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larly polarized wave, the spin density is

g~~ (H/ I
H

I ) ( Ass) g+ a——h(+ ps/p) (2')—',

so that the spin is parallel/antiparallel to the propaga-
tion direction.
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It is shown that the requirement that the Hamiltonian density commute with itself on a spacelike surface
precludes the possibility that three or more different spinor fields, coupled to one another in Yukawa-type
interactions, commute with each other. If the Hamiltonian contains only two such fields, however, they may
be assumed either to commute or to anticommute without violating this requirement.

I. INTRODUCTION

HK form of the commutation relations between
field operators that represent physically di6'erent

Fermi-Dirac particles has been investigated recently by
Kinoshita. ' He has shown that if the Lagrangian con-
tains interaction terms that are bilinear in spinor fields,
these fields must anticommute' in order that unique
equations of motion be obtained from Schwinger's
variational principle. However, if the equations of mo-
tion are obtained from the canonical commutation laws

sBQ'/Bt= [—H, f&7, i8$&/Bt =—[H,P&g, (1.1)

the results are unique regardless of whether the spinor
fields commute or anticommute. Since self-consistent
results are obtained from the canonical formalism, it is
not clear whether the inconsistency obtained by Kino-
shita reQects the impropriety of the commutation rela-
tions or the inapplicability of the variational principle in
this case. It is of interest, therefore, to determine
whether Kinoshita's conclusions can be obtained with-
out recourse to the variation formalism.

The question of whether difI'erent spinor fields com-
mute or anticommute is of no practical importance
when the Hamiltonian contains only two such fields,
since the physical observables obtained using either
choice of commutation relations are the same. On the
other hand, the transition amplitude for a particular
process involving three diferent spinor fieMs is calcu-
lated in Sec. 2 by the formal application of the Dyson
expansion of the S matrix, ' and the result is found to

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' T. Kinoshita, Phys. Rev. 96, 199 (1954).' As used in this paper, the expression "commuting spinor fields"
will always refer to different spinor fields. For a single spinor field
the usual anticommutation relations are assumed.' F. J. Dyson, Phys. Rev. 75, 486 l1949l.

depend on the choice of commutation relations. How-
ever, it is shown in Sec. 4 that if three or more spinor
fields interact with each other via Yukawa-type inter-
actions, 4 the assumption that they commute with one
another is inconsistent with the requirement that the
Hamiltonian density commute with itself at two points
on a spacelike surface. ' lf the Hamiltonian contains only
two diGerent spinor fields, they may be assumed to
either commute or anticommute without violating the
above requirement, which will henceforth be referred to
as Postulate II.

The case of three or more interacting spinor fields is
thus fundamentally different from that of only two such
fields in that Postulate II places a restriction on the
commutation relations in the former case but not in the
latter. Section 5 contains some speculations concerning
the apparent distinction between these two cases.

II. TRANSITION MATRIX ELEMENTS

In this section the transition matrix for a simple
process is evaluated by the formal application of
Dyson's S-matrix expansion. This example illustrates a
diGerence between the cases in which the diGerent spinor
fields are assumed to commute or anticommute.

4By "Yukawa-type interactions" we merely mean that an
interaction term in the Hamiltonian contains the spinor fields
bilinearly and the boson field linearly.

5 See, for example, W. Pauli, Progr. Theoret. Phys. (Japan) 5, 526
(1950).This is a special case of what Pauli refers to as Postulate II:
"Physical quantities (observables) commute with each other in
two space-time points with a space-like distance. " Strictly
speaking, only the Hamiltonian density integrated over a finite
volume is an observable. For this reason, in order to deal with
physical quantities at two different points of space-time, xI and x.,
one may integrate the densities over suitable regions of space RI
and R2, so that all points in (Ri,ti) are spacelike with respect to all
points in (R2, t2). The requirement that the Hamiltonian density
commute with itself on a spacelike surface is also an integrability
condition on the Tomonaga-Schwinger equation. In connection
with this see K. Nishijima, Progr. Theoret. Phys. (Japan) 5, 187
(1950).
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Flo. 1. Feynman
diagram for a second-
order process involv-
ing three difFerent
spinor fields.

the last two lines are a definition of P(xl, x2). In order to
perform the time ordering, we split the Feynman dia-
gram of Fig. 1 into its two constituent parts corre-
sponding to propagation by a particle and by an
antiparticle, Fig. 2(a) and 2(b), respectively. Then we
have

The Dyson expansion of the S matrix' is given by

1
S= 2 (—i)"„iJ „d4xg

P(»») =8(x2—»)0'(x2)4" (x2)4'(x2) P(»)4'(»)4'(»)
+8 (x,—xi) &2 (x,)P (x,)

X4'(x )0'(x )4'(x )4'(x ), (2 &)

where
X d4x P(Hz(x, ), ~,H&(x„)), (2.1)

where I' is an operator which orders the factors chrono-
logically so that time values decrease from left to right.
The transition amplitude for the second-order process
corresponding to the diagram in Fig. 1 will be calculated
for the following two cases:

+1 for xo& 0

. 0 for xo(0

8(x)+8(—x) =1,
8(x)—8(—x) = e(x) =xo/Ix&l

(2 7)

Case (a)—the commutators of different spinor fields
vanish;

Case (fl)—the anticommutators of different spinor
fields vanish.

Since qll and &2 commute with each other (and, of course
with the fermion fields), Eq. (2.5) becomes

P (xlyx2) Q (x2)pa (x2) [8(x2 xl)fa (x2) 4 p (xl)

~8(xl x2)4 p (xl)4' (x2)]4 p (xl)4' (xl) (2 g)
We shall see that in Case (a) the propagator for the
virtual fermion of Type 2 is not the usual Feynman
propagator.

The form of the interaction representation interaction
Hamiltonian is chosen as

H, (x) = g,P'(x)1tP(x)qF (x)
+g21t2(x)P(x)&2(x)+H. c., (2.2)

where the P's are different spin- —', fields, the g's are differ-
ent real scalar fields, and H.c. represents "Hermitian
conjugate. " The term of the S matrix corresponding to
Flg. 1 ls

. , fM"' = (—i)' d4x, d4x2P(H1 a(x2),H, '(x,)), (2.3)

the upper sign applying if we have

LA'(»), 4-'(x2)]+= 0,

NP'(»), 4-'(x2)]+= o,

I:A'(») 1(-'(»)]+=o,

and the lower sign applying if we have

LA'(»), 4-'(x2)]-= o,

LA'(*),4.'(*)] =o,

LA'(») 4-'(x2)]-=o.

(2.9)

(2.10)

where
Hr (x) =gig'(x/2(x)lt '(x), (2.2a)

Hr'(x) =g2+(x)p(x)lt2(x). (2.2b)

The expectation value of M&" is taken between an
initial state of the system containing fermion 3 and
boson 2 and a final state containing fermion 1 and boson
1, all particles being in plane-wave states and the
fermions being in definite spin states. Then we have

~l 1'"=(e~
I
M"'Iel),

=(epIm&'&I+, ),

glg2 d4xld4x2(+P I P(lt (x2)p(x2)4 (x2)

p(xi)1t '(xl)y'(xl) }I +1)

It can be noted that the minus sign in front of the second
term on the right side of Eq. (2.8) can also be obtained

by requiring two of the commutators and one anti-
commutator to vanish. Making use of the usual Fourier
decomposition of field operators, we obtain

M pr "=,t d4xld4x2iVap(xl, x2)

X I 8 (xi—»)(4.'(x2) 6'(xi)) o

~8("—")(4'(*)~-("))],
f

d4xld4x21Vap(xl)x2)

X (8(x2—xl) L iS.p+'"" (x2 xl) ]
= —g,g2 d4xld4x2(egI P(xl, x2) I@I); (2.4)

~8(xl x2)f iSap —&»(x—2 xl)—]), (2.—11)
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where AI s(xi,x2) is a c-number,

A'.p(xi, xz) =—gig2 ( mimz

! !
2 (2zr) 6 E Mm14dm34d M&(g M2)

Xzz '(mi, pi) zzq" (zzzz, pz)

Xp
Xi

X

X)

With the help of the relationships

5+(x)= -', [5(x)—iS&"(x)]
S (x) =

—2,[5(x)+iS&"(x)],

52 (x) = 5&'& (x)+ie(x)5(x),

Sr(x) = 4(x)Sp(x),

(2 12)

(2.13)

(2.14)

(2.15)

(2.16)

(b)

FIG. 2. The Feynman diagram of Fig. 1 divided into its t~zo
constituent parts, corresponding to propagation by a particle (a'j,
and by an antiparticle (b).

III. VACUUM EXPECTATION VALVE

The probability that a vacuum state at t= —~ shall
remain a vacuum for t= ~ is

Wp= [(5)p)2= P «p( i i—' Hi(x)d4x
where Sp(x) is the Feynman propagator, Eq. (2.11)
becomes, for Case (4z),

RIFI 2 If4xld4x2A ap(xi)x2)(i

XSF.s™~(x2—xi). (2.17b'l

For (b) we obtain, for the intermediate state, the
Feynman propagator, which is a Green's function for
the Dirac equation, i.e.,

(y„B„+m)Sp(x) = 2ib4(x). (2.18)

For (4z) the propagator is the function Sr, which
satisfies

2
(y„4l„+m)Sr(x) = ——bz(x) P—, (2.19)

in which P indicates that one must take the principal
value when integrating over xo.

From Eq. (2.11) we see that the two propagators
di6er only in the sign of the part corresponding to
propagation by a negative-energy particle. This diGer-
ence in sign is due to the odd number of transpositions
of diferent spinor fields involved in going from Eq.
(2.5) to (2.8). Thus, the transition probability for the
physical process that corresponds to Fig. 2 (a) depends on
the commutation relations of the diferent spinor fields.
This dependence does not occur for all processes in-
volving the Hamiltonian (2.2). An example of a transi-
tion probability the calculation of which involves an
even number of transpositions of difI'erent spinor fields
and which is therefore the same for Cases (Iz) and (b) is
given in the next section.

111FI 2 J
4f4xld4x2~+a4t(xl)x2)

XSr S'""(X2—Xi), (2.17a)
and for Case (b),

P exp i H~ x d4x, 31
o

where P is the operator that orders the factors in the
opposite order of times to that of P.

To prove that the expansion in Eq. (2.1) yields the
same result for S'0 whether the different spinor fields
commute or anticommute, we merely show that the
vacuum expectation value of each term in the expansion
(2.1) of 5 and the corresponding expansion of St is the
same for the two possibilities. The expression of interest
is

(P(x„))o=(P(H (x ), ,Hi(x„)})o.

After the time ordering is performed, we have the
product of rt Hamiltonian densities. For convenience,
the indices may be considered to be interchanged after
the ordering is carried out so that (P(x„))2 becomes
(HI(xi) Hi(x„))2, which is the sum of 4" terms. How-
ever, only the terms which contain an even number of a
given p' and which for every P' have a corresponding
g ' are nonzero. Thus (P(x„))2is nonzero only if zz is even.
The order of the factors is now rearranged so that all the
boson operators appear on the right. By splitting these
up into positive- and negative-frequency parts and
operating successively on the vacuum, we may replace
them by c numbers. Next, the following rearrangement
is carried out. Call the operator on the extreme right P".
Pick out a P' such that between it and f" there are
equal numbers of P' and P', and commute P" to the
right until it is next to P". Call P "'Qp" a factor pair.
Repeat the procedure for the first P" to the left of the
last factor pair formed until all the operators are in
factor pairs, all pairs for a given i being grouped to-
gether. Now (P(x„))2 may be unambiguously replaced
by c numbers. Since in the formation of each factor pair,
and later in the regrouping of all pairs with a given i to
stand together, an even number of transpositions of
difI'erent spinor fields is performed, the final result is the
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same for Case (a) as for (b). Similarly (P (x„)&p is the
same for the two cases, and thus the result for the
physical quantity 8'0 is independent of whether the
diferent spinor fields commute or anticommute.

IV. RESTRICTIONS IMPOSED BY COMMUTATIVITY
CONDITION

In this section it is shown that for Case (a), the
Hamiltonian density does not commute with itself on a
spacelike surface. %e shall evaluate the commutator of
the Hamiltonian densities for the interaction Hamil-
tonian (2.2), considering separately the two cases (a)
and (b) discussed in Sec. 2.

and
P(x,y)+Q(x, y) = [H(x),H(y) 7, (4 2)

Q(x,r) = [HI(x)»r b')]— (4 3)

i.e., all terms in P(x,y) involve the Hamiltonian of the
free fields. For Case (a), with g) ——g2

——1 for convenience,
we have

Postulate II implies that

(qc'
I
[P(x',y')+Q(x', y')]

I
4& = 0, (4.1)

where I%'& and I%'& are any two state vectors (not
necessarily physical ones), x'= (x,0), y'= (y,0), (P+Q)
is the commutator of the total Hamiltonian,

Q(*,y) =3~'""(*—y) [4'(r)P (r)+&'b') &'(r) 7[&'(x)4'(x)+0'(x) 4'(x) 7
+3~'~2) (x—y) [0'(r)4'b)+&'(r)P(r)][4'(x)P(x)+ P(x)P(*)]
+24'(x)(t 2(r) [4'(x)5'""(x—r)P b)+0'(r) 5(""(y —x)4'(x)]
+ip'(y) qP (x)[P(x)5(~"(x—y) P' (y)+ P'(y) 5(""(y —x)P (x)]

ict3'—(x)p'(y) [p' (x)S'""(x—y) p'(y) —p' (y)5'""(y —x)p (x)
+$2 (x)5(231) (x—y)P (y) —$2 (y)5(233) (y —x)P (x)]—ie'(x)@-'(y) [4'(x)5'""(*—r)Pb') —4'(r)5'""(y—x)P(*)
+P (x)5(~» (x—y)P (y) —1tP (y)S( 2) (y x)P (x)]

+24'(x)0'(y) [0"(x)P(x)+P(x)k'(x)][0'(r)P(r)+0'b)P(r)]
+24'(r)4'(x) [0'(x)P(x)+0'(x)P(x)][A(r)4'(r)+0'b)P(r) 7 (4 4)

where where cp=+ (p'+m'-) l, u' is a spinor, u' its adjoint, and

[~'(*),~ (r)7-= &( "(*—y),

[4 -'(x),A'(y)]+ = —iS-p'"" (*—y)

Since the 6 and 5 functions vanish for

(x-y)'= L( —y)' —(xp-rp)']& o,

(4.5)

since

5+(x,0) = —,'[S(x,0) iS("—(x,0)]
= —(i/2)5"'(x, 0) for x/0,

5—
(x,O) =—', [5(x,O)+iS("(x,O)]

= (i/2)S"'(x, O) for x&0,

(4.8)

c
"dpk

only the terms which do not contain either the 6 or 5
function are nonzero in Q(x', y').

It is convenient to choose

S(x) = ~ik ~ x

(22r)' cp

X [~y4 cos~xp —(k.y+im) sin~»],
(4.9)Iq'&=»+(p )bi+(pi)ap+'(qp) Iq'p&,

Iq"&=a+"(q ) Iq o&,

r" d3kz(4 6) So) ('x) — pck x

(22r) 3 ~ cp

X[(k y+im) coscpxp+cpy4 sincpxp].

Then we have

&q" IQ(x', y') Iq&

1 ( m3m 3

2 (22r) 3 (cp))rlcpir2cp233(d~3)

Xu~'(m&, p)[S,p(')("»(x—y, 0)
—S.p(')("»(y —x, 0)]up'(m„—p)

i ( m)mp

! u '(m(, p)
(22r) 2 ( cp jrccd irxcp~ccp~3$

(
"dpk

X ' e'" (*—»k y.p up'(mp —p) (4.10&
J mx~ OP

P~= q~= P2= —
q.3=P.

Evaluating Eq. (4.2), we obtain

&q"
I
Q(x', r') I+&

i ( mmp
! !

(2K) p (%3rcM)ci2M233M233 j
X [u "(m P)5 )p+(mx) (x' y')up'(m„——P)

+u, "(m3,p)S.p
("2)(y' —x')up'(mi, —p)], (4.7)

where b,+(p;) creates a meson of type i with momentum

p;, a;+'(q, ) creates a fermion of type i with momentum

q, and spin s, and !3pp& is the vacuum state. For later
convenience we set
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which is nonzero. Since the terms in P(x,y) that involve
both boson fields must contain one of them bilinearly, it
is clear that we have (4'

~

P(x', y')
~
4)=0, and Eq. (4.2)

is violated. For Case (b), on the other hand, all the terms
in Q(x,y) involve either the 6 or the S function and so
we have Q(x', y') =0. Also we have P(x',y') =0, and thus
the assumption that different spinor fields anticommute
is the simplest one that satisfies Postulate II.

It is an interesting fact that if the interaction involves
only two difI'erent spinor fields that commute with each
other Postulate II is not violated. This can be verified
easily by direct calculation.

V. CONCLUDING REMARKS

It has been shown that the requirement that the
Hamiltonian density commute with itself on a spacelike
surface implies that spinor field operators representing
diferent particles which interact with one another
cannot be assumed to commute, but that this conclusion
can be drawn only when there are three or more such
fields. This suggests that any general principle for
obtaining the commutation relations of diferent spinor
fields should be of a nature that manifestly diGerentiates
between the case of two fields and that of three or more
fields. In order to determine the form of such commuta-
tion relations, we note first that the distinction between
the above two cases is closely connected to a difterence
in the permutation properties of two and three or more

elements, and secondly that quantizing a single field
with commutators or anticommutators leads to en-
sembles of particles obeying Bose-Einstein or Fermi-
Dirac statistics, which are related respectively to the
identical and the alternating representations of the
symmetric group. The forms of the commutation rela-
tions for several interacting spinor fields can then be
obtained by requiring that they be similarly related to
the higher-degree irreducible representations of that
group. In this connection we note that it is the dis-
tinctness of the two boson fields that destroys the
symmetry of the Hamiltonian in the interchange of any
two spinor fields, and permits nonzero transition ampli-
tudes between initial and final states described by
eigenfunctions belonging to diferent irreducible repre-
sentations of the symmetric group. However, the re-
quirement that the eigenfunctions of two physically
realizable systems belong to definite representations of
that group places severe restrictions on the symmetry
properties of the Hamiltonian with respect to permuta-
tions of the diferent spinor fields. This fact may perhaps
serve as a guide in the further investigation of the
interactions of several spinor fields.
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