture.}=?

The ground-state fine structure of gallium is 826
cm™!, and the beam temperature 1100°C ; therefore, both
the 4p2P; and %Py levels are appreciably populated.
Gallium 66 and 67 resonances have been observed in
both levels. Because of a coincidence between the
Zeeman frequencies for spin 3 in the ?Pj state and spin
0 in the 2P, state, exposures taken at this position show
a compound decay. Two special runs were therefore
made, one for which the 9.4-hr component was allowed
to decay before the run was begun, the other for which
the 9.4-hr component was selectively produced by
differential bombardment. In each case the appropriate
resonances were considerably enhanced.

Gross results of spin searches are shown in Fig. 2.
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Fic. 2. Comparison of spin samples of Ga®® and Ga®. Results
of spin searches are indicated by points at various values of
frequencies corresponding to specific spins. The experimental
points are extrapolated to a time shortly after cyclotron bombard-
ment, and the observed resonances are normalized by the compo-
nent of the appropriate isotope in the full beam. All possible
resonances corresponding to an even-4 isotope, /=0, and an
odd-4 isotope, I =%, were observed.
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The atomic-beam method is unfortunately incapable
of giving an unequivocal spin-zero assignment, because
interactions between the electronic and nuclear systems
may be too small for observation. It can, however, give
an upper limit to the interaction. Observations on the
Ga® resonance in the 2P; state have been made at
three values of magnetic field and from the observed
data one can set a conservative upper limit to the
magnetic dipole moment of 1073 nuclear magnetons.
It is therefore highly probable that the spin of Ga® is
zero.

Work on gallium is continuing; a new upper limit to
the magnetic moment of Ga®® and the hyperfine
structure of Ga® will be published later.
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HE optical hyperfine structure of Zr 1 which was
studied by Arroe and Mack! yielded a nuclear
spin of 5/2 for Zr*. Suwa,? using the same method

b

determined the magnetic moment to be u(Zr*)= — l.g
4-0.3 nm. Murakawa? corrected the result of Suwa an 0
determined the magnetic moment to be u(Zr*)=—1.
+0.2 nm.

Using a Bloch-type nuclear resonance spectrometer,
a nuclear induction signal of Zr®* has been observed in
a saturated solution of (NH4).ZrFg in D;O. A compari-
son of the signal with the corresponding one of OY
indicates a negative magnetic moment. The ratio of
resonance frequencies of Zr® and D? in the same
magnetic field and the same sample was measured as

»(Z1)/»(D2) = 0.60557=£0.00001.

In order to determine the spin of Zr", differentiated
n-mode signals of CI%® (abundance f=75.4%, I=3/2,
u=0.8209) and Zr"! (abundance f=11.29%,) in appro-
priate solutions of well-defined molarities (m=1.97
and 0.7, respectively) were compared at the same
resonance frequency and consequently nearly the same
magnetic field. The height of these signals was measured
as a function of the amplitude H,, of the modulating
magnetic field. The ratio of signals S with maximum
height was determined to be

S(CI9) /S (Zr™) = 0.93=0.04.
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Assuming spins of 3/2, 5/2, 7/2 for Zr*, the expected
ratios are 2.340.2, 1.0040.07, 0.5640.04, respectively,
according to the formula

Sy [mfI(I+O)yH W[Hi
Sy [mfI(I+1)yH\ [ H,]Y

where H, is the amplitude of the rf field, » the concen-
tration of the nuclei, and v the gyromagnetic ratio. The
experimentally determined ratio of the signals is there-
fore compatible with a spin 5/2 for Zr"! as measured
by Arroe and Mack.

Using the ratio of the magnetic moments of H! and
D? as determined by Smaller,*

w(HY)/u(D?) =3.257199940.0000012,

and the value of the proton magnetic moment,®
r(HY)=2.7927540.00003 nm,

the diamagnetically uncorrected value of the magnetic
moment of Zr* can be calculated as

p(Zr") = —1.29802+0.00002 nm,
or, diamagnetically corrected, as
w(Zr") = —1.302844-0.00002 nm.

When one considers the proton number Z=40 and the
neutron number V=351 (magic plus one), the spin and
sign of the magnetic moment are in agreement with the
predictions of the simple single-particle model which
places the neutron in a dy» state. The deviation of the
magnetic moment of 329, from the Schmidt value
u(Sch)=—1.913 nm, however, is rather large. For this
reason one may consider configurations which also
include protons, particularly the last two protons
outside the closed shell Z=28. In terms of the inde-
pendent-particle model, the two protons would couple
their individual spins j, to a total proton spin J,=0, 2,
or 4, whereas J, would couple with the odd-neutron
spin j,=35/2, to the total angular momentum 7(Zr")
=5/2. Possible configurations consistent with the
exclusion principle are

[m(pr2)27p=0; vds2 ]2,
[m(gos2)2rp=2; vdssa Jsa, and  [w(goa)rp=1; vds2 Jss,

[ (gor2)%rp=0; vdsso Jsyo,

which yield the magnetic moments in nuclear magnetons
of —1.913, —1.913, 4+0.037, and +4.04, respectively.
This shows clearly that the ground state of Zr® can-
not be described by one single configuration of the
type mentioned.

The observed relaxation time 7'; of Zr" in aqueous
solution of (ZrFs)~ is of the order of 107% sec and
indicates an appreciable electric quadrupole moment.
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T is the purpose of this note to consider radiative
corrections to the magnetic moment of the mu
meson, under the assumption that the mu meson is a
Dirac particle of spin 4, coupled to the electromagnetic
field in exactly the same way as the electron is, and not
directly coupled to the electron-positron field.
We write the g factor in the form

g=2(148:+8)+0(e?). (1

Here 6, represents the correction to the magnetic
moment obtained by ignoring the effect of the electron-
positron field, and 8, arises from the fact that the
virtual photons emitted by the mu meson can give rise
to a virtual electron-positron pair. This last effect is
of order o2, and the corresponding Feynman diagram is
shown in Fig. 1.

From the work of Schwinger! and of Karplus and
Kroll> on the radiative corrections to the magnetic
moment of the electron we get §;, by noting that this
correction is independent of the mass of the pair field.
The correction 8, can be obtained most directly from
formula (53), p. 546 in Karplus and Kroll> by a minor
modification. The result is
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Fic. 1. Feynman diagram for the correction 8, to the magnetic
moment of a mu meson. The heavy solid lines refer to mu mesons,
the thin solid lines to electrons, and the dotted lines to photons.



