
PHYSI CAL REVIEW VOLUM E 105, NUM B ER 6 MARCH 15, 1957

Proton Bremsstrahlung*
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The differential cross section for the production of gamma rays from the bremsstrahlung of protons of
30- to 140-Mev kinetic energy in the center-of-mass system is calculated. An energy-dependent
complex square well is used to represent the nuclear interaction. The complexity of the potential enhances
gamma-ray production. Furthermore, the theory predicts a low intensity for high-energy gamma rays. It
is also found that the continuous spectrum of radiation is closed between very low-frequency and high-
energy gamma rays of energy just below the incident proton kinetic energy. By using the experimental
information, a qualitative result about the energy dependence of the imaginary part of the potential is
obtained in comparable form with those used by other people.

I. INTRODUCTION

IGH energy nucleon-nucleus collisions are, usually,
- ~ - ~ accompanied by a continuous gamma-ray emis-
sion. An interesting gamma-ray source arises from the
bombardment of nuclei by high-energy protons with
energies below the threshold 7rp-production energy. In
this paper we are interested in the gamma-ray pro-
duction through the nuclear interaction only. However,
for low-energy protons, about 2 Mev, the Coulomb
field is, effectively, the only force available to cause a
proton bremsstrahlung and the cross section for this
process has been calculated by Drell and Huang. ' In
an exact calculation the Coulomb interaction must also
be included. But with energies much higher than —', X1ev
and for low Z the Coulomb effect is negligible. The
Coulomb effect for incident proton energies as low as
30 Mev can be disregarded since at this energy the
distance of closest approach, re = (Ze'/mc') (mc'/E)
= (Ze'/mc'))((1/60), is much less than the range of
nuclear forces. However, the Coulomb interaction, in
this problem, can be an important effect in the case of
high-energy gamma rays.

The available data on gamma rays from high-energy
inelastic proton scattering consist of the experimental
results of Wilson' and Cohen. ' Besides these two experi-
ments, the Coulomb excitation experiment by Stelson
and McGowan4 yielded gamma rays of discrete energy
from excitation of nuclear states superimposed over a
continuum of bremsstrahlung gamma rays. The charac-
teristic of the latter radiation lies in its high yield of
very low-energy gamma rays and in an increase of the
yield with energy from 2- to 5-AIev incident proton
energy. In this energy range the experiment on Bi, Th,
and Sn targets did not show a particular Z dependence

* Reported at International Conference on Nuclear Reactions,
Amsterdam, July 2—7, 1956.

t Part of this work was completed while the author was a
visiting professor of physics at the University of Miami, Coral
Gables, Florida.

' S. D. Drell and K. Huang, Phys. Rev. 99, 686 (1955).' R. Wilson, Phys. Rev. 85, 563 (1950).' D. Cohen, Phys. Rev. 95, 664 (1954) and University of Cali-
formia Radiation Laboratory Report UCRL-3230, 1955 (un-
published).

4 P. H. Stelson and F. K. McGowan, Phys. Rev. 99, 112 (1955).
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of the radiation, but only a difference in the intensity
of the radiation.

For proton energies above 15 Mev, however, Cohen's
experiment contains quite different results than that of
Stelson and McGowan. In the neighborhood of 8 ~Iev
there is a sudden increase of yield of gamma rays. It
was also observed that the yield for gamma rays
produced from 100-Mev proton bombardment on Cu,
Al, C, and Be increases with A. At 15-Mev gamma-ray
energy there is a distinct divergence of the spectral
curves corresponding to the gamma rays arising from
the bombardment of Cu, Al, C, and Be. The spectral
curves come together just above the high end of the
energy axis, beyond 35 Mev. The primary energy de-
pendence of the spectrum from Be' bombarded by 38-,
100-, and 140-Mev protons show a similar behavior of
divergence near 15-3lev photons and a convergence at
the high end of the energy axis. The yield increases with
decreasing proton energy.

No data were shown below about 8 Mev. The present
theory does, however, predict the continuation of the
spectrum down to zero-energy radiation. The latter part
of the spectrum may, inter alia, arise from the multiple
scattering of high-energy protons in the nuclear matter.
By multiple scattering the protons will lose energy and
eventually Coulomb interaction will set in to produce
the low-energy bremsstrahlung gamma-rays. This
mechanism is not, of course, contained in our theory
where the Coulomb interaction is ignored from the
start. At any rate, the spectrum below 8 Mev can be
looked upon as the nuclear part of the Coulomb
bremsstrahlung, i.e., as a correction to it plus purely
nuclear bremsstrahlung gamma rays.

In this problem we shall use an energy-dependent
complex square-well potential to describe the proton-
nucleus interaction. Because of the energy dependence
of the interaction we actually have two complex fields
corresponding to initial and final states. A complex well
replaces all the possible reaction channels by an average
one and inelastic processes like (p,d) reactions are
already included in a complex representation. The main
inelastic process of interest is the interaction of the

46



PROTON B RF. MSSTRAHLUNG

incident protons with the radiation field after being
processed by the complex nucleus.

An undesirable feature of a complex well lies in its
sharp discontinuity at the nuclear surface which may
give rise to too much reRection and to less penetration
(very small mean free path in nuclear matter) for all
angular momentum states of the protons. This would
greatly inhibit the yield of gamma radiation from the
inelastic proton scattering. Hut the energy dependence
of the well can partly remove this difhculty.

The above-mentioned drawback, among others, of a
complex well should be disregarded in the light of the
many successes obtained by the use of an optical model
of the nucleus. One of the latest of these is the "cloudy
crystal ball model" ' used for the description of the
low-energy neuton elastic scattering. The motivation
behind the present attempt comes from considering an
optical model of the nucleus in the light of a diferent
problem' from that of mere elastic scattering of nuclear
particles. In this paper we would like to study the
optical model by calculating transition probabilities
with it, using the existing experimental data on photon
production from high-energy proton scattering. In par-
ticular, an investigation of the eR'ect of an energy-
dependent complex potential on the gamma-ray pro-
duction is another interesting aspect of the problem.

If we put

we obtain
Eo= (q

—1)Mpc',

II. KINEMATICS OF THE GAMMA-RAY
PRODUCTION

The maximum energy E, of the photon produced in
the collision of two particles with masses Mp and M~,
in the center-of-mass system, is given by

E~= MpMg(q —1)c /(Mp +My +2MpMzg)&, (II.1)

where

production. At the maximum energy of gamma-ray
production, with high-energy protons bombarding light
nuclei, enough kinetic energy will be left after photon
production for the proton to get out of the nucleus.
The minimum kinetic energy of the protons in the final
state is

Ep E=—Ep/ (A +1). (II.4)

III. FORMULATION OF THE PROBLEM

Since the kinetic energy of the protons are small
compared to their rest energy, the use of nonrelativistic
theory is a sufficiently good approximation. For a first
orientation we shall neglect the magnetic moment of
the proton. The Hamiltonian of the system is given by

H=Ho+H„+Hpv+H', (III.1)

where Ho ——kinetic energy of the protons, H„=energy
of the radiation field, H&~= interaction energy of
protons and the nucleus, H'= interaction energy of
protons and radiation field. The interaction H' will be
treated only in the first order.

The Schrodinger's equation defining the initial and
final states for the Hamiltonian Hp+H„+Hp~, in the
center-of-mass system, is

In order that the nuclear force (of range e'/mc') be
large compared to the Coulomb force, we must have

Eo))(A+1)mc'.

Thus the Coulomb interaction in the final state for Be'
will be negligible if the primary energy Eo is much
larger than 5 Mev. For Cu and heavier nuclei the
Coulomb interaction is a nonnegligible effect for low
incident proton energies. Since the experiment has
mainly concentrated on gamma rays from Be', our
neglect of the Coulomb eff'ect is a good approximation.

The fact that the spectral curves in Cohen's experi-
ment do not touch the energy axis at the high end but
come together just above the axis may be taken as a
kinematic eAect.

( M
i

1+ i+
M~) Mgc'.

(II.2)
2p

V'lk+ —(IV—V)P =0,
A2

(III.2)

If M&c' is the rest energy of the nucleus, we can neglect
2EO/Mzc' and, neglecting binding energy, we write

(II.3)

For a nucleon-nucleon collision the maximum energy
of the gamma ray produced is one half of the incident
kinetic energy. We see that the yield is higher in the
case of nucleon-nucleus collisions. Thus not all the
kinetic energy of the proton can be used for photon

' Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954).
B, Kuryunoglu, Phys. Rev. 98, 1156 (1955).

where 5' is Eo in the initial state and E in the final state
of the proton, E=Eo E„p= [A/(A+ 1)7M—, Eo
= [A/(A+1)7E&, and E,= hck= energy of the emitted
photon.

The nuclear potential V is defined by

Vo= —[VR(Eo)+iVI(EO)7, r(R
(III.3)

=0) r&R.

The final state potential V is defined by replacing Eo
in (III.3) by the final energy E of the proton. The
nuclear radius R is given as

R= roA&=1.33)&10 '~A& cm. (III.4)
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1
4'I =exp(ikor r)+ fr—(nr) exp(ikor), (III 10)

r
1III p——(rr+ ,')i "-a„P (cosnr)

n=O where

The initial and final states are defined by solving The asymptotic form of the initial state for r&R is

(III.2) in the form

X[g„(k rI)+h (krr)], r(R
(III.S)

=P (n+ —', )i"P„(cosnr)
n=0

X [g (korr)+III "h.(korr)], r) R
and

PF ——Q (II+-,')i "b„P„(COSnF)
n=o

X[g„(kFr)+h„(kFr)], r(R
(III.6)

QO

fr(nr) = P (2++1)[e xp(2ib I)—1]P„(cosnr).
2ikoI ~=o

The coefficients a„, b„and the complex phase shifts
6I", 5&" are to be determined by fitting the internal and
external wave functions at r=R. The finiteness of the
wave functions at the origin and their normalization
imply that we may conveniently fit the functions
[rkrRI" (r), rkor exP (—iver")Ror" (r) 7 and [rkFRF" (r),
rkpF exp (i8F")ROF"(r)] and their derivatives at r = R.
After some manipulations with the various properties
of the Bessel functions, we obtain the results

=P (II+-',)i "P„(cosnF)
Fr,=o

X [qF"g„(koFr)+h„(kpFr)], r) R

&orj (&r)h *I(& ro)
—&jI1(&r)h *(~or)

gI
srj. 1(sr)h. (sor) —sorj. (sr)«. 1(sor)

(III.11)

respectively, where

2pEp 2p
kor =, kr'= kor + [VII (E—o)+& VI(EO)],

A2

FOFJn(&F)hn 1(soF) &FJ n —1(sF)—hn (soF)
IIF"—— —, (III.12)

SF) 1(ZF)«' (Z—OF) SOFj (SF)hn 1('OF)—

aild

2pE 2pkpF'=, kF'' kpF' +[-V——rr(F-)+iUr(J')],
yl.2 A,'

(III.7) i exp( —iver")1
Q

I Spgr(n& )Ihnl(&or) &IJn—1(&I)h (nS)or
(rlf. l,l)

and where

rlr" = exp(2ibr"), &F"=exp( —2ibF") (III.8).

The functions g„and h„are defined by

where

1

P» exp(ikpF——r)+ fF(nF) exp( ——ikoFr),
r

(III.9)

fF(nF) = p (2ro+1)(—1)"—2zkpp &=0

X [exp( —2ibF ) 1]P (COSnF).

7 G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1955).
SF'. A. Bethe and L. C. Maximon, Phys. Rev. 93, 768 (1955).

»n gn+&&&=n, gI, = Jn 'Irrn)—
where j„and»„are spherical Bessel functions.

The choice of the reaction coefficients qI" and gp"
related to the phase shifts in the form (111.8) follows
from the fact that the final state in a scattering problem
of this kind consists of a plane wave propagating in the
positive koan direction plus a spherical wave which is
ingoing rather than outgoing. This fact has recently
been pointed out by Breit and Bethe' and by Bethe and
Maximon in connection with general scattering
problems a,nd electron bremsstrahlung.

It is easily seen tha, t the asymptotic form of the
final state for r)R is

1 i exp (ib F"')—
b„= — — —.(111.14)

=I soF j.(sF)». 1*(soF)—.-I j„r(sF)h.*( s)pr

In order that the ordinary reaction cross sections be
positive, we must have

6p" ——mm, b„=0. (III.16)

In this case the final state reaction and scattering cross
sections vanish. This result confirms the kinematic
relation that the maximum energy of the photon must
be less than the primary energy. From the first relation
of (III.16), we get

Sp = SX) vp"= 0.

The vanishing of vF" imPlies that Vr(E) = 0 for L', = Eo
Although kinematically the emission of a gamma ray of
energy equal to Ep is not possible, it would not be un-

which mean that 5I" and 6F" must have the forms

br"= Nr'+ir11", bF"= &I" irr", (111.15—)

where vI" and vp" are positive numbers. In the above
relations the dimensionless numbers are obtained a,s

~oI= koIR, SI= kIR, sp= kIlR, s'op= kpFR, s= kR.
From the above phase shift relations it is easy to

deduce that if all the kinetic energy of the proton is
transformed into a photon, i.e., if soF ——0, then
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reasonable if we were to assume the energy dependence
of VI in the anal state to have the form

Vl ——aEb, (111.17)

where a and b are numerical constants.
't'wo other useful relations are obtained by putting

I':,=0 in (III.12) and (III.14), giving

61"—bF"=rI7r, a =b„. (III.18) F

where

M= M"'+M" (III.19)

The last relations show that the final state wave
function does not reduce to the initial state wave
function by putting E,=0 in the final state, since the
production of a zero-energy radiation is also a transition.
If, however, the final state wave function in the asymp-
totic limit was chosen to contain outgoing spherical
waves instead of ingoing ones, then E,= 0 would not be
a transition and the final state wave function would
automatically reduce to the initial state wave function. '

The matrix element to be calculated consists of
internal and external transition amplitudes given by

Fio. 1. Angles required in the gamma-ray production. The
polarization angle (not shown in the figure) is the angle y between
the planes (k,kl) and (k, r), where c is the unit polarization vector
of the photon and lies in a plane perpendicular to k.

IV. DIFFERENTIAL CROSS SECTION

Since quite a number of angles are involved in the
calculation, it will be found convenient if we represent
them in Fig. i. The angles o.~ and nF are related to 0~,

~, and ~l by

M'&= PF*H'PrdV, r(R, (III.20) cosn~= cosOI cos0+sin0~ cospl sin0,

cosnF ——cosOF cos0+sinOF sin0 cos(y —gr).

The external transition amplitude M~' follows from
integrating over the domain r) R.

The above formulation of the problem can also be respectively, and
applied to the radiative capture problems but this
aspect of the inelastic reaction is not included in our
initial conditions.

dV=r' sinOdqldr, e r/r=sin0 cos(y —yq),

e k=0.

Ke can now record the matrix element M&" as

t'2~5'c'q & k—e&p(i&'r)&'V (III 21) The volume element dV and the angle between e and
P'g Ps the unit vector along the r-direction are given by

(2x"El c) ' k-
M"'= —ie~

~

—P (2s+1)(2m+1)(2n+1)i'+ +"(—1)'klb, *a„~~ drr-'&', ,*(kFr, )j (kr)
Pg ) pC srnn=0 0

n+1
X j i(klr) — j „(k&r) der d8 sin'OP. (cosnF)P„„(cos0)P„(cosnl) cos(p —pr) (IV 1)

krr l) (I

9, e use the addition theorem for Legendre polynomials and carry out the pl and 0-integrations to get

where

f 2m-k-'c') (47rfi )
(—1)'kzi'+ +"b,*a„~ drr'j, *(krr)j (kr, )

I;, ) & pC &.mn 0 =3()
tl 1

X j i(krr) —— —j(hr) U;, I, (—IV.2)
krr

V,„„„=P (eXP[i(mr, , P+y)] (n„,A irnnrn, —Q.„„+sosm+2 nm;) ()n""' (C,OSOy)+eXP[i(m, P —&)]
teal 8= S

X (ClmBsrnnms —Clm+PBs m+2 nrns) ()„"" (COSOI) j ()s'"'(COSOF). (IV.3)
Ingoing wave condition in the final state provides the continuity of the transitions; i.e., it does not exclude any possible

energy of the gamma ray.
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The functions 0, ' are defined by"

(2n+1~ '* (n —m„)!
O„~(cos8)= (—1)~i i

P„""(cos8).
2 ) (n+m„)!.

Other constants are given by

t
2prh'c'y & 47ri'r AcR

M&'&=ie~
I

zr 2 (—1)'
E ) rzc Ep smn=o

p1
Xi'+ +"b,*a„(2m+3)e&„+QJ duuj, *( zp1 )&

0

2m(m —1)

2m —1

XJ +'&(zu) j „&(zru)

n+1
j„(zru) V,„„, (IV.5)

f
As m+2 nm~=

J
d8 sln80m~z (cos8)

0

X 0," (cos8) 0 " '(cos8),
with the conditions

where

V,mn= P t exp(i(m, q+y))As m+2 nm~

s+m+n= an odd number,

m, +n= an odd number,

~m —s+1~ ~n~m+s+1, m~0 for A, and

X On '+'(cos8z)+exp(i(m, oz y))B—s m+2 nm,

X 0 " '(cos8z)]O " (cos8F), (IV.6)

u= r/R.

~m —n+1~ ~s~m+n+1, m~0 for B (IV.4)

By noting that A smnm and Bsmnm are obtained from
As m+2 nm aIld Bs m+2 nm by IePlaClng m by 8$2)
respectively, we can further simplify the expression
(IV.3) to

In recording the relation (IV.5), we made use of

2m+3
j-+z(~) = j-(~)+j-+o(~)

The numbel As m+2 nm is given by

(
—1)" ' '(2h —2s) ~h~

As m+2 nms=— L(2m+3) (2s+1)(2n+1)]l
(h m —1)!(h——s)!(h —n)!(2h+1)!

(n m, —1)!(m—+2)!(m,+s)!(s—m,)! '

2 (n, +m, +1)!m!

(n+m, +q+1)!(m+s —m, —q)!
(—1)' (IV.7)

(n —m, —q
—1)!(m+m, s+q+—2)!(s—m, —q)!q!

where 2h=s+m+n+1 and the number B follows from
A by replacing s and ~ by m and s, respectively, and m,
by m, —1. The summation in (IV.7) is to be understood
as q taking on all integral values consistent with the
factorial notation, the factorial of a negative number
being meaningless.

From the form of M&'& given by (IV.S) and from the
definition of the wave functions, we can easily infer
the external matrix element M(' to be

!27rh'c'q '* ~7rh ~ AcR

«E, ) (!zc) E,
00 00

X P (—1)'i'+ +"(2m+3)&zm+p !! duu
s mn=p 1

X t qp*'h, (zopu)+h. *(zopu)] j„,+&(zu)

The cross section for the emission of a gamma ray
of polarization r. in the energy interval (E„E,+dL', )
into a solid angle dQ~ with the proton recoiling into the
solid angle dQF is given by

2 p
da(y, &p,8r,sp) =—

~

M ' +M&'~ ~'pp, (IV.9)
h ppr

where pF is the number of final states defined by

6$, 6!V„(1q'
ppdEop= ——

~

—
)

k'dkdQp
Vp V, (2pr)

-(1 )Pp P

dpo dQ
&2~) h'

or

X h„z*(zpzu)+z!r"h„, (zozu)
where

uc pppEO dEpdQpdDF

(2prhc) ' (IV.10)

n 2
(h *(zpzu)+&z h (zoru)) V. , (IV g)

SplQ

' E. U. Condon and G. EI. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, 1951), p. 176.

dQF = singF'd8pd p, EpF =E=Ep —Eg.

Integrating over the recoil proton solid angle dQF

and summing over photon polarization, we obtain the
differential cross section for gamma-ray emission in the
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energy interval (E„E,+dE, ) in the form

R' (e' ) (E ) & dF.,
d~(er) = —

I
—

I I

—
I

dn, Q, (IV.11)
8~I Ircj EEo) F,

where

A suitable unit in which to measure the cross section
for proton bremsstrahlung is to take

ao=R (e /Ac)=1. 282X10 A~ cm,

and write

Q= 2 It gmnLsmnq
smn=p

=16IzrI'I& I'I& I'a +o'I I, I'(2rrr+3)"

+zpro(2m+3)'a +o'I F,

(IV.12)
j.

e=—o p
—(1-y)&Q,

Sm Eg

1 1
« =-~o-(1—y) 'Q~.

4 y

(IV.20)

(IV.21)

+8zor Re[zrb. *~„(2m+3)'F, „*I, „n +o'7,

s

I zmn= P [Ar tn+2 nmq (An + (cos8r))
ms=s

+I3n m+2 nm, '(O." '(coser))'7,

The experimentally measured total cross section for
(IV.13) the production of gamma rays with greater than 20-Mev

energy by 140-Mev protons on Be' is (1.3&0.5) X 10 "
cm', so that neglecting center-of-mass corrections, we
must have

(IV.14)

fI, „= du uj,.*(zpu) j +)(zu)
~o

(o/10 —
1
-(1—y)'Q~

.Eo =140 Mev
dy =0.047+0.018. (IV.22)

n+1
X

I g r(zru) j(z—ru—) I, (IV.15)
zru )

F, „= du u[h, *(zppu)+po'"h, (zoou)5j +i(zu)

X h„r*(zpru)+gr "h. r(zpru)

n 1
(h„*—(z—oru) +rir "h„(zor u) ) (IV.16)

and the total cross section tT& for the emission of a
quantum E, in the range dy,

R' (e' dy
«y= —

I

——(1—y)'J
8~ Ehc y

Ro)g' q1

4 &hei y
(IV.18)

The angular distribution of the radiation is contained
in the functions I., „.Ke shall be interested in the
experimentally measured quantities

d'~(er) R'tre'q (Ey~ 1
e= =—

I

—
I I

—
I
—Q, (Iv.17)

doodE, 8m- inc& EEo) F,

This result together with the experimentally determined
values of O, (90') for various E, and Ep can be used in
a numerical analysis of the cross section to Q.nd the
complex potential V.

V. DISCUSSION

A machine analysis of this calculation is needed to
define the shape of the spectral curves and the energy
dependence of the complex potential. Owing to difIi-
culties in obtaining the services of a machine we were
unable to perform the required numerical analysis of
the cross section. An analytic approach by expansion
in powers of y for low energies is a hopeless task and
no such attempt will be made. However, a few quali-
tative features of the cross section can be seen without
much complication.

We first consider the low-frequency radiation. For
very small E, the quantity s is small compared to 1,
and in this case the eA'ective dependence on s of I, „
defined by (IV.15) has the form z +' since, for 0~ up 1,
we can write

~m+I+m+1

j +r(zu) ~
*=' (2m+3)!

When 1&u&~, as in F, „defined by (IV.16),
special care is needed to find the behavior of j +r(zu)
for s= 0. We use the multiplication theorem" for
spherical Bessel functions:

where
Eg

Ep
Qt 2 &smnLsmn

smn=p

- (—1)o(u' —1)o
j„+&(zu)=u"+' p z'jo+-+r(z), (V 1)

and
s

Lamn = g (Aa m+2 nmn +Bs m+2 nmq ), (IV.19)
ma=

where I is unrestricted, so that we can determine the

"G. N. 'Watson, Theory of Bessel Functions (Cambridge Uni-
versity Press, Cambridge, 1944), p. 142.
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asymptotic form of j +t(z«) for z—&0 in the form where

or

(—1)4 («2 —1)pz24

(Z«) ~ zm+lum+1 Q
z=p p=p 2'q! (2122+2q+3)!

x= yr+yF.

In the absence of Vq, we have x= 0 and

II ooI
2~ (")'(")2(z)2/I (27)22K (V.6)

«2 ~™~2~
We shall also need the inequality

Ij,(x u+zy u) I

)
Ij,(x u)

I
. (V.7)

Regardless of what n may be, the effective dependence
of If, „on s, for small enough s, has again the form
s +'. Thus for the production of very low-energy
gamma rays the quantities O) and cr & vary according to
E,. It is, of course, obvious that the integrands in I,
and P, , for any value of s, behave well at the limits
of integration.

At the high-frequency limit, however, we only need
to consider the quantities F, „. If we use the result
(III.16), which holds approximately for very small zpF,
then we get

I1 (zpF«)+rJF'"h, (zppu) —& 2 j,(zpp14) ~ 0, s)0.
zpg=p

Hence for high frequencies the quantities 8 and cr
& are

very small. Actually, at the extreme limit of Eg = Ep,
Q, and o-

& both vanish. In this v ay it is seen that the
result is a closed spectrum of radiation.

In order to see the effect of the complex potential on
the gamma-ray production, as a good approximation
we consider the upper limit of a typical factor j,(zpu)
in the cross section. From the well-known Bessel
inequality, we can write

The latter follows from

j,, (zru) =

where

I
exp(1zF14) M, (zF«)

+exp( —tzpu)X, (zF14)],

Zr
—8—1 (s+r)

M,, (zFu) =P
r=p r!(s—r)!(2zpu)"

( 2)" ' '(—s+r)!—
'l', (zF14) =Q

r= p r!(s r)!(2zp«)"

d8/dEo &0, (V.8)

It follows from (V.5), (V.6), and (V.7) tha, t the yield
of radiation for a given primary energy Ep is higher
with a complex potential than with a real one. It is
also evident from (V.5) and from R-dependence of yr
and yp that for a fixed Ep the yield is increasing with
mass number A. This result is in qualitative agreement
with experiment.

The primary energy dependence of the experimental
spectral curves implies the inequality

where

I'(—,')
I
zF'lu'

j(zpu)
I

~. «p(«
I yF I )2'+' I'(s+ —,')

(f4R2q ' ) Vr(E) q'.+1».=
I

.
I I VF+2

&@2) & gp )
q =LEo(1—y)+fr (E)+I (E.(1—y)+lrp(E))'-

+(Vr (E)) j']'
and

f'uR2) l |' As" ) '* 1

I
x

l, )ts ) &A+1) 4.8 Mev *'

(4'.3)

(V.4)

which can also be regarded as a restriction on Vl~. The
inequality (V.8) in itself is not enough to define the
possible form of Vg, but i t means that Vl~ is also a
function of VI ~ However, the form

VI = «o'
obtained for the imaginary part seems to reproduce the
qualitative features of the ones discussed by others. '-'

In a numerical analysis of the series Q or Q, , the
number of waves required to be included can, ap-
proximately, be estimated from

7= R/7rp,
where

Let us now consider the contribution to I, ,„arising
from the initial state 5 and final state P waves:

2.1 )& 10 "4Mc' 2Mc'A
Ap — 1

(A+1)Fp (A+1)Ep.

For 100-Kiev primary energy, in the center-of-mass
systems, in a collision with Be, we need to include
about 6 waves to get an approximate numerical value
for the series. The required number of waves does not
decrease very fast with decreasing energy; for example,
at 50-3,Iev incident energy one needs at least 4 waves

d««j t*(zF«)j t(z«)j t(zru)I1po=
J

p

By using (V.3), we obtain

IzF I lzr Iz
Iltool ~ X—

I
e*(24—24x+12x2

(27)2 xylo '2 A. M. Lane and C. F. Wandel, Phys. Rev. 98, 1524 (1955);—4x'+x4) —24]2, (V.5) W. B.Riesenfeld and K. M. Watson, Phys. Rev. 102, 1157 (1956!.
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to include in the analysis. There is, however, a possible
simplification of the series for small final energies of
the protons. In this case the wavelength in the final
state is large enough to allow a further reduction in the
number of the final-state angular momentum states.

This paper is a result of several discussions with Dr.
D. Cohen on his experiment carried out at Berkeley. It
is a pleasure to acknowledge several fruitful conver-
sations with Dr. Cohen on the experimental details of
high-energy proton bremsstrahlung.
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Scattering of K+ Particles from Protons and Deuterons

JEREMY BERNSTEIN
Nuclear Laboratory, Harvard University, Cambridge, Massachusetts

(Received December 3, 1956)

The direct coupling between X particles and 7t- mesons, proposed by Schwinger, has been used to calculate
the scattering of E+ particles from nucleons and deuterium. It is shown that this interaction gives a reason-
able explanation of the observed forward peaking in the angular distribution of E+ particles scattered from
protons. The theory predicts an inhibition of elastic scattering from the deuteron. The energy spectrum
for E+ particles inelastically scattered from deuterium has been calculated assuming a simple model for
the deuteron. There are no experiments presently available for deuterium.

I. INTRODUCTION

ECENTLY' Schwinger has proposed a dynamical
theory of mesons, nucleons, and hyperons in

interaction. He has shown that one can obtain a
qualitative understanding of phenomena involving
production and decay of the new particles in terms of
three basic strong couplings in addition to the weak
interactions which are responsible for their instability.
The three strong interactions are the well known pion-
nucleon coupling characterized by a coupling constant

g~, a direct coupling between E and ~ mesons, g~,
and a coupling between nucleons, hyperons, and E
mesons, g~. It is argued that in the absence of all

couplings the hyperons and nucleons form a degenerate
mass multiplet and hence the direct interaction of a E
particle with any pair of members of this multiplet is
characterized by the single coupling parameter gz.

Some of the most interesting aspects of Schwinger's

proposals arise because of the direct E—7r coupling.
Since the E particle has, in all probability, an isotopic
spin of —,

' and an ordinary spin of zero, there is no way
of coupling a E field of definite parity bilinearly to the
pseudoscalar m field and still preserving the invariant
scalar nature of the interaction. That the coupling must
be bilinear in the E fieM is a consequence of the
multiple-valuedness of a single field of half-integral

spin (isotopic or ordinary) under rotations through 2m.

The fact that the E field has spin zero makes it im-

possible to construct pseudoscalar matrices like the
familiar p5 of the spin -', theory which can be balanced

against the pseudoscalar meson field. On the other
hand, the occurrence of both 2m and 3m decay modes of

' J. Schwinger, lectures at Harvard University, Spring, 1956
and Stanford University, Summer, 1956 (unpublished); also Phys.
Rev. 104, 1164 (1956).

the E particle would seem to imply that its intrinsic
parity is not a constant of the motion in the usual
sense. In fact, if one introduces parity degrees of
freedom for the E fields, making the intrinsic parity a
dynamical variable, then, as has been shown by
Schwinger, ' one can construct a E—~ interaction which
is properly invariant; see Eq. (I).

This interaction will manifest itself in the production
of K particles in a reaction like ~ -+p—+X'+A'. One
mechanism contributing to this process will be the
following: first ~K++A' by means of the g& coupling,
whence the E+ absorbs the x directly leaving a residual
A'. The E' produced in this way will tend to move in
the direction of the incident x with relatively high
energy. A competing mode of production is the so-
called "shaking oR" transition in which the proton
first absorbs the ~, becoming a neutron, whereupon
the neutron dissociates into a A' and a E'. This mode
will yield an angular distribution which tends to be
symmetric in the center-of-mass system. The fact that
the E"s produced in association with A"s have been
observed to peak in the forward direction in the
barycentric system' may indicate that the first produc-
tion process dominates the second.

It is supposed that the relevant interactions eRective
in the associated production of E particles conserve
parity symmetry. If pre+ and prr are the K fields of
definite parity, then the parity-symmetric fields can be
written as prrt= (qhir++Qrr )/v2 and QQs (Iflir QQ )/
v2. To conserve over-all parity symmetry, the A and Z

must also be created in states of definite parity sym-

metry. A E1 is created in association with a A1 or a Z1

while a E& is created with a A~ or a Z&. As Schwinger

has observed, the fact that A's and 2's are created in

' J. Steinherger et al. , Phys. Rev. 103, 1827 (1956l.


