
1874 I NOKI, YASAKI, MACHI DA, AND MATSUKAWA

TABLE III. Data for particles lighter than a p meson.

Label in
Fig. 1

Sign of
charge

Mean
magnetic

field in
gailss
Hm

2050
2100
1510
1490

Thickness
in g/cms

and material
of plate

D

0.92, C
0.93, C
0.35, Al
0.14, Al

Inverse
momentum

in c/Mev
4 i =1/Pi

(@i~~+i) X100

2.52~0.14
2.59%0.14
4.14&0.19

10.31&0.33

Threshold
inverse

momentum
in c/Mev
Co X100

2.07
2.04
2.94
3.86

Deviation
of inverse

momentum
lil llil ts
of dpi

(@'1 40)/
54 i

3.2
4.6
6.3

19.5

Ionization
in units of
minimum
ionization
Ii +AIi

2.0+0.2
2.2~0.3
2.5w0.3
2.1~0.3

Deviation
of ioniza-
tiona in
units of

AI p

(Ii —Io)/
AI p

40
5.0
6.5
4.5

Upper limit of
mass in units of

electron mass
(M (PiR)

172+14
166+13
131+9

51+2

The average ionization of the electron is tal. en to be 1.2 times the minimiim. The probable error of a single observation of the ionization is taken to be
0.2 in the same units.

identified as lighter mesons, unless they are more
densely ionizing ones. Thus they may be electrons, but
the possibility that some of them are lighter mesons
is not excluded.

When one compares this result with that previously

described, the relative intensity of unidentified particles
to p, mesons is exceedingly reduced in this study.

The authors wish to thank 3Ir. Tsushima and 3,Ir.
Onuma for their collaboration in constructing and
operating the apparatus.
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Isobaric Nucleon Model for Pion Production in Nucleon-Nucleon Collisions*
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A detailed quantitative model for pion production via excitation of one or both nucleons to an isobaric
state with subsequent decay via pion emission is presented. The model is applied to the 0.8- to 3.0-Bev
incident nucleon energy range and its predictions are compared to various experiments in this energy range
performed at the Brookhaven Cosmotron. The isobaric state with isotopic spin and angular momentum= —,

'
observed in the pion-nucleon scattering was assumed to be predominantly responsible for pion production
in this energy range. The relative probability for isobar formation and subsequent decay with a variable
total energy or mass in the isobar rest system were phenomenologically related to the ~+-p interaction cross
section. The energy or momentum spectra of pions, and nucleons, the variation of the ratio of double to
single production, the angular correlation, and the Q value distribution for pion-nucleon pairs have been
calculated at various energies from 0.8- to 3.0-Bev and generally agree with the experimental results.

I. INTRODUCTION

! 'HE early cosmic-ray studies' of pion production
by incoming nucleons with energies ranging from

1 to 100 Bev had been found generally consistent with
the statistical theory which was proposed by Fermi' to
explain them. The essential features of this theory were
that a thermodynamic equilibrium was assumed to be
established inside a collision volume of radius equal to
to the pion Compton wavelength and then the relative
probability of a final state —with e pions of momenta

(P~,P~ P„) and 2 nucleons (P~~&,P~+2), was considered
to be proportional to the phase space available for this
state. Hence it was assumed that the matrix elements
for all final states were essentially the same. The only

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

'B. Rossi, High-Energy Particles (Prentice-Hall, Inc. , New
York, 1952), Chap. VIII.

~ E. Fermi, Progr. Theoret. Phys. (Japan) 5, 570 (1950);Phys.
Rev. 92, 452 (1953); 93, 1435 (1954).

final states which were applicable were, of course, those
which conserved charge, energy, momentum, angular
momentum, heavy particles, and isotopic spin.

The energy spectra and other characteristics of pion
production in Be and hydrogen by 1.0- to 3.0-Bev
protons were observed by I.indenbaum and Yuan'
using the Brookhaven Cosmotron. These results did
not agree with the predictions of the E ermi statistical
theory which were calculated by Yang and Christian. 4

Over the incident proton energy range of 1.0—2.3 Bev,
the observed experimental pion energy spectra in the

3 S. J. Lindenbaum and L. C. L. Yuan, Phys. Rev. 93, 917 and
1431 (1954); 103, 404 (1956); Proceedings of the Fourth Annual
Rochester Conference on Hi gh-Energy Physics (Interscience
Publishers, Inc, , New York, 1954), p. 140; Proceedings of the Fifth
Annz&al Rochester Conference on High-Energy Physics (Interscience
Publishers, Inc. , New York, 1955), p. 531; Proceedings of the 5i rth
Annual Rochester Conference on High-Fnergy Physics (Interscience
Publishers, Inc. , New York, 1956), Chap. IV, p. 37.

4 C. N. Yang and R. S. Christian, Brookhaven National
Laboratory Internal Report (1953) (unpublished).
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nucleon-nucleon center-of-mass system (hereafter ab-
breviated to c.m. s.) were all similar in shape to the
m++p scattering cross section as a function of energy
with a characteristic low-energy peak at 100—200
~AIev. Furthermore the multiplicity was deduced from
the ~+/m ratios and conservation of energy require-
ment to change from essentially single production
below 1 Bev to predominantly double production at
2.3 Bev, while the energy spectrum remained essentially
similar in shape.

The Fermi statistical theory predicted much less
double production and a great change in energy
spectrum shape from single to double production. The
greater multiplicity observed at 2.3 Bev could have
been obtained in the Fermi theory by increasing the
interaction radius sufficiently. This would also have
led to a change in the right direction for the energy
spectrum, since the double production spectrum is
closer in shape to the experimental one. However, the
result is still quite diGerent from the experimental
energy spectra. Furthermore this yields a total cross
section or interaction range estimate which is much
greater than that observed. Another major difhculty
was that especially at 1.0 Bev where double production
is negligible there were too many low-energy pions
in the experimental results when compared to the
Fermi theory.

This observation led Lindenbaum and Yuan' to
conclude that the strong pion-nucleon interaction
previously observed in the pion nucleon scattering
completely dominates the production process, and
suggests that the pion production proceeds predomi-
nantly via the excitation of one or both nucleons to the
isobaric state with isotopic spin (T) and angular
momentum (J)= 2.

Peaslee' then deduced the ratios 7r+, x, and ~'
mesons expected for either single or double production
via this isobar by applying conservation of isotopic
spin. Peaslee's ratios have been compared with the
above and various other experiments, ' ' and agree
much better than the corresponding values deduced
from the Fermi theory. Several cloud chamber experi-
ments by Brookhaven groups" have also revealed much
better agreement with the isobar model than with the
Fermi statistical theory.

A modified statistical theory calculation by Kovacs'
in which the final state pion-nucleon interaction was
taken into account has also yielded reasonable branch-
ing ratios for various charge states, m+/vr ratios, and
predictions for the behavior of the multiplicity as a

~ D. C. Peaslee, Phys. Rev. 94, 1085 (1954); 95, 1580 (1954)
Fowler, Shutt, Thorndike, and Whittemore, Phys. Rev. 95,

1026 (1954).
7 Morris, Fowler, and Garrison, Phys. Rev. 103, 1472 (1956);

Fowler, Shutt, Thorndike, and Whittemore, Phys. Rev. 103, 1479
(1956); M. M. Block et a/. , Phys. Rev. 103, 1484 (1956); W. B.
Fowler et al. , Phys. Rev. 103, 1489 (1956). These papers will be
referred to as 7(I), 7(II), 7(III), and 7(IV), respectively.

8 Cester, Hoang, and Kernan, Phys. Rev. 103, 1443 (1956).' J. S. Kovacs, Phys. Rev. 101, 397 (1956).

function of energy. This procedure, of course, tends to
improve considerably the statistical theory predictions
since it essentially includes the resonance interaction in
the final state.

Lepore and Xeuman' have proposed a statistical
theory in which the phase space volume accessible to a
particle decreases with increasing energy. This energy
dependence of the volume was introduced to conserve
the relativistic center of energy (relativistic analog of
center of mass). The resultant discrimination against
high-energy pions tends to provide momentum spectra
with a much lower energy peak than the Fermi theory
especially for single production, and hence tends to
agree with the experimentally observed spectra.

In the present paper a detailed quantitative model
for the calculation of the production of one or two
nucleon isobars in a nucleon-nucleon collision is pre-
sented. The relative probability for a final state is taken
to be proportional to the final two-body phase space
factor multiplied by the relative probability for forma-
tion of one or two T=

~ isobars. The mass of each isobar
was considered variable and equal to the total energy
in the center-of-mass system of the pion and nucleon
resulting from the isobar decay. The probability for
isobar formation has previously been related to the
observed total (~++p) scattering cross section and
this expression" is employed.

The angular distribution of the isobars produced was
considered for two cases: isotropic, and only forward
and backward in the c.m.s. The decay pions were
assumed to be isotropically emitted in the rest system
of the decaying isobar in both cases. Although more
detailed assumptions can be made for the angular dis-
tributions, mixtures of the present ones are entirely
adequate to fit the observed experimental data. The
ratio of double production to the sum of single and
double production in a single isotopic spin state
depends in this theory on only one constant k for which
a single value provides an adequate fit for the experi-
mental data throughout the range 1.0- to 3.0-Bev in
p-p collisions.

The conservation of T and T, is assumed throughout
the process. The decomposition of the initial two-

nucleon state characterized by a particular T and T,
into one or two isobars of T'=

2 and various allowed T,'

is weighted according to the appropriate Clebsch-
Gordan coefhcients. Furthermore the proper weights
for the decay of the isobars into x+, ~', ~ mesons are
included to obtain the individual properties of these
mes ons.

The calculations were carried out for 0.8-, 1.0-, 1.5-,
2.3-, and 3.0-Bev incident nucleon energy. The calcu-
lated results fit the data which is available at present
quite well.

"J.V. Lepore and M. Neuman, Phys. Rev. 98, 1484 (1955).
» See footnote 16 on p. 409 of L. C. L. Yuan and S. J. Linden-

baum, Phys. Rev. 103, 404 (1956).
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II. ISOBARIC NUCLEON MODEL

The strong-coupling theory of the meson-nucleon
system predicts a series of nucleon isobaric levels above
the nucleon ground state. "In such a picture one would
expect the pion-nucleon interaction cross section to
exhibit a series of resonant isobaric energy levels. An
analysis of the pion-hydrogen interaction cross sections"
supports the view that such an isobar exists in the
T'= J= ~ state. Furthermore it appears that for pion
kinetic energies in the laboratory system of &200—300
Mev the T' =J= -', state isobar essentially predominates
in the pion-nucleon interaction. The T'= —', cross section
rises from essentially zero at 200-3&Iev pion kinetic
energy in the laboratory system to a value equal to
that of the T'= —,'cross section at 450-ATev pion
kinetic energy in the laboratory system. There is at
present no evidence for a bound pion-nucleon state.

One can now consider a series of resonant isobaric
levels as characteristic of the internal structure of a
nucleon. Hence one can conceive of meson production
in a nucleon-nucleon collision as follows:

(1) As a result of the collision there is a transfer of
kinetic energy to the internal structure of one or both
nucleons. This raises one or both nucleons to one of
their set of isobaric levels.

(2) An excited isobar does not interact with the other
nucleon or isobar as the case may be, except for the
initial transfer of energy and momentum.

(3) The lifetime of the isobars is long enough to allow
them to separate before decaying and therefore final
state interactions between the decay products of one
isobar and the other nucleon or isobar in the collision
are small.

We further propose to assume that the dominant
isobaric level in the 1.0- to 3.0-Bev incident energy
range is the T'= J=~ state. This assumption has been
previously successful in explaining many of the quali-
tative and some quantitative features of the experi-
mental results. ' Some further support for this assump-
tion is derived from the work of Henley and Lee'4

who have applied the symmetrical scalar meson theory
to the production process and have found that the
dominant contribution to the pion production in the
Bev range is likely to come from the T'=-,' state with
relatively little from the T'= —', state. Lee" expects that
this result will also occur for the pseudoscalar case
which is being calculated.

'~ W. Pauli and S. M. Dancoff, Phys. Rev. 62, 85 (1942);
R. Serber and S. M. DancofT, Phys. Rev. 63, 143 (1943).

"De HoAmann, Metropolis, Alei, and Bethe, Phys. Rev. 95,
1586 (1954); K. A. Brueckner, Phys. Rev. 86, 106 (1952); S. J.
Lindenbaum and L. C. L. Yuan, Phys. Rev. 100, 306 (1955);
Ashkin, Blaser, Feiner, Gorman, and Stern, Phys. Rev. 96, 1104
(1954); Mukhin, Ozerov, Pontecorvo, Grigoryev, and Mitin,
Proceedings of the International Conference on Peacefll Uses of
Atomic Energy (United Nations, New York, 1956), Vol. II."E.M. Henley and T. D. Lee, Phys. Rev. 101, 1536 (1956).

'5 T. D. Lee (private communication).

Assumption (3) is rather questionable since a calcu-
lation of the order of magnitude of the lifetime of the
T'= 1=2 state from the observed width gives ~10 "
sec which means that the isobar could still be within
the interaction volume (radius 10 "cm) at the time
of decay. Obviously the agreement or lack of agreement
of the model with experiment will be a test of the
usefulness of this concept.

However, one might point out that the velocities of
the isobars and recoil nucleons are considerable in the
1.0- and 3.0-Bev energy region considered here. Hence
if a pion which results from the decay of an isobar has
the right relative energy to be strongly interacting with
its associated nucleon (i.e., a relative energy near the
peak of the 7r++p scattering cross section), its energy
relative to the other recoil nucleon or decay nucleon
from a second isobar will in general be at a much lower
or higher energy. Therefore, its interaction with the
second nucleon will be much smaller even if the isobar
decays rapidly. "Therefore even for a relatively short
lifetime some of the dominant features of the present
mode1 might still be approximately justified.

In this model single pion production occurs when one
nucleon in a nucleon-nucleon collision is excited to the
isobar with T'= J=-', and subsequently decays. In
addition to T' and T,' the isobar is further characterized
by the total energy of its decay products in its rest
system or equivalently a mass in its rest system denoted
by m;. Let us assume that the m-nucleon interaction
proceeds entirely by formation of the T'= J= 23 isobar.
Then we can by the following arguments relate the
cross section for isobar formation in a nucleon-nucleon
collision to the observed ~++p total interaction cross
section which is the T'=

~ state cross section.
We can write the general relation between cross

sections and matrix elements as follows:

o +~r (m, ) = const X
~
3f;„b»

~ mPp (m;) =o r (m, ), (1)

where m; is the total energy in the isobar c.m.s. or
equivalently the isobar mass;

~
M;„b»

~

~n, is the
matrix element for isobar formation; p(m;) is the
density of final isobar states per unit energy as a func-
tion of m, ; o. (m, ) is the cross section for isobar formation
as a function of m; and is equal to o ++„(m,).

Let us now consider the case in the m-nucleon inter-
action where the incident pion beam does not have a
unique energy corresponding to a definite value of m;,
but instead a rather wide distribution of energies
specified by an arbitrary function F(m,). Clearly, there
will now be a resultant distribution of the mass values
of the isobars formed, and the resultant relative cross
section per unit mass interval as a function of m; can
now be defined as dPr/dm; It is obvious from E. q. (1)

"The nucleon-nucleon final state interaction at these energies
is estimated to be small. The possibility of pion-pion final state
interaction in the case of double isobar decay is not considered
since there is very little evidence for such an interaction.
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and the definition of F(m;) that

dPr (m;)/dm; =constF (m;) o r (m;). (2)

In a nucleon-nucleon collision which excites one
nucleon to the isobar state, the excitation energy or
mass m; can vary over a wide range consistent with
the conservation of energy. Although Eq. (2) has been
derived for x-nucleon interactions, one can make the
further assumption that in a nucleon-nucleon collision
resulting in the excitation of an isobar, a similar form
holds for dPz/dm;, namely that

dPz/dm; = constF (E,m;) o.l (m, ), (3)

=const F(E,m, )01 (m;) dm;,
(4)

=const i F(E,m;)8(m, —mp)dm;,

=const F(E,m p) .

In this case or(mp) is the cross section for formation of
a two-body final state with one body a nucleon and the
other a particle of mass mo. The simplest assumption
is that F(E,mp) is the two-body phase space factor
corresponding to a nucleon and a second particle of
mass mo, for the case where E is the total energy in the
c.m.s. Therefore in considering the case of a variable
mass m; it is reasonable to consider F(E,m;) to be the
two-body phase space factor corresponding to E and m;.

The concept of a variable well-defined mass for the
isobar is only meaningful a long time after the collision
(t»10 " sec) and well outside the collision region

where E is the total energy in the c.m. s. of the colliding
nucleons. This is equivalent to assuming that the
intrinsic probability for isobar formation, which is
denoted by the factor ar (m, ) =

~
3I;»b»

~
mPp(m, )

depends only on m; and not on whether the excitation
energy m,. is derived via bombardment by a pion or
another nucleon.

The other factor in Eq. (3), F(E,m;) is analogous to
the factor F(m;) in the ~-nucleon case, and represents
the intrinsic distribution of excitation energies available
to form the isobar, which results from the details of the
nucleon-nucleon collision. A relationship between the
cross section for isobar formation and the m.++p total
interaction cross section similar to Fq. (3) has been
derived in a previous publication. "

Now consider the case where the width of the isobar
state I'—&0 or equivalently m,—+a constant=mo, and
J'ar(m;)dm, ~constantX f8(m, —mp)dm;. Then if we
integrate Eq. (3) to obtain the total cross section for
isobar formation with a definite mass mt), it follows that

p dPr(m, )
Pp(mp)= ~ dm;

dm'

(R»nucleon range). The mass has been previously
defined as the total energy of the final state ~-nucleon
system resulting from the isobar decay. The treatment
of the mass as variable and well-defined in or near the
collision region is unjustified. However, this semiclas-
sical approach may still be expected to yield the domi-
nant features of the interaction, provided the resonant
interaction of pion and nucleon constituting the isobar
is not essentially affected by interference terms due to
the presence of the second nucleon in or near the col-
lision volume. Of course, as previously stated, the
longer the actual lifetime of the isobar the better this
assumption will be.

In the case of double pion production via excitation
of both nucleons to isobar levels, we can develop
arguments analogous to the single production case to
support the following form of the di6erential cross
section for formation of two isobars with masses in the
intervals dm~ about m~ and dm2 about m~'.

d'o q,„g,/dm&dmp =F(E,m~, m p) al (mi) or(m p),
' (5)

where F(E,m~, mp) is the two-body phase space factor
corresponding to m~ and m2 for a total energy E in the
c.m. s. of the colliding nucleons.

Equations (3) and (5) for single and double pion
production respectively refer to the cross sections for
isobar formation integrated over all angles in the
original nucleon-nucleon c.m.s. Obviously the constants
contain an integration over an arbitrary angular dis-
tribution and hence Eqs. (3) and (5) can be put in the
following form:

da„„s~,/dm~ const——XF(E,mr) o (m~) a, (tt) d0, (6)

d'oq, „b~,/dm~dm p const X——F(E,m~, mp) o (ml)
Xo (mp)dmqdmpaq(8)dQ, (7)

where a., (0) and ad(e) are arbitrary functions of e.
The initial two-nucleon state is characterized by a

1 and T, which are conserved. This initial state is
decomposed into one or two isobars of T'=~ and
various allowed T,'. These various states are then
weighted according to the appropriate Clebsch-Gordan
coeScients, and the appropriate weights for the decay
of the isobars into m-+, x', and x mesons are included
to obtain the individual properties of these mesons.

The two-body phase space factor is given by"

F=pqEqEp/E (8)

where E is the total energy in the c.m.s. of the initial
nucleons. In the following, all quantities pertaining to
this c.m. s. will be barred. In Eq. (8), p~ is the momentum
of either particle (1V or Ã*) in the c.m.s., E& and Ep
are the total c.m.s. energies of particles 1 and 2, respec-
tively, so that E=E~+Ep.

The preceding discussion [see Eqs. (6) and (7)J,
suggests the following expression for the differential

"lt is assumed that the units are such that c= 1.
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where A is a constant, which merely determines the
total inelastic cross section, G (m Tr) is a factor giving
the energy distribution of the pions emitted into the
solid angle dQ by the isobar of mass m&, having total
energy E~', the parameter k determines the ratio of
double to single Ã* production. Aside from the factor A,
for the case of p-p collisions, which involve only the
T=1 state, k is the only adjustable constant in the
present model. Its value will be obtained below from
a comparison of the calculations with the observed
pion multiplicity as a function of the incident proton
energy. In Eq. (9), X is a normalization constant which
is introduced merely in order that the constant k be
dimensionless. X is given by

Mg

1V= ~ ( )d
Mo

(9a)

In Eqs. (9) and (9a), M, is the total energy corre-
sponding to a pion at rest in the c.m. s. : M„=m„+m,
=1.08 Bev. The upper limit Mr, of Eq. (9a) is Mq =—1.58
Bev, corresponding to an excitation energy of 500 &Iev
plus a pion rest mass. In Eq. (9), the upper limits M&, &

and M~ for double production are defined as follows:
M~ d

——E—m2 or 3fb, whichever has the smaller value.
Similarly, M2 is taken as the smaller of the two energies
E—M and Mb. For single production, the upper limit
M~, , is the smaller of the two values E—m„and Mb.

Concerning these upper limits in Eq. (9), we note
that we are using a cutoff" for the isobar mass mr (and
m&) at M&. For the ~+-p system, M& ——1.58 Bev cor-
responds to a 700 AIev-pion in the laboratory system.
This cutoff was used because already at 450-Mev
laboratory energy; the cross section o(T'= —', ) for the.
pion-nucleon system in the T'=

~ state becomes larger
than a(T'= 3~) [which is equal to o (~+—p) ].The wide
maximum of o (T= -', ) with center at 900 AIev
extends down to 700 XIev. Hence it was necessary
to use a cutoff at an energy in this region, since the
T'=-,'state predominates for higher energies. The use
of the cuto6' in the present model is expected to result
in an underestimate of the high-energy tail of the pion

' We note that the choice of the upper limit Mb for the integral
of Eq. (9a) for S has no practical effect on the predictions of the
present model. Thus a change of the upper limit of this integral,
which would change its value, would merely lead to a readjust-
ment of the value of k which gives the best fit to the observed
multiplicity (Fig. 9), since the experimental data determine only
the product klV LEq. (54)).

cross section in the c.m.s. for the production of pions
(of all charge states) of kinetic energy T, which
originate from p-p collisions (total isotopic spin T= 1):

d2a II
M2 ~ Mz, a

=A
~

dme ' a(mr)a(m2)FG der
dT dQ ~Mo "M,

M1, s

a(mr)FG dmr, (9)

distribution. However, the corresponding error is
probably unimportant, since the predominant con-
tribution to the pion production in the 0.8- to 3.0-Bev
incident energy range is due to pions which have been
made via the T'= J= 2 resonant state, and whose
energy is considerably lower than the cutoff.

In Eq. (9), G depends, of course, on the angular dis-
tribution of the isobars, a(0~~), where 0~* is the c.m. s.
angle of the isobar with respect to the direction of the
incident nucleon. G is given by

7r 2'
G (E,m)=~"

~
a(0~)J(0)0(E, E, ,)—

0

X»n6*d~+*~gx*, (10)

where p is the azimuthal angle of the pion. The deter-
mination of a(0v~) from the observed pion angular dis-
tribution will be discussed in Sec. IX. For the present
calculations, we will be interested in two special cases
for both of which the double integral of Eq. (10)
reduces to a simple expression.

AVe will first assume that the distribution of X* is
isotropic in the c.m. s. In this case, G is given by

G =I/(E, „, E, ;„), (E—., „„„&E&E. „,,„), (12)

G.=O, (E.&E...„.and E.&E. ..), (12a)

where E „„.„and E,„, are the minimum and maxi-
mum values of the total energy E of the pion emitted
in the decay of m~. E, ;„and E,„„-are given by

E,„=yr(E *+Prp.*),

E. ;„=yr(E.* , r;ip.*), —(13)

where E * and p
* are the total energy and momentum

of the pion in the rest system of m~, 8I is the c.m. s.
velocity of snr (which depends on E a.nd m2), and
yr =—(1—8r2) l. It may be noted that Eq. (12) gives a
uniform distribution of energies between E „„.„and
E „,„, and is normalized to 1:

E~, min

G dE =1. (14)

The uniform distribution of pion energies is easily
derived from the equation for E.:

E =p&(E,*+Prp,* cos0 *), (15)

where J(0 ) is the Jacobian for the decay of mr, 0 is
the c.m.s. angle between the directions of motion of the
isobar and the emitted pion, E o is the total c.m. s.
energy of the pion emitted by the isobar of mass m~, with
energy E&, at an angle 0 to the direction of the isobar;
g~* is the azimuthal angle of the isobar. AVe note that
0 is related as follows to 0~~ and to the c.m.s. angle P
of the pion with respect to the incident nucleon:

cos0 = cosP cos0~i*+sinP sin0~. cos(p~*—g ), (11)
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FIG. 2. Partial energy distributions for double pion production
at a proton energy T„=2.3 Bev for isotropic production of N*
in the c.m. s. The function shown in this figure is

Fzr. . i. Phase space factor I'j' for single and double N~ production
at proton energies T„=1.0 and 2.3 Bev. The ordinate gives the
values of F=pl dpi/dIj in units (Bev)'/c'. The full curves pertain
to T~=2.3 Bev; the dashed curves correspond to T„=1.0 Bev. fM1,

~(m,1)I'G dfn1,
M~where 0 * is the angle of emission of the pion in the

m&-rest system. The number of decays per uiiit energy
interval dE is given by

where m1 is the mass of the decaying isobar N1*. The different
curves pertain to various values of the mass m~ of the other
isobar N~* produced in the collision.

de de d cos8 *
6 =

dE d cose * dE

gij= &(mii)Ff j/(Tw, max Tw, min )~ (18)It is assumed throughout the present work that the
isobar decays isotropically in its rest system. " Thus
dn/d costI * is constant (= —,'). In view of Eq. (15), we
have

where m~; is one of the selected values of m~,. Ii;,,

T, ;„pertaining to m~; and m~, . Here T, , and
T;„are the kinetic energies corresponding to E,
and E;„,respectively [see Eq. (13)$. Equation (18)
gives a step function of magnitude g,; extending from
T;„('&' to T, , &'&' for each set of values m~;, m~, .
The step functions g;, for all of the m~ were added
together and a smooth curve was drawn through the
sum. The resulting spectrum, to be called I;, is a
function only of T and m~;. Thus

d cos|I */dE =1/(y&Pip *), (1&)

which is also independent of 8„*. This shows that
dn/dE =G is constant between the limits E, ;„and
Em, max

The procedure of the calculation of d'o/dT, dQ from
Eq. (9) was as follows. The phase space factor F was
calculated for m~ ——0.938 Bev (single production) and
for various values of m~ between 1.10 and 1.55 Bev
(double production). The curves of F vs mi are shown
in Fig. 1, for values of the incident proton kinetic
energy in the laboratory system T„=1.0 and 2.3 Bev.
It is seen that F is slowly decreasing with increasing m~,

except near the upper limit M~ in those cases in which
M~=E —m~, so that Ii becomes zero at m~=M~. Thus
the factor F will have a relatively minor influence on
the energy spectrum of the pions, except for the values
of m~ in the neighborhood of E—m~.

Between m~=1.10 and 1.55 Bev, F was calculated at
intervals of m~ of 50 4lev. For each selected value of

' From the interpretation of the pion scattering experiments, '
it is known that the isobar has spin J=$. This value was also
predicted from the strong coupling theory, " according to which
the isobar has T'= J=-,'. Thus it is possible that the N* will be
partially polarized, in the same manner as protons which have
been elastically scattered. Since the average spin direction would
then be perpendicular to the plane of production, the pion would
be emitted preferentially at a small angle to the plane of pro-
duction. However, since J is not large, one expects that these
effects will not be very important. For this reason and because
of the lack of information about the polarization, we have used
the assumption of isotropic decay.

I,(T.,mg, ) = (P, g;,)Am, (19)

where 6m=25 Mev. For m&
——m„, I, is equal to the

single integral in the second term of Eq. (9) and gives
the shape of the pion spectrum for single production.
I,(2',m„) will be called I, ,

For ~ m)jm„+m„ Ij(T,m») gives the partial pion
energy distribution for a fixed value of m& contributing
to double production. Some of the curves of I; obtained
for T„=2.3 Bev are shown in Fig. 2. In order to evaluate
the double integral of the first term of (9) which gives
the complete spectrum, the values of I (Tj„~)mfor
neighboring values of m, : m» and m9, j+i (differing by
50 Mev) were interpolated so as to obtain I,(T, ~)m

for mQ g(m»+m&, j+&). Thus values of I,(T, &)mat

intervals of 25 Mev were available. The double integral
of Eq. (9) was then obtained by multiplying by a(m»)
and summing over m~, We define

I, d (T.) =—Q; I,(T.,m~j) o (m~j) hm,

(1ti) mq, to be called m~j, the following quantity was obtained
for various m~ at intervals of 25 3 Tev:
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where the values of m2 cover the range from M to M2.
A smooth curve drawn through the values of I q from
Eq. (20) gives the shape of the pion spectrum for
double production.

The preceding calculations were carried out for
incident proton kinetic energies T„=0.8, 1.0, 1.5, 2.3,
and 3.0 Bev. Figure 3 shows the shape of the pion
spectrum I, for single production. I„,, is given by

makes it most probable that m2 will have a value close
to the resonance value of 1.22 Bev. For a fixed m2, the
momentum p~ of a given m~ would be completely
determined. This value of p~ will be smaller than that
for single production (for which m~=m„). Therefore
the spread ~ =—E, —E;„of the pion energies
will be reduced, since AE is proportional to p~, being
given by

M.= 2Pgp. %up. (23)

0 (mg)IiG, dms. (21)

It is seen that the maxima of I,(T ) are quite broad.
For T„&1.5 Bev, the maximum extends to considerably
higher energies than the maximum of the cross section
o (m~) which would give a rather narrow peak at
7.
' =120 Mev for an excited nucleon decaying at rest

in the c.m.s. The broadening of the maximum is due to
the motion of the excited nucleons, which becomes an
important eGect with increasing proton energy.

Figure 4 shows values of I,~'.

~M2 ~M1,g

I, a = dm2 0.(m~) 0. (m~) IiG„dm~, (22)M„L M~

giving the pion spectrum for double pion production,
for T„=1.0, 1.5, 2.3, and 3.0 Bev. At 1.0 Bev, double
production is almost negligible, due to the smallness
of the phase space factor. A comparison of Fig. 4 with
F'gg. 3 shows that the maximum of the I d, curves is
somewhat narrower than that of I, Thus for T„=2.3
Bev, the full width at half maximum is 240 Mev for
double production (from T =40 to 280 Mev), as
compared to 330 Mev for single production (from
T —25 to 355 Efev). Similarly for T~=3.0 Bev, the
half-maximum width is 310 Mev for double production,
as compared to 380 Mev for single production. This
narrowing of the maximum arises from the additional
factor o (m ) in the integrand of I d This fac.tor

IB
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FIG. 3. Energy spectrum in the c.m.s. for single pion production
at proton energies T~=1.0, 1.5, 2.3, and 3.0 Bev for isotropic
production of N~ in the c.m. s. The curves represent the single
integral I~, , of Eq. (9).

Figures 3 and 4 show that the broadening of the
pion spectrum due to the motion of the isobar is an
important eGect, although it does not shift appreciably
the position of the maximum which is still in the
region of 100—200 Mev for T„&3Bev.

IS I I I I I I I I I I I I
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Fzo. 4. Energy spectrum for double pion production at proton
energies T„=1.0, 1.5, 2.3, and 3.0 Bev for isotropic production
of N* in the c.m.s. The curves represent the double integral I
of Eq. (9). For 1.0 Bev, the double production is very small, and
the values of 10I d are shown in the figure.

nucleon-nucleon collision, it seems of interest to treat
two extreme cases which differ markedly from the
isotropic distribution considered above. We shall
discuss the case where the X* is made only in the
forward and backward directions in the c.m.s. The
pion spectrum will be calculated for the pions emitted
in the forward direction and for the pions observed at
90' in the c.m.s. These spectra will be referred to as
the 0 and 90' spectra, respectively. -"'

We will consider first the 0' spectrum. In general,
the Jacobian I which enters into Eq. (10) for G is

given b
yP)1+ (p*)'+2p* cos8»*—v~' sin'8~*]'*

J= (24)
1+p*cos8 *

~' The same 0' and 90' spectra would also apply if the isobar
N* is made only at 90' c.m. s. angle to the incident proton direc-
tion. In this case, the 90' spectrum would give the energy distri-
bution of the pions emitted in the forward direction, while the 0'
spectrum would apply to the pions observed at 90' in the c.m. s.

III. EFFECT OF THE ANGULAR DISTRIBUTION OF THE
ISOBAR ON THE PION ENERGY SPECTRUM

In view of our lack of information about the angular
distribution of the nucleon isobars produced in the
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where 8& is the velocity of the excited nucleon m&, 0 *
is the angle between the direction of the isobar and
that of the pion in the m&-rest system; p*—= 0&/v *,
where v * is the velocity of the pion in the m&-rest

system. From Eq. (24), the values of J for 8 *=0' and
180' are given by

J ='Y (1+P )' (8 *=o')

J —+ 2(1 pk)2 (8 rb 1g0o)

(24a)

(24b)

where

~(m„)P,,J;, .
T» ~,x"&'+' —T» ~,„('& )

(26)

&rr;msx
' ':g[Trr, msx

'
'

'

+& rr, nrsx
' '

]r (27)

Trr, msx
' + = gLTrr, msx

' +Trr, rnsx
'+ ' ] (27a)

The step function g;, , extends from T,„('& ~ to
, ('&+~ and represents the contribution of values of

m& between —,'(m&; &+m&;) and —', (m&;+m&, ;+&). In Eq.
(26), J... is obtained from (24a).

The step function g;,. & for 8 *=180' is given by

a(mar. )F,;J;, b

g. ). (4+) T . (ig )
(28)

The pion is obviously emitted in the forward direc-
tion in the c.m.s. if the isobar is produced in the
forward direction (8~.——0') and the decay angle 8 *
is O'. This case corresponds to Eq. (24a). If the isobar
is produced in the backward direction and emits the
pion at 0 *=180', the pion is observed along the
forward direction in the c.m.s., provided that v *)8~.

However, when the available energy in the m&-rest

system, m~ —(m~+m ), is very small, so that v *(8~,
the pion emitted at 0 *=180' travels in the same
direction in the c.m.s. as the parent isobar, so that the
latter must have been produced in the forward direction
in order to contribute to the pion spectrum at O'. For
both of these possibilities for 8,*=180, the Jacobian
is given by (24b). The values of E which correspond
to J and J~ are E, , and E;„,respectively, as
given by Eq. (13).Thus the pion spectrum is obtained
from Eq. (9), in which G is given by

G-(E-) = v '(1+p*)'8X- v(E.*+—~ p.*)]
+v P (1—p*)'&[E.—y, (&.*—v,p.*)]. (25)

The 8 functions in Eq. (25) correspond to the fact
that for an isobar with a fixed mass m~ emitting a pion
at 8 *=0' or 180', there is a single pion energy E .
These 8 functions replace the continuous spectrum of
Eq. (12) which is obtained when the isobar is produced
isotropically in the c.m. s. In view of Eq. (25), the step
function g;, of Eq. (18) (pertaining to m&;, m2, ) is

replaced by a sum of two-step functions g;;, , and g;;, &

which were obtained as follows:

DOUBLE N PRODUCTION

I6- Tp = 2.3 Bev
0090

z I2

IO-
KI-
Q) 8—
'st
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b ~
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FIG. 5. A comparison of the energy spectra for double pion
production at a proton energy T„=2.3 Bev for isotropic and
forward-backward emission of the isobars. The curves give the
double integral I,z of Eq. (9). The curve marked isotropic
pertains to isotropic production of X* in the c.m. s. The curves
marked 0' and 90' were obtained on the assumption that S*
is made only in the forward and backward directions in the c.m. s.
The 0' and 90' curves pertain, respectively, to the pions produced
in the forward direction and at 90' in the c.m.s.

where 0 =c.m.s. angle between excited nucleon and

pion, p=8&/8, with 8 =velocity of pion in c.m. s. For
8 =90', Eq. (29) gives

(29a)

where T;„('&+' and T;„("~ are defined in terms

Eqs. (27) and (27a). J;, b is obtained from (24b). The
step function g;;, g extends from T;„("' to T, ,„;„("+'

The spectra due to g;, , and g;, ~ must be added and
summed over the mI; in order to obtain the composite
spectrum, I,(T,m&, ) t see Eq. (19)].We note that, in

contrast to the isotropic case, the step functions g;, ,
(or g;, , b) for different i do not overlap. Thus g;, , is

contiguous to g;+&. ;,, (pertaining to m&, ;+&) generally
on the high-energy side, and to g; &; (pertaining to
m&, ; &) on the low-energy side. The complete spectrum
for double production is obtained from Eq. (19) in the
same manner as for the isotropic case.

Figure 5 shows the 0' spectrum, together with the
90' spectrum and the energy distribution for the
isotropic case, for double S* production at T„=2.3
Bev. The large peak of the 0' spectrum at 275 Mev is
due to isobar decays with 0 *=0' for which the
Jacobian, Eq. (24a), is generally ))1. On the other
hand, the weak maximum at 50 Mev is mainly due to
pions emitted at 0 *=180'. In this case, the X* is

generally moving backward in the c.m.s., and the cor-

responding Jacobian, given by Eq. (24b), is relatively
small.

The 90' spectrum will now be obtained. For this

purpose, the Jacobian (24) will be written in terms of

the c.m.s. quantities:
(1—PP)

(29)
(1+p2 —2p cos8, —Pp sin'8 )'*(1—p cos8 )
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DOUBLE N"
from the decay of X* and is given by

Gzz, 1=1/(Ezz, mnx Eiv, min)y (Ezz, min &Ezz &Eiv, mnx) ~

(34)
(34a)Gzz, i ——0, (Ezz &Ezz, ;„and E~)E~, , ),

where E~ is the total energy of the nucleon in the c.m. s.,

and EN—, 'r1(EN +(71pN )

EN, min 71(EN zilpN )y

(35)

0
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NUCLEON CMS ENERGY TN (1N Mev)
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Fxc. 6. Energy spectrum of the recoil nucleons Iz d for double
1V* production at incident proton energies T„=1.5, 2.3, and 3.0
Bev for isotropic production of X~ in the c.m. s. These curves
have the same normalization as I q in Fig. 4.

The pion energy E is E */yz, so that

1—vis
( E.*y

G.(E.)= b~ E.
(1+p' —vz')-*' E

(30)

Hence g, ; becomes

where
a' = (m ')F'~'/(T-"'" —Z'-"' '),

('i&i= &LT ((+&,zi+ T ('zi]

(31)

(32)

The step function g;, extends from T (" ' to T "'+'.
In Eq. (31), J,; is obtained from (29a) and T ('&&is'
given by (E */yi) —m, . The resulting spectrum for
double pion production at T„=2.3 Bev is shown in

Fig. 5. It is seen that the maximum of d 'o/dZ' dQ i-s

narrower and occurs at a lower energy than for the
isotropic distribution. This was to be expected, since
the pion energy is E */yz for the 90' spectrum, which
is smaller by a factor p&' than the average energy p&E *
for the isotropic case.

dso

d T~dQ,y

MI 8

+kiV ~
~M~

o (m, )~(m, )FG~,dm,

a(mi)E'(Gzz, z+G~, s)dmz . (33)

Here d'o/dT~dhzz gives the number of events in which
one of the recoil nucleons has kinetic energy between
T~ and T~+dT~, and is emitted into the solid angle
dQ~. For the calculations of this section, it will be
assumed that the X* is made isotropically in the c.m. s.
G~ I is the energy distribution of the nucleons arising

IV. ENERGY SPECTRUM OF RECOIL NUCLEONS

The energy spectrum of the recoil nucleons is obtained
from the following equation, simila, r to Eq. (9) for the
p1ons:

Gx, s= b(Ez( —E~, o), (36)

where E~, p is the energy of the nucleon made directly.
Eg, p depends on m& and on the total energy E in the
c.m.s.

In order to obtain the energy spectrum of the recoil
protons, we must consider the wave function for the
final state, which is either X*+IV* or lV*+zV For.
double l'tt~ production, the total wave function 4 for
p-p collisions is

("= —(3/10) l(P;(1)(P .(2)

+ (4/10) '(Px (1)(Pi(2)—(3/10) *(P;(1)(P;(2), (37)

where iver,
' is the wave function for the isobaric state

with T'= s and a-component T,' Lcharge=e(T, '+s) j.
The number in parentheses (1) or (2) labels the two
excited nucleons. For the decay of the isobar, the
functions iP,*, (P;, and iP, are equivalent to the following:

4'! zz &xi~=

0:= (s) z ox-+ (s) z ix-,
(p—!= (s) *zz-(X.+ (s) *zzsX-;,

(38)

(39)

(40)

where pt, is the pion wave function with isotopic spin t,
(e.g. , zzi represents a zr+ meson); xi, is the nucleon wave
function (x;=proton, x i = neutron) . The probability
distribution P obtained from (37) is

&= (6/10)0"V-"+ (4/1o) (0 ')' (41)

The two terms of (41) will be called a and b, respec-
tively. From (38) and (40), one obtains, for the number
of protons due to a,

Similarly, b gives

~.= (6/1o) (1+s) =
5 (42)

zzs (4/10) (4/——3)=8/15, (42a)

with Ezz* total e——nergy, pzz*= momentum of the
nucleon in the rest system of the isobar of mass m~.

The term Gzz s in the single integral of (33) pertains
to the unexcited nucleon in the reaction p+p~Ã*
+(p or zz). We note that since the nucleon isobar has
isotopic spin T'= 2, it may exist in the doubly charged
state, in which case a neutron will be made together
with the S*.G~, 2 is given by
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so that the total number of protons is

e.+xi, ——4/3. (43)

IB I I I I I I I I I

PROTON ENERGY SPECTRUIVI
T~=2.3 Bev

COMBINED

For single A'* production, 0 is given by

„&"= ——,'P;q;+-',V3II P;, (44)

where gs, is the wave function of the unexcited nucleon.
Thus the fraction of unexcited protons is ~. From Eqs.
(37)—(39), the number of protons from the decay of
the isobar is

(n
I—
Z'

l2

CL

g IO

8
CL

b~
cu~ II—

~= (-') (3)+-'= ~~/~2 (45) 0

where T„and dQ„are the proton energy and solid angle,
respectively; I& z is the double integral of Eq. (33);
I~, ~ and Ig, 2 are defined by

My, g

~M~
o(m&) FG&, ;dm&.. (47)

We note that the corresponding expression for the
neutron spectrum is

In view of (33), (43), and (45), the energy spectrum
of the recoil protons is given by

d' (P)
=A((4/3)Iv g+k)VD11/12)I~, i+ ', I~, g]), (46-)

d T~dQ~

80 I 60 240 320 400 480
PROTON CMS ENERGY T& (IN Mev)

Fio. 8. Energy spectrum of the recoil protons at T~=2.3 Bev.
The combined spectrum is shown, together with the components
IN q, I~ I, and I~ ~. Ig q pertains to protons arising from double
lV* production; I~, I and Iq~, 2 correspond to single S~ production.
The combined spectrum is proportional to

( (4/3) I~ g+0.6N L (11/12)I+,f+ (1/4) I+, 2g I .
(The curve of I~ q does not have the same normalization as in
Fig. 6.)

Figure 6 shows the values of the double integral
I& z of Eq. (33) giving the nucleon spectrum for double
S* production at T„=i.5, 2.3, and 3.0 Bev. These
curves have the same normalization as the curves of
the pion spectra in Fig. 4. Thus

d'o. (m)
=A[3I~ g+k/V ( i'2I~, ,+-4I~ 2)j '—(48)-

dT„dO„

t'TX ~ f'T~, ~
I& rjdEN —

II I» ~d2 ~,
dp Jp

(49)

The integrals I~ ~ and I~ I are evaluated in the same
manner as the corresponding integrals I,» and I, for
the pion spectrum for isotropic production of the .V*.
On the other hand, I~ 2 is similar to the pion integrals
for the 0' or 90' spectrum, since G~ 2 is a delta function
which is analogous to Eqs. (25) and (30).

PROTON ENERGY SPECTRUM
Tp=IO Bev
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Fzc. 7. Fnergy spectrum of the recoil protons at T„=2.0 Bev.
The combined spectrum is shown together with the components
I&, & and I~ &. I1v & corresponds to protons from the decay of X*;
IN, 2 pertains to protons which have not been excited in the col-
lision. The combined spectrum is proportional to

L
(22//22)I~ I

+ (1/4)Iw 2j.

where T'~, is the maximum possible value of T~,
above which I~, d, =0 in the present model, and T
is the corresponding energy for the pion spectrum.

Figures 7 and 8 show the proton spectra for T~=1.0
and 2.3 Bev. At 1.0 Bev, double S* production is
negligible. Figure 7 shows the functions I~, ~ and I~ 2

together with the combined spectrum as obtained from
(46). It is seen that I~ i (protons from 1V* decay) is

quite flat over most of the energy range, whereas I& 2

(unexcited protons) has a pronounced maximum near
T~=90 Mev. The reason is that I&, 2 essentially repro-
duces the shape of the scattering cross section o.(mi),
since to each value of m& there corresponds a unique
proton energy E~ p. On the other hand, for the protons
arising from the A* decay, there is a range of energies
E~ for each m~, which accounts for the flat central part
of the IN, & curve. It may be noted that the combined
spectrum has only a weak maximum at 90 Mev, because
of the relatively small coeScient of I» as compared
to the coefficient of I~, i, in (46).

Figure 8 shows the three spectral shapes I~ d, I~ I,
and I~ 2 for T„=2.3 Bev, together with the combined
spectrum obtained with k=0.6. This value of k is
derived in the next section from the comparison of the
calculations with the experimental values of the pion
multiplicity as a function of the incident proton energy.
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At 2.3 Bev, the double production is very prominent
and essentially determines the shape of the combineR
spectrum for l'„&280 3,Iev. However, f.v,~ becomes
very small above 300 iklev, and, in this region, the
proton spectrum is determined primarily by the single
production. In similarity to the 1.0-Bev spectrum, I»
is approximately constant over most of the range,
whereas I~ 2 has a sharp maximum corresponding to
the resonance of o(m~). Figure g shows that the com-
bined spectrum has two maxima, one in the range
100—200 Alev corresponding to the maximum for the
double production I.y, ,~, and a second maximum near
350 4lev arising from the peak of I~, ~. It would
therefore be of interest to make accurate measurements
of the recoil proton spectrum in the region of T„2Bev,
in order to determine whether these features are
present. In the follov ing sectioil, we shall compare the
calculated spectra of the recoil nucleons with the cloud
chamber results' obtained at the Cosmotron.

d'-'o/dl' d6 =A (I,+k.VI. ,). '
(50)
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FIG. 9. Calculated and experimental values of the ratio of the
cross section for producing two pions (D) to the sum of the cross
sections for single and double production (S+D) in p-p collisions
(T=1).The calculated curves were obtained from Eq. (54) withk=0.5, 0.6, and 0.7. The triangles represent the Brookhaven
cloud-chamber results. ' The crosses give the values of D/(D+S)
deduced from the ~+/7r ratios measured by Lindenbaum and
Yuan. '

V. COMPARISON OF CALCULATED PION AND
NUCLEON ENERGY SPECTRA WITH

EXPERIMENT

In the discussion given above (Secs. II and IV), we
have obtained separately the pion and nucleon spectra
due to single and double production. In order to obtain
the combined spectra due to both processes it is neces-
sary to determine the constant k of Eqs. (9) and (33).
This will be done by comparing the calculated pion
multiplicity with the experimental results obtained
from the Brookhaven cloud-chamber data' and from
the counter measurements of Lindenbaum and Yuan. '

In terms of the integrals I, d and I, , defined above,
the differential cross section for pion production can be
wI Itten

9,'e define

(51)

(51a)

where I„d and l s are the energy spectra assuming
isotropic distribution of the .~Y in the c.m. s., as given
in Figs. 3 and 4, and Z', „, is the maximum possible
energy 2" above which I, ~ or I, ,=O. The total cross
section for pion production 0-~ becomes

o.,= 4~A (Kg+klVK, ). (52)

It should, however, be noted that the values of Xd and
X, are independent of the angular distribution of the
'V*. Indeed, Kz and K,„as given by Eqs. (51) and (51a),
are equal to

M2 MI g

Kg —~f dm& f o. (m&) o (m2) Fdm&, (53)

IV1, s

K,= I o.(mg) Fdm~.
&re

(53a,)

The equivalence of (53) and (51), and of (53a) and
(5]a) follows directly from the fact that the function

giving the energy distribution of the pions [see Eq.
(p) j is normalized to 1, as shown by Eq. (14)
definition of X~ and X, in terms of I ~ and I, is
merely convenient here, since the functions I ~ andI, have been plotted in Figs. 3 and 4, whereas
the integrals of Eqs. (53) and (53a) cannot be obtained
directly from any results given in this paper.

The part of 0& which is due to double production will
be called D; the corresponding part for single production
will be called 5. The ratio of double to the sum of single
plus double production events is thus given by

D/(D+S) =A„/(ICg+k VK,).. (54)

The ratio D/(D+S) was obtained by Fowler et at
[reference 7 (II)] at 1.5 Bev and by Block et at
Lreference 7(III)] at 2.75 Bev. It was found that
reasonable agreement with these data can be obtained
by taking k =0.6. Figure 9 shows the curves of
D/(D+S) for k=0.5, 0.6, and 0.7, as obtained from
Eq. (54). The Brookhaven cloud chamber results' are
represented by the triangles. In addition, we have
shown estimates of D/(D+S) based on the measure-
ments of the ~+/~ ratio by Lindenbaum and Yuan. '
It can be concluded that with the choice k =0.6, the
present model gives reasonable agreement with the
observed values of D/(D+S) throughout the range
from 1 to 3 Bev. It should be noted that at 3 Bev, there
are some 3-pion events [reference 7(III)j ( 15%%uo of
the total inela, stic cross section).

These events were not included in the comparison
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since the present treatment of pion production via the
T'= J=2 isobaric state only allows at most double
pion production in a nucleon-nucleon collision. Hence
the triple pion events would require other isobaric
states involving double or triple meson decay. These
states could in general have various other values of T'
and J. Since we do not at present know the properties
or even necessity of the existence of such states, they
were not considered.

However, in principle one can conceive of meson
production as always proceeding through a set of
isobaric nucleon states of various T' and J values which
decay by emitting one or more pions. Another possi-
bility is that in addition to nucleon isobars, some pions
are also produced directly.

In obtaining the combined m+ spectrum due to single
and double production, we will use 0=0.6. The cross
section for producing 7r+ in p-p collisions is then given by

d'0. (m+)=A $(13/15)I., g+ (0.6) (-,')IVI, ,7, (55)

where the coeKcients 13/15 and 5/6 are obtained from
Eqs. (37) and (44). Concerning the normalization
constant .V Lsee Eq. (9a)j, it may be noted that with
the (arbitrary) units used in Figs. 3 and 4, this constant
becomes unity, so that the combined pion spectrum is
obtained by adding (13/15)I, q and (1/2)I „with
I,d and I, , as given in Figs. 3 and 4. The resulting
spectrum is shown in Fig. 10 for T„=1.0 and 2.3 Bev,
both for the isotropic distribution of N*(full curve's)

and for the 90' case, i.e., on the assumption that X* is

made only in the forward and backward directions in

the c.m. s., and the ~+ is observed at 90 in this system
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FIG. 10. Energy spectrum of x+ mesons at T„=1.0 and 2.3 Bev,
as obtained from Eq. (9) with k=0.6. The solid curves pertain to
isotropic production of lV* in the c.m. s. The dot-dashed curves
correspond to production of S~ in the forward and backward
directions and give the spectrum of 71-+ mesons emitted at 90' in
the c.rn. s. The dashed curves show the results of Lindenbaum and
Yuan' for 1.0 and 2.3-Bev protons on beryllium. Their data for
hydrogen are also shown. The experimental and theoretical curves
were normalized to the same value at the maximum of the cross
section. The relative magnitude of these maxima at 1.0 and 2.3
Bev has no physical significance.

(dot-dashed curves in Fig. 10). These calculated values
have been compared with the results of Lindenbaum
and Yuan' for ~+ produced both in H and in Be. The
experimental data have been normalized to the theo-
retical values at the maximum of the energy distribu-
tion. It may be noted that the experiments were carried
out at a laboratory angle of 32' which corresponds to a
range of c.m. s. angles from P, 74' to 100' at 2.3
Bev, and P ~60' to 75' at 1.0 Bev. Figure 10 shows
that for T„=2.3 Bev the experimental spectrum
follows closely the calculated curve for the isotropic
case on the high-energy side of the maximum (at
T ~150 ihiev) thus giving an indication that the cross
section for producing X* is essentially isotropic in the
c.m.s., which is also consistent with the cloud-chamber
experiments [references 7 (II), (III)). Belov; 125
ivlev, the calculated results are somewhat too low.
Aside from possible inadequacy of the theory, the dis-
crepancy may be partly due to the experimental dif-
ficulties of obtaining accurate values of the pion inten-
sity for low mornenta mainly on account of the large
positron a,nd muon contamination. However, it is
expected that more accurate values of the spectrum
in this energy region will soon be available from experi-
ments now being carried out by Lindenbaum and
Yuan. ' In any case, the present model is in good
agreement with the existence of the low-energy peak
of the pion spectrum and the rapid fallo6' of the pion
distribution above the energy of the maximum.

For T„=1.0 Bev, there is also an indication that the
calculated values are somewhat too small for 2' &100
AIev. At higher energies, the curve obtained from the
90' spectrum follows closely the experimental points.
This result suggests that the production cross section
of sV* may be peaked forward and backward in the
c.m. s. at T„=1.0 Bev. A similar conclusion is obtained
below (Sec. IX) from the c.m. s. angular distribution of
the pions at T„=0.8 Bev, as observed by Morris,
Fowler, and Garrison Lreference 7(I)j.

The Fermi statistical theory has been previously
compared with various experiments, and it was shown
that it does not predict correctly the observed dis-
tribution of pion multiplicities. Thus it gives values of
the multiplicity which are considerably too small in
the range T„ 1 to 3 Bev. In the usual comparisons of
the energy spectra calculated from the Fermi theory,
a part of the disagreement with experiment arises from
the fact that the statistical weight of the spectrum due
to single production is relatively too large, as compared
to the statistical weight of the spectrum for double
production. The relative weights for single and double
production depend on the interaction volume assumed,
while the individual spectral shapes for single and
double production are independent of the volume. In
order to obtain a more critical test of the Fermi theory,
which does not involve the prediction of the multi-

plicity, we have compared the experimental spectra of
Lindenbaum and Yuan' at 1.0 and 2.3 Bev with those
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which would be obtained from the Fermi theory if one
were to use the experimental values of the multiplicity.

At 1.0 Bev, the counter data' and the cloud chamber
results' obtained at the Cosmotron show that there is
essentially no double production. At 2.3 Bev, there is
both single and double production. The experiments of
Lindenbaum and Yuan' were carried out both with a
beryllium target and with a hydrogen target. In the
the former case, one has a mixture of p-p and n p-
collisions. For the p-p interaction, the numbers of
double and single production events are approximately
equal [see Fig. 9; D/(D+S) 0.5]. T—he total inelastic
cross section was found by Fowler et al. [reference
7(IV)$ to be 26 mb, giving 13 mb each for single and
double production in the T=1 state. For n pco-llisions,
the fraction of the T=O cross section which corresponds
to inelastic (double production) events has not been
measured. However, this fraction has been estimated
from the behavior of the total T=0 cross section as a
function of energy. This estimate is described in Sec. VI.

The shapes of the Fermi theory spectra for 1.0 and
2.3 Bev, and the branching ratios for the various single
and double pion events for p-p and n pcollis-ions, have
been calculated by Yang and Christian. 4 Upon using
these ratios and the previously discussed cross sections,
one obtains the appropriate momentum spectra for m+

mesons produced in H and Be at 2.3 Bev. At 1.0 Bev,
the double production is negligible, so that the beryl-
lium and hydrogen ~+ momentum spectra are the same.

Figure 11 shows the calculated spectra at 1.0 Bev
for Be or H, and at 2.3 Bev for Be together with the
experimental results of Lindenbaum and Yuan, ' which
were found to be similar for both Be and H. For the
Fermi theory calculations at 2.3 Bev, only the results
for Be are shown. The curve for H is similar, except for
somewhat more of a high-energy tail, which v ould give
an even greater disagreement with the experimental
spectrum. At each energy, the theoretical and experi-
mental spectra have been normalized to the same area.
It is seen that the curves obtained from the statistical

l4

l2—

V)

z IC

8
CL

6

E

b
Ic',
D

2

I I I I—STATISTICAL THEORY

/ 2.3 Bev ——EXPE R I ME NTA L
EXPERIMENTAL (7f F ROM Be )

I.O Bevir-~

ev
CAL
RY

'o 2 3 4
PION CMS MOMENTUM p~/pc

Fro. 11. Pion c.m. s. momentum spectra at 1.0 and 2.3 Bev
as obtained from the Fermi statistical theory using the observed
values of the pion multiplicity. The dashed curves give the
experimental results of Lindenbaum and Yuan. '

theory are in considerable disagreement with the ex-
perimental values. The energy of the maximum of the
calculated curves is considerably too high, and the
maximum is quite wide, in contrast to the narrow peak
of the experimental curves. For 2.3 Bev, there is,
in addition, a high-energy tail which is contrary to the
observations. This tail is due to the contribution of the
single production. Thus Fig. 11 shows clearly that the
Fermi statistical theory fails to give agreement with
experiment because the partial energy spectra, espe-
cially for single production, have their maxima at
energies which are considerably too high. This source
of disagreement exists in addition to the failure of the
statistical model to predict the observed multiplicities.

We have also compared our results with those
obtained with the Brookhaven hydrogen diR'usion cloud
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chamber. ' The experiments for which we have made
calculations are those performed at 0.8 Bev by 3,Iorris,
Fowler, and Garrison [reference 7 (I)j and those carried
out at 1.5 Bev by Fowler, Shutt, Thorndike, and
Whittemore Preference 7(II)].

At 0.8 Bev, there is only single pion production. Con-
sequently, the spectrum is completely determined by
the integral I, of Eq. (21). In Fig. 12, we have plotted
the calculated momentum spectrum as a function of the
c.m.s. pion momentum p together with the histogram
of the experimental results [reference 7 (I)j. The
theoretical curves give the values of

—=8 -~v I
dp dQ dv." dQ

(56)

where 8 is the c.m.s. velocity of the pion. The experi-
mental and theoretical spectra have been normalized
to the same area. It is seen that the calculations are in
reasonable agreement with the experimental data,

FIG. 12. Pion c.m. s. momentum spectrum at T„=0.8 Bev. The
solid curve was obtained from the isobar model

I
Eq. (56)]. The

histogram represents the experimental data on pn7f. + events of
Morris, Fowler, and Garrison Preference 7(I)g. The dashed curve
gives the prediction of the Fermi statistical theory, as obtained
by Block." The t~vo calculated curves and the histogram are
normalized to the same area.
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In Fig. 12, we have also shown the prediction of the
Fermi statistical theory, as obtained by Block." At
0.8 Bev, there is no marked difference between the
isobar model prediction and the result of the statistical
theory. The momentum spectrum given by the Fermi
theory goes as p ' near p =0, whereas the spectrum
obtained from the isobar model is proportional to p 4

for small momenta for an isobar at rest in the c.m.s.,
since o- ~ p 4 near p =0. Thus both spectra start with
zero slope at p =0, and increase rapidly with mo-
mentum. At 0.8 Bev, it is just possible to form an
isobar with mass values extending up to the upper
limit of the resonance region. (The center of the reso-
nance corresponds to m~ —1.22 Bev, while the maxi-
mum possible mt is 1.30 Bev.) Thus the isobar model
curve of da/dp. will have its maximum fairly close to
the maximum possible momentum. For an isobar at
rest in the c.m.s., the maximum of the da/dp curve
would occur at the momentum p

* of the pion in the
rest system of mt ——1.22 Bev (p *=220 Mev/c), whereas
the cutoff corresponds to the momentum p

* in the
rest system of mt ——1.30 Bev (p *=290 Mev/c). These
two values are quite close to one another. The actual
momenta at the maximum and cutoff taking into
account the isobar motion are 250 and 305 Mev/c,
respectively, as shown by Fig. 12. The curve predicted
by the statistical model also has its maximum near the
cutoff, but for a different reason: the phase space
increases as p ' up to a momentum p fairly close to
the cutoff, when the momenta of the recoil nucleons
begin to have an appreciable effect. Thus the theoretical
curves for the two models do not differ appreciably at
0.8 Bev, and both agree reasonably well with the
experimental histograms. Therefore, the 0.8-Bev spec-
trum cannot be used to discriminate between the two
models of pion production. On the other hand, at 1.5
Bev, as shown below, the spectrum given by the sta-
tistical theory differs considerably from the experi-
mental histogram, because it predicts too many high-
energy pions. However the curve obtained from the
isobar model is in reasonably good agreement, thus
giving evidence in favor of the isobar model. The
reason for the enhancement of lower momentum pions
in the isobar model, at an incident energy of 1.5 Bev,
is that isobars can now be formed well beyond the peak
of the resonance region and hence higher momentum
pions are discriminated against by the rapidly decreas-
ing resonance cross section on the high-energy side of
the peak.

Figure 13 shows the spectrum of the recoil protons
and neutrons at 0.8 Bev. In obtaining the proton energy
spectrum for comparison with the cloud chamber
results, we note that the experimental data include
only protons from prrs+ events. The energy spectrum
for these protons is somewhat different from Eq. (46)
which also contains a contribution from PP~s events.
From Eq. (44), one finds that the momentum distribu-
"M. M. Block, Phys. Rev. 101, 796 (1956).
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tion of protons from pn7r+ alone is given by

d'a(p). -
dp„dQ„

d'a(p). -'
=V~

dT„dQ p

"v„(-',Ix t+ —,', Iw s), (57)

where v„ is the c.m. s. velocity of the proton, and p„
is the proton momentum. Equation (57) was used to
obtain the calculated curve for protons of Fig. 13. For
the neutron momentum spectrum, one obtains from
(48),

d'a(e)d'a(rr)
-= V

dT„dQ„dy&„dQ„

~ v „(t s IN 1+4 IIV 2), (58)

where 8„ is the c.m. s. velocity of the neutron. For both
protons and neutrons, the experimental and theoretical
spectra have been normalized to the same area. Figure
13 shows that the calculated curves for 0.8 Bev are in
satisfactory agreement with experiment. We note that
the experimental histogram for the neutrons is more
sharply peaked than that for the protons. In agreement
with this feature, the calculated curve for neutrons has
a higher maximum than that for protons. This difference
between the two calculated spectra is due to the larger
contribution of I~ s to the neutron spectrum [sIv s as
compared to —,', I~ s for the protons]. The dot-dashed
curve in Fig. 13 was obtained from the Fermi statistical
theory. " It is seen that this curve is practically the
same as the isobar model prediction for the protons.
Since the pion spectrum is closely the same for the two
models, it was to be expected that the nucleon spectra
would also be very similar at 0.8 Bev, since the pion
and nucleon spectra are correlated by conservation of
energy and momentum

Figures 14 and 15 show the corresponding spectra for
T„=1.5 Bev. In this case, only the parts of the theo-

I I I I
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FIG. 13. c.m. s. momentum spectra of recoil protons and
neutrons at T„=0.8 Bev. The solid curve shows the proton spec-
trum obtained from the isobar model [Eq. (57)j; the dashed
curve gives the calculated neutron spectrum [Eq. (58)j. The
histograms represent the experimental data on pn~+ events of
Morris, Fowler, and Garrison [reference 7(I)j (solid lines for
protons; dashed lines for neutrons). The dot-dashed curve gives
the prediction of the Fermi statistical theory. "All of the curves
and histograms are normalized to the same area.
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For single X*production, the final state wave function

As in Eq. (44), lt „denotes the wave function of the
isobar, and g&, is the wave function of the unexcited
nucleon. From Eqs. (39), (40), and (59), one finds that
the average numbers of the nucleons in the various
final states are as follows: unexcited protons, —,'; protons
from lV* decay, ~; unexcited neutrons, -', ; neutrons
from lV* decay, —,'. The fraction of pions in each charge
state is, zz(zr+) = zz(zr ) = -', ; rz(zrp) = s.

For double Ã* production, the final state wave
functions for T= 1 and T= 0 are given by

Frc. 14. Pion c.m. s. momentum spectrum at T„=1.5 Bev. The
solid curve was obtained from the isobar model [Eq. (56)7. The
histogram represents the experimental data on pn7F+ events of
Fovrler, Shutt, Thorndike, and Whittemore Preference 7(II)7.
The dashed curve gives the prediction of the Fermi statistical
theory. 2' The two calculated curves and the histogram are nor-
malized to the same area.

retical momentum distributions due to single production
[Eqs. (56)—(58)] have been plotted, since the histo-
grams of the experimental data represent only definite
przzr+ cases of single production [reference 7(II)]. For
both pions and nucleons, the experimental and theo-
retical spectra have been normalized to the same area.
It is seen that the spectra obtained from the isobar
model are in satisfactory agreement with the experi-
mental histograms. On the other hand, the results of
the statistical theory'-" are in definite disagreement with
experiment. The statistical theory gives too many
high-energy pions and correspondingly the energy of
the maximum of the nucleon spectrum is too low. Both
deficiencies are remedied by the isobar model which
favors the emission of low-energy pions and increases
the relative number of high-energy recoil nucleons. "

VI. PION PRODUCTION IN n-P COLLISIONS

In the preceding discussion, we have considered only
p-p interactions. The integrals of Eqs. (9) and (33)
can also be used to obtain the energy spectra of pions
and nucleons arising from zz-p collisions. In this case,
the initial system consists of an equal mixture of T=O
and T= 1 states. For the production of one isobar, only
the T= 1 state contributes, since it is impossible to
obtain a total angular momentum 0 with two com-
ponent momenta of —', and —,'. However, for double iV*

production, both the initial T=O and T=1 states con-
tribute.

'2After the present calculations of the energy spectra were
completed, it came to our attention that a similar calculation
based on the model of an excited nucleon has been carried out by
Yappa for the spectrum of pions produced by 600-Mev protons:
Y. A. Yappa, quoted by Meshcheryakov, Zrelov, Neganov,
Vzorov, and Shabudin, ProceeCings of the International Conference
on the Peacefu/ Uses of Atomic Energy (United Nations, New
York, 1956), Vol. II. Belenkii and Nikishov have also considered
the inclusion of isobars in the statistical theory: S. Z. Belenkii
and A. I. Nikishov, J. Exptl. Theoret. Phys. (U.S.S.R.) 28, 744
(1955) Ltranslated in Soviet Phys. JETP I, 593 (1955)].

The fractions of the various pion charge states are as
follows: for T=1:zz(zr+) =n(zr ) =14/15; rz(zrP) =2/15;
for T=0: &z (zr+) = zz(zrP) = zz (zr ) = —'. For both T= 1 and
T= 0, one finds that, on the average, one proton and one
neutron are made in the double rY* production case.

From the preceding results, one can obtain the spectra
of pions and nucleons in n pcollis-ions. In the following,
we will omit the normalization factor 3 for convenience
[see Eqs. (46), (48), and (50)] and we will write simply
0.„~for the spectral shape. One finds

o „p(zr+) =- o „p(zr ) = L(14/15)+-'skp]I
+ ', k VI, ,„(62—)'

o.„„(zrP)= D2/15)+ ,'kp]I. , s+ sskN—I.„- (63)

o„,(p) =rr„„(zz)=Ir; p(1+kp).
+k t' ( ', Izr, t+ ', Ipr, z), -(64)-

where ko is the ratio of the total cross section for
production of 2Y* in the T=O state (o.d z=p) to the
double production in the T=1 state. This ratio enters
as an additional parameter for zz pcollisions. The deter--

mination of 0-~ ~ 0 will be discussed belov .
It may be convenient to list here the corresponding

spectra for p-p collisions:

o „„(zr+)= (13/15)I +(d5/6) kNI. „ (65)

a „«(zrP) = (14/15)I. ,(+ (1/6) k.VI, „
a „„(zr ) = (3/15)I

(66)

(67)

o~, (p) = (4/3)I v„+kiY[(11/12)I„,,+-4I„.,], (68)

o~~(rz) = slzv s+k~V( „Izr t+4Izr s). — (69)

As an example of the difference between the energy
spectra in n-p and p-p collisions, Fig. 16 shows the
results obtained for an incident nucleon energy T&——1.5
Bev. In this figure, we show two curves for the 7r+

&"(T= 1)
= (9/20) 4p; (1)l( 3 (2) —(1/20) lit 1 (1)tp l(2)

—(1/20) '1(,(1g ,*(2)+(9/20) 'lt;(1)lt, (2), (60)

0'.„„"'(T=O)= ——.', 1(*,(1)l(,(2)+—',Pl(1)l(;(2)
—ilk--:(1)4-:(2)+lit=:(1)l(".(2) (61)
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o = &dI~ d+cgI~ ~q (70)

spectrum from p-p collisions and two curves for the zr+

spectrum from n P-collisions. It is evident that the
spectra from n-p and P-p interactions will not differ
appreciably when either single or double pion pro-
duction predominates strongly, since in that case the
shape of the spectrum is determined by I, or I d for
single or double production, respectively. Significant
difFerences between the n p-and p-p spectra can be
expected only at intermediate energies such as 1.5 Bev,
where the contributions of I, and I d are comparable,
and differences arise because of the different coefficients
of the I's for the n pand-P-p cases. The spectrum can
be written

LM l4
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where cd and c, are the coefFicients of I, d and I,„
respectively, in Eqs. (62) and (65). The shape of the
spectrum is determined by the ratio f=c,/—cd For. zr+

from P-p collisions, $ is given by

„(zr+) = (5/6) k/(13/15) =0.961k,

whereas for zr+ from n-p, one obtains

(71)
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Fro. 15. c.m.s. momentum spectra of recoil protons and
neutrons at T„=1.5 Bev. The solid curve shows the proton
spectrum obtained from the isobar model LEq. (57)]; the dashed
curve gives the calculated neutron spectrum )Eq. (58)). The
histograms represent the experimental data on Pn~+ events of
Fowler, Shuttjhornd, ike, and Whittemore [reference 7(II)]
(solid lines: protons; dashed lines: neutrons). The dot-dashed
curve gives the prediction of the Fermi statistical theory. 2' All
of the curves and histograms are normalized to the same area.

$„,(zr+) = pk/L(14/15)+ skp]=k/(5. 6+4kp). (72)

The curves for the zr+ spectra from p-p collisions in
Fig. 16 were obtained using k=0.6 and 1.0, for which
(=0.576 and 0.961, respectively. As has been shown

above, the value k =0.6 gives the best fit to the observed
pion multiplicity as a function of incident proton
energy. However, the value of k is not known to better
than &0.3, as a result of the experimental uncertainties.
The curve for k=1.0 was calculated in order to show

the sensitivity of the x+ spectrum to the value of k.
Since the single-pion energy distribution I, extends
to higher energies than the double-pion spectrum I
it is evident that with increasing $, the spectrum falls

FIG. 16. Energy spectrum of pions from n-p and P-P collisions
for an incident nucleon energy T~——1.5 Bev. The two upper
curves give the spectrum of ~+ mesons from p-p collisions, and
were obtained from Eq. (62) with k=0.6 and 1.0. The two lower
curves show the spectrum of m.+ mesons from n-P interactions, and
were calculated from Eq. (65) with ko ——0.6 and 1.0; for both n-p
cases, the value k=0.6 was used.

off more slowly above the energy of the peak at T —120
Mev.

The two curves for zr+ production in n Pinteractions-
in Fig. 16 were both obtained using k=0.6. If one
assumes Eq. (83) below for the cross section o d z —p for
production of 2Ã* in the T=0 state, one obtains ko ——1.1
at 1.5 Bev. However, this value is subject to large
uncertainties, as a result of our limited knowledge of
od r p, as is discussed below. The n pcurv-es of Fig. 16
were obtained using ko ——0.6 and 1.0. It is seen that
these curves differ very little, showing that the spectrum
is almost independent of the value of ko. The corre-
sponding values of $ are very small. From (72) one
finds (=0.075 and 0.0625 for kp=0. 6 and 1.0, respec-
tively. Thus the spectral shape is approximately that
for double E* production, I d. The reason is that for
n-P collisions, a large fraction (-,') of the single Ã*
production leads to the emission of x' mesons, with
only 6 of the cases giving m.+ and 6 giving ~ mesons.

We have also compared our calculations with the
results of the experiment by Fowler, Shutt, Thorndike,
and Whittemore' on pion production by the forward
(0') neutron beam of the Cosmotron in the Brookhaven
hydrogen diffusion cloud chamber. The neutron
spectrum in this experiment extends from 1.0 to 2.2 Bev,
the energy of the circulating proton beam. The largest
group of double production events was the pnzr+zr

group, i.e. , cases in which both a m+ and a m meson
were emitted. The c.m. s. momentum spectrum of the
pions for these cases has been obtained by the authors
(see Fig. 21 of their paper'). We will now compare the
results of the present isobar model with the observed
p&zzr+zr

— spectrum. From Eqs. (60) and (61), one

obtains the following expression for the cross section
for pnzr+zr events:

o (pnzr+zr ) =
s L(41/45)odd=i+ (5/9), od, r—pj, (73)'
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od, z=o=ol=o —17 mb, (76)

oz p remains approximately flat at 17—20 mb between
0.7 and 1.0 Bev. Above 1.0 Bev, 0.7 p rises rapidly to
a value of 36 mb at 1.6 Bev, and then becomes again
approximately constant above 1.6 Bev. The rapid
increase of o z' p between 1.0 and 1.6 Bev has been inter-
preted as due to the onset of double pion production.
As explained above, on the present isobar model, it is
impossible to obtain single production in the T=O
state. We will therefore assume that the excess of o.z p

over the minimum value of 17 mb represents double
pion production. On this assumption, the 17 mb would
correspond to elastic scattering. Thus od z' p was taken
as

FIG. 17. c.m. s. momentum spectrum of pions from pn7r+~
events in n-p collisions obtained by Fowler, Shutt, Thorndike,
and Whittemore' in the forward neutron beam of the Brookhaven
Cosmotron at a proton energy of 2.2 Bev. The solid curve has
been calculated from the present isobar model. The dashed curve
was obtained by Fowler et al' from the Fermi statistical theory. '
The two theoretical curves are normalized to the number of
observed events.

where o.d, z 1 and o-~ z p are the total cross sections for
double production in the T=1 and T=O states, respec-
tively. The energy spectrum of the pions is given by

2.2 Bev2

1.0 Bev

I., err(pn7r+~ )N(T„)dT„—
(I-.d) = (74)

2.2 Bev

)l o (pn7r+n )N(T„)dT„
l.p Bev

23 Chen, Leavitt, and Shapiro, Phys. Rev. 103, 211 (1956).

where iV(T )dT„ is the number of incident neutrons in
the energy interval between T„and T„+dT„; (I z)
is the average of I ~ over the incident neutron spectrum.
In order to obtain the values of o-~ z 1 and o-g z' p

which enter in Eq. (73), we used the Brookhaven cloud-
chamber results' and the counter data of Chen, Leavitt,
and Shapiro. "From the cloud-chamber results, Fowler
et al Ireference 7(IV. )] have found that, between 1.0
and 3.0 Bev, the inelastic part of the T=1 cross section
o-;„,&, z 1, remains approximately constant and has a
value of 26 mb. Since triple production is negligible
below 2.2 Bev, o-;„.& z 1 represents only single and
double production. Thus o.,& z 1 is given by

oq, r i ——26I D/(D+S)] mb, (75)

where D/(D+S) is the ratio of double to the sum of
single plus double production. In the evaluation of (75)
we used the theoretical curve of D/(D+S) as obtained
with k=0.6 (see Fig. 9), since this curve was shown to
be in agreement vith the experimental values of the
multiplicity.

In order to obtain o-d z' —Q we note that values of the
T=O cross section o-z o have been deduced by Chen,
Leavitt, and Shapiro'-' from their measurements of the
cross section of protons on hydrogen and on deuterium.

and the values of o-z p were obtained from Table VIII
of Chen, Leavitt, and Shapiro. "

The experimental neutron spectrum N(T„) is pre-
sented by Fowler et at. ' as a histogram with intervals of
0.2 Bev ranging from 1.0 to 2.2 Bev. Correspondingly,
the integrals in the numerator and denominator of (74)
were replaced by sums

Q LI., g]rr(pnx+7r )N(T„)AT„, (77)

with AT„=0.2 Bev. There are six terms in each sum,
which correspond to T =1.1, 1.3, 1.5, 1.7, 1.9, and
2.1 Bev. At each energy 0.(peer+a ) was evaluated by
means of (73), (75), and (76). In order to obtain I
at these energies for the integral in the numerator, the
curves of I, d calculated for 1.0, 1.5, and 2.3 Bev were
interpolated (see Fig. 4). We note that in Eq. (74), it
is assumed that the values of I, d at the different
energies T„have been normalized to the same area, i.e. ,

P&~, m

ddT =constant.
0

(77a)

This is necessary, in order that the number of events at
the different energies T„will be proportional to
N(T.)rr(pn7r+7r )

The resulting pion momentum spectrum 8 (I ~) is
shown in Fig 17, together with the experimental
results and the curve obtained from the statistical
theory. ' It may be noted that Fowler et a/. ' published
two histograms for the energy distribution of the
incident neutrons. Their spectrum A includes some
ambiguous events, while spectrum 8 consists only of
the selected events for which all momenta could be
measured. The curve of 8 (I,d) in Fig. 17 is based on
spectrum B. However, it was found that if spectrum A
is used instead, the resulting values of 8 (I d) are closely
the same as those shown in Fig. 17 (the maximum
difference is 3%), so that v (I, a) is quite insensitive
to the uncertainty in the incident neutron spectrum.

Figure 17 shows that the 8 (I,d) curve from the
isobar model gives a reasonable fit to the experimental
pion spectrum, although it appears that the Fermi
statistical theory gives slightly better agreement. Ke
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believe that this is to a large extent fortuitous. Essen-
tially the same comments apply as for the pion spectrum
from single production at 0.8 Bev (Sec. V). The median
incident neutron energy in the n-p experiment is 1.7
Bev. The corresponding total energy E in the c.m. s. is
2.590 Bev. If E is equally divided between the two
isobars, the maximum mass m1 is 1.295 Bev, which is
approximately equal to the cutoff m1=1.303 Bev for
single production at 0.8 Bev. In similarity to the single
production results at 0.8 Bev, the maximum of the
do./dP curve from the isobar model occurs at a mo-
mentum fairly close to the cutoff, since the effective
maximum value of the isobar mass is not far above the
resonance value (1.22 Bev). On the other hand, the
spectrum given by the statistical theory will always
have its maximum near the maximum momentum, by
virtue of the p factor which is dominant, except near
the upper end of the spectrum, where the decreasing
momenta of the recoil nucleons begin to play a sig-
nificant role. As is shown by Fig. 17, the maximum of
the isobar curve occurs at f& =220 Mev/c, which is
actually equal to the value of p

* of the pion in the rest
system of an isobar of mass m1=1.22 Bev, correspond-
ing to the center of the resonance. Fortuitously the
maximum of the Fermi curve agrees with this value.
However, if the average incident neutron energy v ere
increased, the maximum of the isobar model curve
would not shift appreciably, whereas the maximum of
the Fermi spectrum would be at a considerably higher
momentum.

Fowler et al. ' have obtained the following ratios for
the number of pn~+m, ppn'vr, and ppx. events:

N7r 7r 7r 7r 7r

= (3.2&0.7)/(1&0.35)/(0.8&0.3).

( (PP '~ ))=lL(1/45)( ~, r=)+l(~d. ~=o)],

0 m' =12 0., r 1,

(79)

(80)

and where the ( ) signs denote an average over the
incident neutron energy distribution, e.g. :

0d, Z'=1

2.2 Bev

jf o d z' y.'V(T )dT
1.0 Bev

2.2 Bev

X(T„)dT„
l.p Bev

(81)

In Eq. (80), o., r i is the cross section for single pro-
duction in the T=i state; 0-, z 1 was obtained from
Lsee Eq. (75)]:

o, r )=26LS/(D+S)] mb. (82)

In the present model, these ratios are given by
(o.(pnm+~ ))/(o (ppm-'~ ))/(o. (pp7r

—
)) where

(o(pn~+~ —
))= -', [(41/45)(~d r x)+ (5/9)(ad, r=o)], (78)

These results were obtained by means of the neutron
spectrum B. However, the ratios would be practically
unchanged if we had used spectrum A. (One obtains
8.53/1/1. 28.) The calculated ratio of 8.54/1.30=6.57
for (pnn+m )/(ppx ) is somewhat larger than the
observed value of 4.0&1.7. However, we note that at
the incident energies of this experiment (1.0—2.2 Bev),
the ratio of double to single production rises very
rapidly with the incident energy, so that the calculated
result depends very sensitively on the value of
assumed for the T=i pion production and on the
behavior of od, r o. The assumption (76) about od, r 0

is admittedly only a crude approximation. Thus it is
quite possible that not all of the difference 0-7 p

—17 mb
represents double pion production. Indeed it seems
reasonable that the cross section for elastic scattering
0 z' —p will increase concurrently with the double pro-
duction between 1.0 and 1.6 Bev, as a result of the
diRraction eRect. (If the nucleon area eRective for pion
production were completely black, the increase of
o T twould =be equal to the increase of od &=0.) Further-
more, the value k=0.8 (instead of 0.6) would still be
consistent with the data on the multiplicity, as can be
seen from Fig. 9. With k=0.8 and assuming that only
half the rise of 0'7 p represents double production, i.e. ,

r=o= q (,&r=o—17 mb), (83)

one finds: (o.,i, z=i)= 7.9 mb, (o.a, r=o) =8.6 mb, (o, r i)
=18.1 mb, giving (&r(prnr+~ ))/(o (pp~ ))=3.95, in very
good agreement with the experimental value of 4.0&1.7.

As has been pointed out by Fowler et at. ,
' the pre-

diction oft he Fermi statistical theory would be

(pnn+~ )/(pp7rox=)/(ppvr ) =3.3/1/20. 5.

The ratio 3.3/20. 5=0.161 for (pn7r+m. )/(Pp~ ) is more
than 20 times smaller than the experimental value,
thus giving far too little double production. By contrast,
the present theory based on the isobar model is able
to give a good general agreement with the anomalously
large ratio of double to single production observed in

this experiment.

VII. ANGULAR CORRELATIONS BETWEEN PIONS
AND NUCLEONS

The isobar model of pion production predicts a
definite angular correlation between the pions produced
and the recoil nucleons. The correlation effects are
especially marked at relatively low bombarding energies
(T„(1Bev) for which the excited nucleon X* has a
low velocity in the c.m. s. In the following, we will

therefore restrict ourselves to the case of single A*

With the choice of k=0.6 made above, and using Eq.
(76) for od r 0, one obtains (o'd r=i)=9.4 mb, (od, r=o)
=17.3 mb, and (o, r i)=16.6 mb. The calculated
ratios as given by Eqs. (78)—(80) are

(pn7r+~
—

)/(ppvr'm )/(pp~ ) = 8.54/1/1. 30.
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production. We will consider first the correlation efI'ects

in p-p collisions.
In the extreme case, at threshold, where the final E

and E* are at rest in the c.m. s., one expects that the
pion should be made at 180' with respect to the nucleon
from the cV* decay and should not be correlated in
direction with the unexcited nucleon. In the following,
these two angular correlations will be represented by
the functions C& and C2, respectively.

C& gives the correlation between the decay products
of the isobar. The expression for C~ has been derived
previously. -"4 If C& denotes the number of events per
unit solid angle, one finds

Cg= seco.
sinnda 2pip *

E'—m' E'—m' (84)

where o. is the c.m. s. angle between the pion and
nucleon, p

* is the pion momentum in the rest system
of m~, E and EN are the total c.m. s. energies of the
pion and nucleon respectively, m& ——nucleon mass. 8
is defined as

B—= -', (mii'—m~' —m ') .

The angle o. is related to E and EN by

(84a)

0 (mi) FCi(n) desi

~ cVI, ,
(r (mi) Fdmi

(86)

where the notation is the same as in Eq. (9).
The function C2 gives the correlation of the pion with

the unexcited nucleon. Since the direction of this
nucleon is opposite to the direction of the isobar S*,
C2 is equal to the Jacobian for the two-body decay, as
given by Eq. (29), in which 0 =180'—a, where n is
the angle between pion and nucleon in the c.m. s. C
must be averaged over m~ in the same manner as C~

[see Eq. (86)]. The resulting average will be called C..
We will first consider the correlation between x+-

mesons and protons. The term g ,*'iI,.' in the density
[Eq. (44)] gives a fraction ~ of (ir+, p) pairs arising
from N* decay. The term —,'p, 'iI similarly yields a
fraction (4) (-', ) = —,', of (ir+,p) pairs in which I.he proton

~4 R. M. Sternheimer, Phys. Rev. 98, 205 (1955). In Eqs. (8)
and (9), (EP—m12)& and (FP—m.2)& should be replaced by
F12—rn12 and 822 —mp, respectively. For the results given in Fig. 1,
the correct expression for dn/d8 was used,

cosu= (E E~ B)(D—E ' m') l —(E~' m~') ~—] (85).

Equation (84) pertains to a particular value of the
isobar mass m~, and must still be averaged over all
possible values of m&. This average is given by

C „(m-+,ii) =—,',Ci+ —,'C2.

Similarly, one finds for (pro, p)

(88)

(89)

We note that for the (7r+,p) and (7r+,n) cases, the
roles of Ci and C2 are interchanged. For C~„(sr+,p),
the correlation is mostly of the type C&, partly because
the tp,

' density has a large coeflicient (4),and also because
the P density gives only a fraction a of ir+ (as compared
to —', for x'). It may be remarked that the angular
correlation is, of course, completely determined by the
ratio of the coeKcients of C~ and C2. The values of the
coefficients of Eqs. (87)—(89) correspond to the relative
number of (m.+,p), (~+,m) and (pro, p) pairs expected from
the present isobar model.

For single iV* production in ii-p collisions, one finds
from Eqs. (39), (40), and (59)

C. „( i'+)=C„„(7r ,p) =—-,'(Ci+Cg),

C„„(ir',p) =C „(m', ii) = -', (Ci+Cg).

(90)

(91)

In this case the angular correlation is the same for all

types of pion-nucleon pairs.
Figure 18 shows the partial correlation functions

Ci(n) at T =0.8 Bev for mi. =1.10, 1.15, 1.20, 1.225,
1.25, and 1.275 Bev. It is seen that the general behavior
of the curves of C& changes rapidly as m& is increased.
For m~=1.10 Bev, the distribution has its maximum
at n —45' and decreases rapidly for n&70', as a result
of the motion of the isobar, which tends to reduce the
angle n between pion and nucleon. As m~ is increased,
the velocity 8& of the isobar decreases, so that it is more
likely that the pion and nucleon will be emitted at a
large relative angle n&90'. For m~ &1.24 Bev, 8~ is

1S I I I I I I I I I I I I I I
'

I I I
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FIG. 18. Partial correlation functions CI for various values of
m1 for T„=0.8 Bev. For m1~ 1.225 Bev, the curves give C1 directly;
for m1= 1.25 and 1.275 Bev, the values of C1/4 have been plotted

'

was not excited. Hence the complete correlation
function, to be called C~„(n.+,p) is given by

C, (sr+,p) = -,'Ci+ —,', C2. (87)

For the (ir+, ii) correlation, the term 4ItpiI ~p con-
tributes 34C~, and ~f,'iI, ' gives —,', Ci, so that
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less than the velocity vN* of the nucleon in the rest
system of the isobar. As a result there is a minimum
possible angle'4 a which is larger than 90', and the
distribution Cr(a) has two branches between u and
180', as shown in Fig. 18 for mj=1.25 and 1.275 Bev.
The total Ct(a) is given by the sum of the terms due to
the two branches. Of course, for the maximum possible
mt (=1.30 Bev at T„=0.8 Bev), Cr(cr) is zero every-
where except at 180', since the isobar is made at rest
in the c.m. s. In the calculation of the weighted average
Cr(n), we used values of Cr(cr) at intervals of 25 Mev
from m~=1.10 to m~=1.20 Bev, and at intervals of
12.5 Mev between m~= 1.20 and 1.30 Bev.

The partial correlation functions Cs(cr) for T„=0.8
Bev are shown in Fig. 19. It is seen that the curves of
Cs(a) have a pronounced backward maximum. This
maximum is entirely due to the motion of the isobar,
since for an isobar at rest, all decay angles would be
equally probable, and C. would be constant (=0.5).

TI = 0.8 BeV

Q8
+

0.6
Ci
Z

04
+

I~ Q2

0 I I I I I I I

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0$ 0.8 1.0
cos a

Fro. 20. Distributions C(s+,p) and P(s+,n) of the values of
cosn for (x+,p) and (~+,n) pairs at T„=0.8 Bev. The solid curves
were obtained from the isoba, r model LEqs. (92) and (93)7. The
histograms represent the experimental data on n7I-+ events of
Morris, Fowler, and Garrison Lreference 7 (I) Lsolid lines:
(s.+,p); dashed lines: (7r+,n) g. All of the curves and histograms are
normalized to the same area.
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FrG. 19. Partial correlation functions C2 for various values of
m1 for T„=0.8 Bev. The dashed curve gives the average correla-
tion function C~.

Figure 19 also shows that the weighted average t ~ is
very close to the function C. for m&=1.20 Bev. This
result was also verified for other values of the incident
energy T„, and arises from the fact that the weighting
factor o(mt)F has its maximum at 1.20 Bev. Since
the shape of the C& curves does not vary rapidly with
mI in this region, the 1.20-Bev curve predominates and
essentially determines the behavior of C..

Calculations of t ~ and C2 have been carried out at
T~=0.8 and 1.5 Bev for comparison with the Brook-
haven cloud-chamber data' at these energies. The
functions C(m+, p) and C(rr+, n) in these comparisons
were taken as normalized to unity. They are given by

C (m+, P) =0.9Cr+0.1Cs, (92)

C (n+, n) =0.1Ct+0.9C2, (93)

so that Js C(m-+, Ã) sincrdn= 1.
Figure 20 shows the curves of C(7r+,p) and C(m+, n) for

0.8 Bev, together with the histogram of the distributions
of (s+,p) and (a+,n) angles observed in the experiment

of Morris, Fowler, and Garrison [reference 7(I)] at
this energy. The (~+,p) histogram is given by the full
lines, while the (~+, )nhistogram is shown by the dashed
lines; both have been normalized to the same area
(=1) as the theoretical curves. The histograms of
Fig. 20 pertain to the "selected" events of AIorris et al.
Lreference 7(I)] (see Fig. 7 of their paper) for which
particularly precise measurements could be made. It
is seen that the theoretical curve of C(s-+,p) is in reason-
able agreement with the experimental backward peal.
of the (~+,p) distribution. The distribution of (s.+,n)
angles also has a backward maximum, i.e., more cases
with cr) 90' than with cr(90' (the ratio of the number
of t.hese events is 58:42). However, the backward
maximum is not, as prounced as for (~+,p). In agreement
with this feature, the calculated (s.+,n) curve has less
area in the backward hemisphere than that for (7r+,P).

Figure 20 shows that the maximum of C(a+,p) is at
145', rather than at 180', as would be expected for

an isobar at. rest in the c.m. s. This result is due to the
behavior of CI, as has been discussed above. Thus it is
seen from I ig. 18 that the maxima of the curves of C~
for mr= 1.20 and 1.225 Bev (~resonance energy) occur
at 100'-110'. Similarly, the functions C& for m&=1.25
and 1 275 Bev, fo.r which the weighting factor o.(mr)F
is also very large, have their maxima well below 180'.
Thus CI, which is the weighted average of the CI, has
its maximum at 145' and the location of this maximum
essentially determines that of C(n.+,p).

Figure 21 shows the functions C(7r+,p) and C(w+, n)
for T~=1.5 Bev, together with the histogram of the
experimental distributions obtained by Fowler, Shutt,
Thorndike, and Whittemore [reference 7(II)].Because
of the limited statistics, we have used all of the cases
which have been interpreted by Fowler et at Lreference.
7(II)] as pm-+ events (see Fig. 5 of their paper). This
group includes some ambiguous events, some of which
may have been cases of double production. Fowler et al.
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For the pizzr+zra events, the velocity of each isobar N*
is therefore considerably smaller, on the average, than
that of the single N* produced in the pizzr+ cases. As a
result, the proton and ~+ tend to come out more nearly
at 180' with respect to each other. Thus it is possible
that the peak of the observed (zr+,p) angular distribu-
tion at 180' may be due in part to the inclusion of
some pizzr+zra events. It should also be noted that the
statistical uncertainties may be responsible for at
least part of the discrepancy.

I I I I 1 I I I

-1.0 -Q8 -Qs -Q4 -02 0 0.2 04 06 0.8 1.0
COS a

FIG. 21. Distributions C(m+, p) and C(7f.+,n) of the values of
cosn for (7I-+,p) and (7I-+,n) pairs at T„=1.5 Bev. The full curves
were obtained from the isobar model LEqs. (92) and (93)7. The
histograms represent the experimental data on pn7I-+ events of
Fowler, Shutt, Thorndil. e, and YVhittemore Preference 7(II)j
Lsolid lines: (a-+,p); dashed lines: (7r+,zz) j The t. heoretical curves
are normalized to the number of observed events.

[reference 7(II)] have plotted their histograms using
intervals of 0.2 in cosn. Some of their angular regions
contain only 1 or 2 events. We have therefore combined
their results for adjacent regions, and Fig. 21 shows
the resulting histogram with intervals of 0.4 for cosa.
In each case, the theoretical curve of C(zr+, p) or C(zr+, n)
has been normalized to the number of observed events.
The calculation of C (zr+,N) proceeds in the same manner
as for 0.8 Bev, except that at 1.5 Bev, all values of m~

up to M~=1.58 Bev are possible.
It is seen from Fig. 21 that the calculated curves for

C(zr+, N) are in poor agreement with the experimental
histograms. Thus for (zr+, p), the experimental distribu-
tion has a peak for cr near 180' (—1(coscr( —0.6),
consisting of 25 events, whereas the theoretical curve
would give only 9 events, which is too low by 3
standard deviations. On the other hand, for (zr+,zz) in
the same region of o., the calculated curve has an
average value of 20, whereas only 10 events are ob-
served. It should be noted that the angular correlation
depends sensitively on the detailed assumptions of the
present model. Thus it is assumed that the X* decays
as a free particle, independent of the unexcited nucleon
S. However, if there is some interaction between the
iV* and cV, this would tend to distort the angular
distributions of the pions given by the Jacobian for the
free decay. In this connection, we note that all of the
other predictions of the isobar model at 1.5 Bev are
in reasonably good agreement with the experimental
results of Fowler et al. Lreference 7(II)] (pion a,nd
recoil nucleon momentum spectra, see Figs. 14 and 15;
Q-value distribution, see Fig. 23, below). As was
mentioned above, the experimental results may include
some cases of double pion production, presumably
pzzzr+zra events. This may be responsible for the observed
peak of the (zr+, p) distribution at cr 180'. If two pions
are produced, the available kinetic energy in the c.m. s.
is decreased quite appreciably, from 500 to 360 3~Iev.
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FIG. 22. Distributions P(~+,p) and P(7I.+,n) of Q values of
(7I-+,p) and (7I-+,e) pairs at T„=O.S Bev. The solid curves vvere
obtained from the isobar model [Eqs. (99) and (100)j. The
histograms represent the experimental data on p&z7I-+ events of
Morris, Fowler, and Garrison Lreference 7(I)j Lsolid lines:
(~+,p); dashed lines: (7r+,n)]. The dashed curve gives the result
of the Fermi statistical theory. "All of the curves and histograms
are normalized to the same area.

From the point of view of the present model, there
are two types of pion-nucleon pairs at the proton
energies for which single .V production predominates.
Thus the nucleon may have originated from t.he isobar
N* which decays into the pion, or it may not have been
excited in the collision. I'he probability distributions of
the Q values for these two types of pairs will be denoted

by Pi(Q) and Ps(Q), respect. ively.
In the present model, Pi(Q) is given by

3II 8

P, (Q) = o-(zzzi)F t o. (mi) Fdziz, ,
Mtz

(95)

where zizz ——zzzN+ zzz +Q. Here F is the phase space factor
and the denominator merely ensures that Pi(Q) is

VIII. EFFECTIVE 0 VALUES FOR PION-NUCLEON
PAIRS

In previous discussions of the experimental data on
pion production at Cosmotron energies the concept of
an effective Q value for pion-nucleon pairs has been
extensively used. The Q value is defined as

Q =E N (zzzN+zzz ),

where E & is the total energy of the pion and nucleon
in the center-of-mass system of the two particles.
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normalized to 1, i.e. , Jto Pi(Q)dQ=1, where Q is
the maximum possible Q for the energy T~: Q =M&, ,—(mtr+ m.) .

In order to obtain the function P2 which pertains to
the unexcited nucleon, we consider erst an isobar with
a definite mass m~. The corresponding Q distribution
which will be called P2 was obtained as follows: For
various angles of decay 8 * in the rest system of the
isobar (at intervals of 22.5'), the energy and angle of
the pion in the c.m. s. of the initial nucleons were cal-
culated, and from these results the total energy E & in
the center-of-mass system of the pion and the unexcited
nucleon was obtained. The corresponding Q value is
given by (94), and its relative probability is sing

since the solid angle available for a range d8 * is
sin8 ~d8 *. The values of 8„* considered in the calcu-
lation will be called t), ;* (t),,

i*=0', f), s*——22.5',
H, s*——180'). I.et Q; be the Q value pertaining to 0, ;*.
We dehne

P& is given by

Q" '=—s(Q'-i+Q')

Q,"'=—:(Q.+Q,, )

(96)

(96a)

sin8
P2;——

Q, (+) Q.(—)

9

1 P sin0, ,*, (97)

«r Q" '&Q(Q,'+'t. The factor in the square bracket
serves merely to normalize the distribution. P2; as
defined by (97) gives a series of step functions. A
smooth curve is drawn through these step functions in
obtaining the final function Ps(Q), which, of course,
still depends on m~.

Contrary to Pi [Eq. (95)] which has a pronounced
peak at Q=145 Mev (mt=1. 22 Bev), the functions

Ps(Q) for the various mi are almost constant over the
range Q, except near Q=O and the maximum Q. The
average P2 over the values of m& is given by

MI, g

Figure 22 shows P(rr+, P) and P(7r+, n) for T~=0.8
Bev, together with the histograms of the experimental

Q value distributions obtained by Morris, Fowler, and
Garrison [reference 7(I)]. The full lines represent the
(s-+,p) values, while the broken lines give the (7r+,n)
histogram. Similarly to the distribution of a values at
0.8 Bev, we have used only the "selected" events in
the experimental histograms, which are normalized to
the same area as the theoretical curves. It is seen that
the calculated curve for P(7r+,p) is in good agreement
with the peak of the experimental histogram at 140
Mev. The narrow maximum of P(m+, p) reflects, of
course, the behavior of P&, which reproduces essentially
the scattering cross section o.(mi). By contrast, the
function P(m.+,n) is relatively flat except near the ends
of the distribution, as was expected from the behavior
of P~. This result is in agreement with the experimental
histogram which does not exhibit any well-defined
maximum. For comparison, we have also shown in
Fig. 22 the normalized curve of P(m+, N) expected from
the statistical theory, as obtained by Block."The sta-
tistical distribution [which is the same for (m+, p) as
for (m.+,n)] is in definite disagreement with the (s.+,p)
histogram. Since, on the other hand, the isobar model
gives good agreement with the observed peak, this
result can be regarded as giving strong support for the
isobar model at 0.8 Bev, and as evidence against the
statistical theory.

Calculations of P(~+,p) and P(7r+,n) have also been
carried out for T~=1.5 Bev. Figure 23 shows the com-
parison with the experimental histograms of the pns. +

events obtained by Fowler, Shutt, Thorndike, and
Whittemore [reference 7(II)]. Similarly to the dis-
tribution of angles o, at 1.5 Bev, we have used all of
the pns. + events at this energy. The histograms may
thus include a few cases of double production, as was
pointed out by Fowler et al. [reference 7(II)]. It is

~ Ma

Ps(Q) =—
Ps(Q)o (mi)Fdmi

(98)
Tp = I.S Bev

o (mi)Fdmi

P (rr+, P) =0.9Pi+0.1Ps,

P (7r+,n) =0.1Pi+0.9Ps.

(99)

(100)

With this definition, the functions P(m+, N) are nor-

malized to unity:

ans

J
P(rr+, N) dQ = 1,

0

(100a)

where Q is in Bev.

The distribution P for (s.+,P) and (n+,n) pairs from

p-p collisions is given by the following expressions
similar to (92) and (93):
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Frc. 23. Distributions P(~+ p) and P(m. +,n) of Q values of
(7I-+,p) and (~+,n) pairs at T„=1.5 Bev. The solid curves were
obtained from the isobar model LEqs. (99) and (100)g. The
histograms represent the experimental data on pnm+ events of
Fowler, Shutt, Thorndike, and Whittemore Preference 7(II)g
Lsolid lines: (s+,p); dashed lines: (s+,n)g The dashed .curve
gives the result of the Fermi statistical theory. "All of the curves
and histograms are normalized to the same area.
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seen that the calculated curve of P(~+,p) is in very
good agreement with the maximum of the experimental
distribution between 100 and 200 Mev, thus giving
strong support to the present isobar model. The curve
of P(m.+,e) is quite fiat throughout the region of Q
which corresponds to the resonance, in agreement with
the experimental distribution. However, the (m.+,n)
histogram has a maximum for low Q values (between 0
and 100 Kiev) which is not reproduced by the calcu-
lations. This maximum may be due in part to the
inclusion of some double-pion events. It should also be
noted that the statistics of the experiment were quite
limited, so that not too much significance can be
attached to this discrepancy. Thus of the 50 events
which were used by Fowler et al. [reference 7(II)] in
the histograms, only 19 were classified with certainty as
being pm.+ events. In I'ig. 23, the prediction of the
statistical theory" is shown for comparison. It is seen
that this curve is in definite disagreement both with
the (m-+, p) and (~+,n) Q value distributions, since the
maximum of the curve occurs at much too large Q
values ( 380 Mev) to give a fit to either the (m.+,p)
or (~+,n) data.

IX. ANGULAR DISTRIBUTION OF THE ISOBAR

It is of interest to observe that the angular depend-
ence of the cross section for producing the isobar E~
can be inferred from the angular distribution of the
pions, particularly in the case of single production
where only one isobar is made. We shall write

a (0~*)=P ( a (P ( (cos0~*) (101)

for the angular distribution of Ã*; 0~* is the c.m. s. angle
between the direction of Ã* and that of the incident
nucleon; the a~ are coeS.cients and P~ is the Legendre
polynomial. For p-p collisions, where the initial system
is symmetric with respect to 90 in the c.m. s., the dis-
tribution a(8~.) must also be symmetric with respect
to 90', so that a~=0 for odd l. For ri pcollisio-ns, the
same property is expected to hold, provided that the
strong interaction responsible for producing the isobar
is not influenced by the respective initial charge states
of the two nucleons, but is determined solely by the
total isotopic spin T. The angular distribution of the
pions will be denoted by b(P ). We have

b(P.) =Zl btPl(cosP-), (102)

where the b~ are coefficients; P is the c.m. s. angle of
the pion with respect to the incident nucleon. We will

consider first an isobar of a given mass m~. The dis-
tribution b(P ) is given by

7l p2 7!

b(P ) = I kZ& a~P~(cos0~~)]J
&o ~0

Xsin0~. d0~*d g~*, (103)

where g~~ is the azimuthal angle of the isobar; J is
the Jacobian for the decay of the isobar, as given by

Eq. (29). It is assumed here that the isobar decays
isotropically in its rest system. "J is a function of the
angle O„between the E*and the emitted pion. In fact,
J(0.) =C2 (180'—0 ), where C2 is the correlation
function introduced in Sec. VII. Upon expanding J in
terms of Legendre polynomials, we obtain

J(0.) = Q), cgPg(cos0. ), (104)

where the cz are coeKcients. In order to carry out the
integration of (103), we note that cos0 is given by
Eq. (11).From the addition theorem for P~, we have

P~(cos0 ) =P~(cosP )P~(cos0~-.)

(X—m)!
+2 P P~"(cosP )

=q P+m) t

&&Pq (cos0~*) cos[m(g~. p)]. (1—0S)

In the integral of Eq. (103), the sum over m of (105)
makes no contribution. Furthermore from the ortho-
gonality and normalization of the P& one finds

b(P ) =4~ Pi aiciPi(cosP )/(2l+1). (106)

Upon equating (102) and (106), one obtains

ai= (2l+1)bi/47rci, (107)

which gives the coeAicients of the angular distribution
of E~ in terms of the angular distribution of the emitted
pions.

The preceding discussion has been restricted to
isobars of a given fixed mass m~. However, in the present
model, the E~ can have a range of diferent masses mI
with relative probability o (m&)F, where F is the phase
space factor. We will assume for simplicity that the
isobars of different mass are all made with the same
angular distribution. In this case, Eq. (103) still holds
for the complete range of masses, provided that J is

replaced by the weighted average J over the mass
values m).

Ja(m, )Fdm,
~MI, s

0.(mg)Fdmg. (108)

As pointed out above, J(0 ) is given by the partial cor-
relation function C2 evaluated for n=180' —0 . Com-
parison of (108) with Eq. (86) shows that j is related
in the same manner to the average correlation function
C2. Thus J (0 ) = C2(180'—0,).It can be concluded tha, t
Eq. (107) holds for the complete m& distribution (for
single 1V* production) provided that c~ is taken as the
coeKcient in the expansion of the average correlation
function C~.

The preceding considerations have been applied to
the data obtained for 0.8-Bev protons by Morris,
Fowler, and Garrison t reference 7(I)]. %faking use of
the symmetry about p, =90', 2Iorris et al. [reference
7(I)] have folded their pion distributions about 90'
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Lsee Fig. 4 of reference 7(I)].The coeKcients b~ of the
expansion of b(P ) are obtained from the expression

~/2

b~ —,'(2——l+1) b(P )P~(cosP ) sinP dP, (109)
Jo

by integrating over the experimental histogram b(P ).
One thus obtains b0=1, b.=0.915, b4= —0.678, so that

&(p )=Po+0 915P2 0 678P4. (110)

It is doubtful whether the term in P4 has much sig-
nificance, in view of the uncertainties due to the limited
statistics. Moreover, the first two terms of (110) give

by themselves a reasonable fit to the experimental
histogram. We will therefore disregard the P4 term in
the following discussion.

The average Jacobian J (0 ) is given by C2(180'—8 ),
where t. 2 is the function shown in Fig. 19.By integrating
over Co in a manner similar to Eq. (109), one finds
co=0.5, c&=0.318, cg=0.0929, c3=0.0215, so that

I'his result indicates that the distribution of N* has
a large cos'0~. component at 0.8 Bev. Equation (112)
is, of course, not correct near 90', where the expression
becomes negative. This is due to the fact that the coef-
ficient a& of the P2 term is very large, and P2(90') =
—0.5. As shown by (107), a& is proportional to b&(co.

The coefficient c2 in the expansion of J is quite small

(0.0929), so that any appreciable Po term in the experi-
mental pion angular distribution will necessarily lead
to a large value of a~. The value b2= 0.915 obtained from
the histogram [Eq. (110)] may be in excess of the
actual value, because of statistical uncertainties. It
should also be pointed out that the present treatment
is based on the assumption that the isobar X* decays
as a free particle. It is possible that if the interaction of
the E* with the unexcited nucleon were taken into
account, one would obtain a larger value of c~ for the
angular distribution from the decay, thus giving a
smaller coefficient a2. In any case, it can probably be
concluded that the distribution of E~ has a pronounced
forward-backward peak at 0.8 Bev. If the distribution
is actually mainly proportional to cos'0&*, this would

imply that the iV* is produced in a p state. We note
that the interpretation of the pion energy spectra of
Lindenbaum and Yuan' in terms of the isobar model
also gives an indication that the angular distribution
of the isobar has a forward-backward maximum at 1.0
3ev, as was discussed in Sec. V,

J—0,5Po+0.318P,+0.0929Pg+0.0215Po. (111)

This expression approximates J to within 1%. From
(107), we now obtain ao ——0.159 and ao ——3.92, which

gives

a(0~*)= 0.159+3.92Po= 5.88 cos'9~~ —1.80. (112)

X. SUMMARY AND CONCLUSIONS

An isobaric nucleon model for pion production in
nucleon-nucleon collisions in the 0.8- to 3.0-Bev incident
energy range has been presented. In this picture one or
both of the incident colliding nucleons is considered
excited to one of a series of possible isobaric levels. The
T'= J= —', level previously observed in the ~—p scat-
tering is assumed to be predominantly responsible for
meson production in the energy range here considered,
and is the only state introduced in the present treat-
ment.

The isobar is considered to separate from the recoil
nucleon or other isobar involved in the collision before
decay and hence the decay of the isobar is treated inde-

pendently of possible interactions between its decay
products and the other particles in the collision. Several
arguments involving estimated lifetime and other con-
siderations have been previously made (see Sec. II)
and tend to justify this assumption. However it is
obvious that agreement or lack of agreement with
experiment is the real test of the usefulness of the
model.

The total isotopic spin and its z component are con-
sidered conserved throughout the process. In addition
to isotopic spin the isobar is further characterized by
the total energy of its decay products in its rest system
or equivalently a mass in its rest system denoted by m&.

The relative probability for isobar formation in the
range dpi was phenomenologically related to the or++ p
interaction cross section. The probability for single
isobar formation was taken proportional to Fo (mi) dpi,
where F is the two body phase space factor for the final
X*+1V state and o.(mi) is the appropriate ~+—p total
interaction cross section. For double production
(N*+Ã*), the probability was taken proportional to
Fo (mi) o (m, )dm, dmo.

Alost of the calculations were performed for p-p
interactions since most of the available data concerns
this interaction. Furthermore in the p-p case only the
isotopic spin= 1 state is involved and the inelastic cross
section for this state is known as a function of energy
from 0.5 to 3.0 Bev. In the m pease the -T=O inelastic
cross section also enters. The total T=O cross section
is known; however, the separation of elastic from
inelastic is uncertain.

The ratio of double to single plus double meson pro-
duction in p-p collisions as a function of energy has been
related to one dimensionless parameter k, which when
fitted to experiment at one energy predicts a behavior
of this ratio consistent with the experimental data
available.

The angular distribution of the isobars in the c.m. s.
was considered for the two cases of (1) an isotropic
distribution and (2) forward and backward only.
Mixtures of (1) and (2) can obviously be used to
represent various degrees of forward and backward
peaking. A more detailed angular distribution fit was
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made to the available data for 0.8-Bev p-p interactions.
The angular distribution of the decay products of the
isobar in its own rest system was assumed isotropic. The
angular distribution of the isobars has no e6ect on pion
and nucleon energy or momentum spectra obtained by
adding together all particles produced irrespective of
angle. The cloud chamber data of reference 7 was of this
form. However, in the case of observations of spectra
at particular angles such as in the counter experiments
of reference 3 the spectra at different angles are a
function of this angular distribution.

All the experimental data on pion and nucleon
spectra are in reasonable agreement with the model
predictions. The observed angular distribution of the
pions in the cloud chamber data implies some forward
and backward peaking in the isobar angular distribution
at 0.8 Bev. The counter experiments of reference 3
which corresponds to large angle {60'—90') observations
in the c.m. s. at 1.0 and 2.3 Bev are also consistent with
some forward and backward peaking of the isobars at
1.0 Bev. However, the isotropic distribution seems to be
a better approximation at 2.3 Bev.

The Fermi statistical theory predictions have been
compared to the experimental data in this and also
previous publications, and in general, do not agree.
There is an apparent general agreement for the pion and
nucleon energy and momentum spectra of the Fermi
statistical theory, the present isobar model and the
experimental data at 0.8 Bev.

However, at 1.0, 1.5, and 2.3 Bev the Fermi theory
predictions do not agree with the experiments or the
isobar model. This is true even if one arbitrarily mixes
the predicted spectra for the Fermi theory single and
double production, each of which is independent of the
interaction volume, in a ratio determined by the experi-
mental observations.

One should also recall at this point that the predicted
branching ratios for the single and double production in
the Fermi statistical theory depend on the interaction
volume. For a volume equal to the Compton wave-
length of the pion the double production estimate is
much smaller than the observed value. Furthermore, the
larger volume required to enhance double production
corresponds to an inelastic cross-section estimate much
more than double that observed.

The apparent agreement of the pion spectrum in the
Fermi theory at 0.8 Bev with the isobar model pre-
dictions can be understood since there is not enough
available energy to form the isobar beyond its peak
energy. Hence one has a sharply rising probability of
pion emission with increasing momentum much like
the phase space factor in the Fermi theory. The nucleon
spectra also agree coincidentally with the isobar model
predictions.

At higher incident energies the e6ect of the sharp
decrease of the resonance cross section above the peak
in the isobar model enhances lower momentum pions at
the expense of higher momentum pions, and also leads

to enhanced double production when two isobars near
the peak energy can be produced. Furthermore, the
kinematics of the isobars are such that the average
nucleon momenta at 1.5 Bev are higher than the Fermi
theory predictions. This effect is also observed experi-
mentally.

The apparent Q value between pions and nucleons
has been calculated with the isobar model and compared
to experimentally observed values and the Fermi sta-
tistical theory prediction. As in the case of the pion
and nucleon momentum spectra, there is an apparent
agreement in all three cases at 0.8 Bev. However, at
1.5 Bev the isobar model and the experiments generally
agree but the Fermi theory disagrees because of too
many high-energy cases.

The angular correlations for both pion and proton
and pion and neutron pairs, have been calculated for
0.8 and 1.5 Bev.

They have been compared to the experimental data
at 0.8 and 1.5 Bev, and are in general agreement with
the observations at 0.8 Bev but do not agree at 1.5 Bev.
In the latter case very poor statistics and the uncer-
tainty of experimental errors do not make it possible
to conclude whether a real disagreement exists.

The production of mesons in zz pcolli-sions of average
energy 1.7 Bev is described in reference 6. The observed
result of much greater double production relative to
single than in the case of p-p collisions has also been
explained by the isobar model, since zz-p contains a
T=O state in addition to the T=1 state of which P-p
is exclusively composed. The inelastic cross section in
the T=O state must in the isobar model be composed
only of double production, since it is impossible to
combine one T'=

2 isobar {for single production) with
a T'=-', recoil nucleon to obtain a T=O state. However,
two T'=2 isobar states {for double production) can
be combined to form a T=O state.

An estimate of the T=O inelastic cross section from
the known total cross section gives the anomalously
large amount of double production required to explain
the observed greater abundance of this process in zz-p

collisions as compared to p-p collisions.
From the basic single and double pion production

spectra, and various recoil nucleon spectra, one can by
interpolating and compounding with the weighted coef-
ficients given in the text obtain predictions for almost
any pion production process in the 0.8- to 3.0-Bev
range.

It is of interest to compare the present isobar model
with the Kovacs' approach of modifying the Fermi
statistical theory to include enhancement of various
final states by the pion-nucleon interaction. Obviously
there will be a certain general similarity of the two
models due to the fact that the pion-nucleon interaction
will tend to make the relative energy of pion and
nucleon follow the scattering interaction as a function
of energy, and this in turn will tend to simulate the
isobar assumed in our model. However, there are several
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marked dBerences involved, some of which are basic,
and some of which were introduced by Kovacs in order
to make the calculations possible.

Kovacs' phase space factors correspond to the multi-
body collections of two nucleons and one pion for single
production and two nucleons and two pions for double
production. Hence single production involves a three-
body phase space and double production involves a
four-body phase space. This approach is consistent
with his picture of the process whereby in the first
stage the various particles are created in a thermo-
dynamic equilibrium with very strong mutual inter-
actions which lead to electively constant matrix
elements for all states in this first stage of the process.
Then he argues that the relatively longer range ~-nu-
cleon interaction results in a scattering of the outgoing
pions by the nucleons and this interaction enhances
those final states for which the scattering interaction
is large.

In the isobar model all final states involve two
bodies, either one nucleon and one isobar, or two isobars,
for single or double pion production respectively.

Hence two-body phase space factors are used in all
cases. Furthermore the resonance interaction is built
into the moving isobars which can be quite energetic.

In Kovacs' case the nucleons are treated as S waves
and nonrelativistically, and the pions are treated as P
waves in the c.m. s.

This approach was applied mainly to predicting the
behavior of the multiplicity and the ratios of various
charge states as a function of energy in the 1.0- to
3.0-Bev range for p-p and n pcollisions. Thes-e results
were in general agreement with experiment. However,
except for one isolated case without experimental com-
parison, no calculations were performed for pion momen-
tum spectra. No results for nucleon momentum spectra,
Q values and angular correlations between pion-nucleon
pairs were reported. Furthermore, it seems unlikely
that this approximate treatment could properly treat
the complicated dynamics involved in the case of fast
moving nucleons at the higher energies, for which

mesons emitted with a relative momentum correspond-
ing to the resonant energy region tend to be enhanced.
A more realistic treatment of these eGects by the
Kovacs model appears to be rather dificult.

The general quantitative agreement of the isobar
model predictions and the considerable body of experi-
mental data already available for the nucleon-nucleon
prcduction of pions in the 1.0- to 3.0-Bev range is most
encouraging.

It seems clear that the major features of these inter-
actions are well represented by this model. However the
crudeness and lack of completeness of many of the
experiments make it impossible at present to determine
whether this model can also predict the finer details of
these interactions.

An extensive investigation by counter techniques of
pion production in p-p and I pcoll-isions at Cosmotron
energies is now in progress" and should in the near
future yield detailed results with which a more critical
comparison can be made.

As previously mentioned the isobar model might well
be applied to even higher energy pion production. In
this case other isobars than the T'= J= —,

' state would
most likely have to be included. Since the characteristics
of such other isobars are not known and very little
data on these higher energy interactions is available,
it is not very fruitful to pursue this matter further at
this time.

One other applicatioo of the isobar model would be
in pion-nucleon collisions leading to pion production.
This subject will be considered in a later publication.
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