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Particle Aspect of the Electromagnetic Field Equations
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In this paper it is shown that Maxwell's theory of the electromagnetic field in vacuum can be stated in a
form closely parallel to Dirac's theory of the electron. The electromagnetic field is described by a three-by-
one column matrix whose elements are linear combinations of the three independent spinor components of
the field. The Maxwell equations take a form similar to the Dirac equation for a free electron but involving
three-by-three matrices. In terms of a wave function normalized so that the integral-square is the number
of photons, the classical expressions for the energy, momentum, and angular momentum in the field are
related to expected values of the Hamiltonian, momentum, and angular momentum operators. The angular
momentum operator consists of an orbital part plus a three-by-three spin-one matrix part. As in Dirac s
theory, the contributions from the states of negative Hamiltonian eigenvalue must be subtracted —these
are states of opposite circular polarization.

I. INTRODUCTION

S INCE any quantity which transforms linearly with
respect to Lorentz transformations continuous with

the identity is a spinor, ' spinor quantities are regarded
as fundamental in general considerations of field theo-
ries. The basic equations of such theories can often be
written in spinor form, but this is not convenient for
discussing the solutions because of the complicated
properties of the spinor operator that corresponds to
the gradient. A compromise is to describe the field by the
independent spinor components (or a linear combina-
tion of them) but otherwise write the field equations in
terms of the ordinary differentiation operators and
matrices. This approach permits the fundamental de-
scription of the field to be used without introducing the
spinor operations. The situation is illustrated by Dirac s
equations for an electron; although, as was originally
shown by van der Waerden, ' Dirac's theory can be
expressed completely in spinor form, ' discussions about
solutions of the equations are made more easily if the
equations are written in terms of ordinary differentia-
tion operations applied to the spinor components. In
this paper Maxwell's equations for the electromagnetic
field in vacuum are studied from this point of view.

The spinor formulation of Maxwell's equations was
investigated by Laporte and Uhlenbeck. 4 They found
that the electromagnetic field can be described by a
spinor of the second rank,

where P; is the complex three-vector,

P, =E,+iB,,
and E, , 8, are the electric and magnetic fields. In the
following section Maxwell's equations are restated in
terms of the three quantities it; formed into a column
matrix P.

The usefulness of a complex vector such as it; is well
known in classical electromagnetic theory. ' The equa-
tion for P discussed below was studied by Oppenheimer'
without identifying the real and imaginary parts of P
with the electric and magnetic fields. Recently Archi-
bald' pointed out that Maxwell's equations could be
cast into this form.

The fact that the field equations become similar to
the Dirac equations permits the field to be discussed
using standard quantum-mechanical methods. The
transformation properties of the it matrix do not lead
to the classical conservation theorems. However, as
shown below, a wave function p can be defined in such
a way that the classical formulas for the energy, mo-
mentum, and angular momentum in the field are found
from expected values of the usual type of quantum-
mechanical operator.

II. BASIC EQUATIONS

Maxwell's equations for the electromagnetic field in
vacuum, in Gaussian unrationalized units, are

g;;= —2z(it z+zPi),

g;;= —2i Q z
—i/i),

giz= gzi= 2f z,

kiBEi/Bxk+c 'BBj/Bi= 0,

E&piBBi/Bxg GATE&/R= 0, —

BE;/Bx;= 0,

(2)

(4)
~ Now at Institute for Atomic Research and Department of

Physics, Iowa State College, Ames, Iowa. BB,/Bx; =0. (5)' See, for example, H. L. van der Waerden, Die Gruppentheo-
retische Methode in der Qiiantenmechanik (Verlag Julius Springer, See, for example, J. A. Stratton, Electromagnetic Theory
Berlin, 1932), Sec. 20. (McGraw-Hill Book Company, Inc. , New York, 1941), Sec. 1.12.

~B. L. van der Waerden, Nachr. Ges. Wiss. Gottingen 100 J. R. Oppenheirner, Phys. Rev. 38, 725 (1931).
(1929). W. J. Archibald, Can. J. Phys. 33, 565 (1955).

'This subject has recently been reviewed by W. L. Hade and The conventions used are that Latin indices run from one to
H. Jehle, Revs. Modern Phys. 25, 714 (1953). three, Greek from one to four, and that a sum is understood to' Q. Laporte and G. E. Uhlenbeck, Phys. Rev. 37, 1380 (1931). be made on indices repeated within a term.
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In terms of the It, of Eq. (1), the equations become

p, p(BQ(/rtx3 zc—'8$,/Bt = 0,

Bf,/Bx, =0.

(6)

(7)

In the usual way, one can conclude from Eq. (6) that
Blt,/Bx; is constant in time. Therefore one only needs
to consider Eq. (6); the solutions of Eqs. (6) and (7)
are the solutions of Eq. (6) which have zero divergence
at the start. Equation (7) does not even need to be
considered in the initial conditions if the solutions of a
definite nonzero frequency are to be found, for if

It;(x,t) =w, (x)e ' '

disregarded. The matrices Q+ have the properties'

Q~~Qp =0,

Qy Qy= 1)

Qy= Qp C

(11)

(12)

(13)

Hfg ——&cpfg,

«4+ (u)A(p') =o,

(1~)

(16)

Therefore a complete set of functions for the electro-
magnetic field are

It~(p; x,t) = (22rh) &N~ exp[ih '(p x&cPt)], (14)

with the properties

then Eq. (7) is a consequence of Eq. (6).
To write Eq. (6) in matrix form one may introduce

three matrices s;,
$& kl —Z6jk~)

(P)It+(I ') =~(1 —I '), (17)

so that Eq. (6) becomes

CS I,P3$—= ihip/r) t, (9)

where PI, is written for ibid/Bx~ —The oper.ator —cs~P3

may be called the Harniltonian H. It is not to be identi-
fied with the energy. The s; satisfy the angular momen-
tum commutation rules,

Sg)SIIt; = —16g'Ic )$))

[the symbol p& is used for the eigenvalue as well as
for the operator] reduces Eq. (9) to the matrix eigen-
value problem

0
—c zp8

iP2

iP3
0
zp g

-ip
zpg

0

Qy

Q2 ——8'
Q3

Q2 '.
Q3

The secular equation has the solutions

W=&cp, 0

where p is the positive root of p3p~. A solution for the
eigenvectors, which in form prefers the 3-axis, is

+ZPP2 PIP3
23+= [2p'(p2'+p2')] & Wipp~ p2p3

PP+P2'
pl

NP= P2
3

One sees that the zero-eigenvalue solution is longi-
tudinal and, by dotting with the wave vector, that the
other solutions are transverse. Only the first two solu-

tions satisfy Eq. (7)—the longitudinal solution is to be

and are a representation of spin one.
Next the plane wave solutions of Eqs. (7) and (9)

will be written down —they are of interest in themselves
and are needed for later reference. The substitution

/=23 exp[ih '(p x—Wt)]

where 6 is the three-dimensional Dirac delta function.
The physical features of the solutions |t+ can easily be
seen by specializing to coordinates with the x3 axis in
the p direction. If one sets p~ equal to zero, takes the
limit as p2 approaches zero, and replaces p3 by p, the
result is

gy= (27rh) '2 & —1 exp[ik 'P(x3%ct)].
0.

Finally, from

4 =E+ +iB+

the electric and magnetic fields are found:

E~, g
——WC sin[h —'P(x3&ct)],

I'~, 2= —C cos[h—'P(xpact)],

B~, &
——&C cos[h,—'P (x3&ct)],

8~., 2
———C sin[it 'P(x3&ct)],

E~.3
——B~,3

——0,

where C is the constant (22rlt) '2 '*. It is seen that a
positive/negative eigenvalue solution corresponds to a
wave which propagates in the positive/negative p
direction and which is right/left hand circularly polar-
ized with the propagation direction.

III. TRANSFORMATION PROPERTIES AND
CONSERVATION THEOREMS

The purpose Of this section is to write down the
conservation equations which arise in consequence of
the covariance of Eqs. (7) and (9) with respect to
transformations to new origins of the space and time
coordinates and with respect to Lorentz transforma-
tions. Most of these theorerns do not correspond to the
classical conservation laws for the field but they lead
to new considerations so that in Sec. IV a complete

The superscripts, , and + denote the complex conjugate
transpose, and Hermitian conjugate matrices.
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correspondence between the classical conserved quan-
tities and expected values of transformation operators
can be made.

The basic theorem is that, if the transformation

x„'=x„'(x), lt '=p'(|p)

[x4 is ict and x„'(x,x4) is abbreviated to x„'( x)] carries
the equation

csjap(x)/Bxi, BiP—(—x)/at

into the equation

5~= 1)

Og= za/Bxp,

8,= i,e(—.x„(a/Bx„) si, —

Od xkc——'(B/—Bt)+ct (a/Bxi)+ si,

6,= —EP,
6j——ET.

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)

In consequence of Eqs. (21) the operators 8 are

Here E is the operator that changes a function into its
complex conjugate, P changes the sign of each space-
coordinate, and T changes the sign of the time-co-
ordinate. Unit terms in Q~, g„6~ are disregarded. The
densities of some of the conserved quantities are

csi a/'(x')/Bxk' BiP——'(x')/Bt',

then the operator 5 defined by

gives a conservation equation
0"4=EiEi+»J3i, (23a)

a(p +)/at=a(p"p')/at
= (csia//Bxj, )HP'+P" (csea/'/axi, ) (19)
=B(aP"si &P)/Bxi.

Re[i'~( ia/Bx„)i'=�—E,BB,/ax„B,BE,/Bx„—, (23b)

Re[|P~ 0,$]= et „x„[E„BB„/Bx„B„BE~/Bx„j-
+2ei„„E B„. (23c)The density of the conserved quantity is |pH &p and its

flux is 0P~sq—&P. If 6 is chosen Hermitian, the real
part of |P~ &P is significant because only the real part
contributes to J dx|p~ 9p when the integration extends
over the whole volume where iP is not zero.

The transformations to be considered are the identity,
infinitesimal space and time displacements, infinitesimal
space rotations, infinitesimal pure Lorentz transforma-
tions, space reAection, and time reRection:

The identity gives the Poynting theorem but the other
conservation rules are unrelated to the classical rules.

IV. CONNECTION WITH THE CLASSICAL
CONSERVATION THEOREMS

The conservation theorems of Sec. III cannot be
identified with the classical theorems for momentum,
angular momentum, and center-of-energy of the electro-
magnetic field. However, there is a direct connection
with the classical theorems if |p is replaced by p, defined

by

/
Xp Xp) (20a)

(20b)

(20c)

(20d)

(20e)

(20f)

The corre-

/x„=x„+~„,
/

Xj Xj 6jklXk~l)

/ /
Xj = Xj—V,t, t = t—C 'Vkxk,

y= ~8~@~-1|t. (24)

The operator H has zero eigenvalues and so in general
has no inverse. However, as long as the discussion is
confined to the radiation field, as it is below, the func-
tions |p can be expanded in terms of the lt + of Eq. (14)
and ~H

~
l|P~ can be defined to be (cP) 'g~. The value

p=0 does not arise in the expansion because it corre-
sponds to fields constant in space and time.

The expansions may be written in the form

, / /
Xj Xj) X4 X4)

/ /
Xj Xj) X4 X4)

where n„, 0~, ~, are smallness parameters.
sponding |P-transformations are

0"(*')= lt (x),

|P'(x') = |P (x)+is(Bid (x),

tp'(x') = ip(x)+ c 'si.ihip(x),

0'(x') = -0'(x),
4'(x') =0'(x)

(21a,b)

where the factors (8n.cp)& are included so that A+(p)
21e

(2]f) are the expansion coefficients for P:

(21c) p
0=

~
d p(8 cP)'A+(p)lt++ dp(8 cP)'A-(p)&-, (»)

These are found directly from the transformation prop-
erties of the electromagnetic field. Mttlller" gives the
pure Lorentz transformation in a convenient form and
Watanabe's" assignments for the time reQection are
used.

It is seen that

dpA+(p)g++ ~dpA (p)tP . (26)

I0 C. Mgller, The Theory of Relativity (Oxford University Press,
London, 1952), p. 110."S.Watanabe, Revs. Modern Phys. 27, 26 (1955).

I dxprrg= dpA+cA++ dpA cA (27)
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'(x) = IS-Hl-9'(x)
= Is HI-'~(*)
= IHI-I'IHI&'(x)

(2S)

Also, according to Eqs. (31) and (32) below, dpAycAy
is to be interpreted as the number of right or left hand
circularly polarized photons in dp. Therefore p is nor-
malized so that J'dxp"p is the total number of photons
in the field.

It is clear that if g satisfies Eqs. (7) and (9), then so
also does&. Therefore, the process of Sec. III for finding
conservation theorems applies to p as well as to f.
The p operator is found from the P operator 8 as
follows:

the momentum relation for example is as follows:

f
dx(EXB) j/4~c= —(Sec) ' dxg~s, f

r~

dppA+ A+B+ $'B~— dppA A B s&"8

where Eq. (25) is used for f, Eq. (14) for fy, and the
x-integration is performed first. The cross terms drop
out since, from Eq. (13),

Q~ Sggg=Q=F Sg~
=«'atN+; a++; t

=0

By SjBy=&Pj/P;

Also it is easily seen t atThe P and p operators are identical if 8 commutes
with H.

The @ operators to be considered are 1, H, p, (34)

Jj=ejgixgpi —hs;,

G, = IHI &[x,(ihB-/R) c't( ih—B/Bxj—)+ihs;)IHI&
= IHI-&Hx;IHI &—c'tp, .

(29) one of these results can be found by direct calculation
from Eq. (10) and the two results are complex conju-
gates. Therefore the momentum integral becomes

(30)

These expressions are found from Eqs. (22) by includ-
ing appropriate factors and replacing ihB/Bt by H as
may be done if the operators are to be applied to
solutions of the field equations. The identity gives the
conservation of the number of photons. The classical
expressions for energy, momentum and angular mo-
mentum in the field are related to H, p, J as follows:

dx(E'+8')/Sn

dpcpA+cA++J dpcpA cA

J
dx(EXB);/4~c= dpp, A+cA+ — dpp;A oA .

When this is combined with

r
dx'y PAy= dppjAy'Ay

the result is Eq. (32) as required. The proof of a com-

ponent of Eq. (33) can be made in a similar way, by
using the intermediate results

eayiBy (8/BPy)siBy=0,

e3yiBy (8/BPy)siBp=0)

e,g'By" (BBy/BPp)Pi aiP3/——P

dx(EXB),/4~c

dx&+HHy+ Jdxy HHy-,
aJ

(31)

r

dpp, A~cA+ — dpp, A cA

f r
dx&+ PA'+ dx4 pjd , (32)——f

dx[x;(F.'+B')/Sn- —c2t(EXB)~/4xc]

An analogous connection between the angular momen-

tum in the field and the angular displacement operator
J was found by Franz. "

The connection between the classical center-of-energy
theorem and the operator 6 can be shown without

making expansions. A statement of the classical theo-

rem for the free Maxwell field is that the following

quantity is conserved":

dx(xX(EXB)~,/4n. c

f
dxP+~J,&+ dxP ~J,y-, (3—3)

=(S~) ' de"x,g c't dx(EXB),/4—n.c

=
' dx@"EIHI'x, IHI*' —c2t(H/IHI) p jm

where Q+ is the first term in Eq. (26) and p the second.
These equalities can be verified by expressing the
classical integrals and the @ integrals separately in
terms of A+ and comparing the results. The proof for

dx@ (H/IHI)G, y. (35)
f

'' W. Franz, Z. Physik 127, 363 (1950).
» See, for example, reference 10, p. 170.
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The justification for replacing the momentum by

"dxy (H/IHI)p, y

in the second term is that

account of the (H/IHI) factor. If the transformation

*.=x.'(*) y'=y (y)

carries the equation

cskay(x)/Bx~ B——y (x)/Bt

into the equation

csi ay'(x')/Bxi, ' By——'(x')/at',

=0

dxy [(H/IH I) 8—8(H/I HI)]y~ then, defining the operator 8 by
1

2~
y'(x) = 8y(x),

one finds that

for any operator 8 that commutes with H.
In Eqs. (31), (32), and (33) the energy, momentum,

and angular momentum in the field are related to ex-
pected values of the operators H, p, J. In each case the
contribution from the expected value of the left-hand
polarized part of the wave is subtracted from the right-
hand contribution. A parallel situation arises in Dirac's
theory of the electron where, to obtain the physically
observable energy, momentum, or angular momentum,
the expected value of the appropriate displacement
operator in the part of the wave function with negative
Hamiltonian eigenvalues is subtracted from the con-
tribution of the positive eigenvalue part. In his theory
the Hamiltonian can be assumed to be the energy
operator, the vacuum to consist of filled negative energy
states, and the subtraction to correspond to the re-
moval of electrons from the vacuum because the elec-
trons follow Fermi-Dirac statistics: the Pauli principle
prevents an electron from cascading indefinitely down
into the negative energy states. This interpretation
cannot be made for the photon equations above because
the photons will follow Bose-Einstein statistics.

The factor of (H/I HI ) that appears in Eq. (35) sug-
gests that a different assignment of the operators
should be made. Since H, p, J commute with H, Eqs.
(31), (32), (33) can be rewritten as

a[y (H/I

HI�)

8y]/Bt=c(ay/ax~)»(H!
I

HI�)y'

+ y (H/IHI) .(By/a*. )-

In the second term, the order of the operators (H/
I
H

I )
and s~ can be reversed since sI,B/Bxj, is proportional to
H; one finds

a[y"(H/IHI) 8y]/at=a[cy si, (H/IH I) 8y]/axe„

and this seems to be the appropriate theorem to relate
the classical integrals to the transformation operators.
The Aux of the quantity whose density is y~(H/

I
H

I ) 8y
is cy~s~(H/IHI—) 8y. However, for the number of
photons and the unit operator the theorem without the
(H/ I

H
I ) factor is to be used so that y~y is the expected

photon density and —c@~s& is the expected photon
flux.

When these assignments are applied to the plane
wave solutions of Eq. (14), the following results for the
density of photons, energy, and momentum are ob-
tained [if y is P+, the fields are the real and imaginary
parts of (8mcp)&&~]:

4 4=(2~&) ',

lt,~ IH I y, = cp(2~a)-3,

y+ (H/IHI)py+=~p(2 &) ',

where u+~u+ is given by Eq. (12). The corresponding
I'd (, ,)/ fd ~(H/IHI)H (36)

results for the fluxes are

- y,".~,= (~p.ip)(2-I)-',
cP~"sg

I
H

I
y~—= c(aPI/P)cP(2~k)

cip~~sI, (H/I H
I )p,y~ c(&p„/p) (+.p,)

—(2~h)—'

Jfdx[xX (EXB)];/4lrc= Jfdxy" (H/ I
H

I )J~y (38)

so that uniformly the classical integrals are equal to
the expected values of (H/I HI ) times the displacement
operators. The operators to be identified with the
physically observable quantities are then (H/

I

H
I )

times the displacement operators.
The theorem of Sec. III, relating conservation equa-

tions to transformation properties, can be revised to take

where u~~szu+ is given by Eq. (34). These values of
the densities and fluxes are consistent with the idea of a
stream of particles with energy cp, momentum &p, ,
speed c, moving in the &pq/p direction. As argued
below Eq. (18), &p;/p is also the wave propagation
direction. Also, from Eq. (18) it is seen that the wave
frequency is cp/h and the wavelength is h/p; therefore
the operator assignments of the preceding paragraphs
contain implicitly the Planck relation between energy
and frequency and the de Broglie relation between mo-
mentum and wavelength. For a right/left hand circu-
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larly polarized wave, the spin density is

g~~ (H/ I
H

I ) ( Ass) g+ a——h(+ ps/p) (2')—',

so that the spin is parallel/antiparallel to the propaga-
tion direction.
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It is shown that the requirement that the Hamiltonian density commute with itself on a spacelike surface
precludes the possibility that three or more different spinor fields, coupled to one another in Yukawa-type
interactions, commute with each other. If the Hamiltonian contains only two such fields, however, they may
be assumed either to commute or to anticommute without violating this requirement.

I. INTRODUCTION

HK form of the commutation relations between
field operators that represent physically di6'erent

Fermi-Dirac particles has been investigated recently by
Kinoshita. ' He has shown that if the Lagrangian con-
tains interaction terms that are bilinear in spinor fields,
these fields must anticommute' in order that unique
equations of motion be obtained from Schwinger's
variational principle. However, if the equations of mo-
tion are obtained from the canonical commutation laws

sBQ'/Bt= [—H, f&7, i8$&/Bt =—[H,P&g, (1.1)

the results are unique regardless of whether the spinor
fields commute or anticommute. Since self-consistent
results are obtained from the canonical formalism, it is
not clear whether the inconsistency obtained by Kino-
shita reQects the impropriety of the commutation rela-
tions or the inapplicability of the variational principle in
this case. It is of interest, therefore, to determine
whether Kinoshita's conclusions can be obtained with-
out recourse to the variation formalism.

The question of whether difI'erent spinor fields com-
mute or anticommute is of no practical importance
when the Hamiltonian contains only two such fields,
since the physical observables obtained using either
choice of commutation relations are the same. On the
other hand, the transition amplitude for a particular
process involving three diferent spinor fieMs is calcu-
lated in Sec. 2 by the formal application of the Dyson
expansion of the S matrix, ' and the result is found to

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' T. Kinoshita, Phys. Rev. 96, 199 (1954).' As used in this paper, the expression "commuting spinor fields"
will always refer to different spinor fields. For a single spinor field
the usual anticommutation relations are assumed.' F. J. Dyson, Phys. Rev. 75, 486 l1949l.

depend on the choice of commutation relations. How-
ever, it is shown in Sec. 4 that if three or more spinor
fields interact with each other via Yukawa-type inter-
actions, 4 the assumption that they commute with one
another is inconsistent with the requirement that the
Hamiltonian density commute with itself at two points
on a spacelike surface. ' lf the Hamiltonian contains only
two diGerent spinor fields, they may be assumed to
either commute or anticommute without violating the
above requirement, which will henceforth be referred to
as Postulate II.

The case of three or more interacting spinor fields is
thus fundamentally different from that of only two such
fields in that Postulate II places a restriction on the
commutation relations in the former case but not in the
latter. Section 5 contains some speculations concerning
the apparent distinction between these two cases.

II. TRANSITION MATRIX ELEMENTS

In this section the transition matrix for a simple
process is evaluated by the formal application of
Dyson's S-matrix expansion. This example illustrates a
diGerence between the cases in which the diGerent spinor
fields are assumed to commute or anticommute.

4By "Yukawa-type interactions" we merely mean that an
interaction term in the Hamiltonian contains the spinor fields
bilinearly and the boson field linearly.

5 See, for example, W. Pauli, Progr. Theoret. Phys. (Japan) 5, 526
(1950).This is a special case of what Pauli refers to as Postulate II:
"Physical quantities (observables) commute with each other in
two space-time points with a space-like distance. " Strictly
speaking, only the Hamiltonian density integrated over a finite
volume is an observable. For this reason, in order to deal with
physical quantities at two different points of space-time, xI and x.,
one may integrate the densities over suitable regions of space RI
and R2, so that all points in (Ri,ti) are spacelike with respect to all
points in (R2, t2). The requirement that the Hamiltonian density
commute with itself on a spacelike surface is also an integrability
condition on the Tomonaga-Schwinger equation. In connection
with this see K. Nishijima, Progr. Theoret. Phys. (Japan) 5, 187
(1950).


