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The purpose of the present work is, starting from a given
assumed nucleon-nucleon interaction V(r;—r;) and the inde-
pendent-particle, central-field approximation, to deduce all the
consequences of this model by means of the Hartree-Fock-Slater
theory. The V(r;—r;) is chosen to satisfy the saturation require-
ment and to be consistent with some of the properties of the
two-nucleon system, but contains the strength factor V, as an
undetermined parameter. This 1y and the single-particle wave
functions ¢, (r;) are determined by the variational principle
together with the requirement that the total binding energy of
the nucleus be equal to its empirical value. The binding energies
of the individual nucleons in the various shells are themselves
approximately given by the Fock equations which also lead to a
central field which is different for the different shells. The average
central field implied in the usual treatment of the shell model is,
however, the same for a nucleon in any shell, and this must be
identified with some approximate average field obtained by a
procedure such as that suggested by Slater for an electron in an
atom or in a metal. On the other hand, the central field in the
sense of Hartree (i.e., obtained from the Fock theory by neglecting
the exchange terms) would be a very poor approximation as the
exchange terms are not negligible compared with the direct terms.

I. INTRODUCTION AND AN OUTLINE
OF THE PRESENT WORK

N the well-known nuclear shell model of Mayer,

Jensen, et al.,! each nucleon is assumed to move in
a central field V (r) arising from the interaction between
that nucleon and the other nucleons in the nucleus. The
assumption of a reasonable potential V(r) together
with a strong interaction between the spin and the
orbit of each nucleon determines the energy levels of
each nucleon. This model finds an immediate success in
accounting for the so-called magic-number nuclei, the
spins and the magnetic moments of many nuclei. When
attempts are made to calculate such properties as the
energies, spins, parities and magnetic moments of the
excited states of a nucleus on this model, it has been
customary in the literature to assume a certain central
field V () for the interaction of each individual nucleon
with all the other nucleons in the nucleus, and an
interaction V(r,—r;) between any two nucleons that
lie outside a closed shell and whose configurations are
being calculated. A knowledge of V(r) is necessary in
order to obtain the individual-nucleon wave functions
in terms of which the properties of the nucleus arising
from the nucleons outside the closed shells are calcu-
lated. In most of the existing work on the basis of this
shell model, various specific forms have been assumed

! M. G. Mayer, Phys. Rev. 78, 16 (1950); Haxel, Jensen, and
Suess, Phys. Rev. 75, 1766 (1949).

It is emphasized in the present work that the application of the
variational principle to the problem rids the shell model of the
inconsistent procedure in the usual treatments in which two
independent assumptions concerning V(r;—r;) and the average
central field 17(r) are made. A comparison of the result of the
present program with the empirical facts will form a correct basis
on which to judge the fairness or failure of the central-field approxi-
mation in the shell model.

Numerical calculations have been carried out for the Q' O
and O' nuclei to illustrate the ideas of the self-consistent treat-
ment of the independent-particle, central-field nuclear model. In
a first approximation, the I’y and the wave functions ¢,(r;) are
determined by the modified Ritz method. The binding energies
and the effective ‘“‘central fields” for the individual nucleons in
the various shells are then calculated from the Fock equations by
means of these ¢, (r;). It is found that the parameter 1y in O,
07, and O comes out to be very nearly the same, that the Fock
central potentials are considerably lower than the Hartree poten-
tials; that the former exhibit a general shape of a wine-bottle
with a diffuse boundary; and that the “binding energy of the last
nucleon” does not come out very well from the Fock equations.

for V(r) and V (r;—r,).? Certain successes in accounting
for certain observed energy levels, their spin and
parities, etc., have been achieved by properly choosing
these potentials, together with some further refinements
in the original model so as to include the effect of inter-
mediate couplings and the deviations of V(r) from a
spherically symmetric field. But despite these successes,
a feature remains in these studies that seems unsatis-
factory, namely, separate assumptions seem to have
been made for the central field V(r) and the pair-
interaction V(r;—r;).*> These two potentials are not
independent, but are connected by simple, definite
relations from the point of view of the self-consistent
field method of Hartree-Fock-Slater.

The purpose of the present work is to carry out a
self-consistent treatment of the central-field nuclear
shell model. One starts with a pair interaction V (r;—r;)
for two nucleons inside a nucleus which satisfies the
requirement of saturation of nucleus forces and is
chosen to be consistent with some of the properties for
a pair of “free” nucleons (i.e., not inside a nucleus).
This potential V(r;—r;) is to contain an adjustable
parameter which, together with the single-nucleon
wave functions ¢,.(r,), is to be determined by means of
the variational principle and the empirical value of the
total binding energy of the nucleus (Secs. II, IIT). No
independent assumption about a central field V(r)

2 A. M. Lane, Proc. Phys. Soc. (London) A68, 197 (1955), and

references given there.
3 For example, M. G. Redlich, Phys. Rev. 99, 1421 (1955).
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will be made so that there is no internal inconsistency
in the theory.

This determination of V (r;—r;) would by itself not
be of any particular interest since it is the immediate
result of our assumptions, namely, the “central field”
approximation and the various properties imposed on
V(ri—r;). For this “central field” approximation to
form a useful basis for a nuclear model, it is necessary
that the closed-shell structures do stand out from the
neighboring nuclei in having greater stabilities. This is
not at all obvious as in the case of the electronic
structure in the atoms. The nuclei differ from the atoms
in two fundamental aspects, namely (i) the absence of
a predominating attractive central Coulomb field and
(ii) the saturation property of the nucleon interaction
V(r;—r;). In the case of the atoms of nuclear charge
Ze, it is a good qualitative approximation to regard
each electron as moving in a central field V(r) (for
example, a Thomas-Fermi field) which behaves as

]irgl rV(r) > Ze, limrV(r)—e.

In the case of the nuclei, the central field approximation
itself is no longer such a natural one, but has assumed
the nature of a strong assumption* It is therefore
necessary to examine the consequences of the central-
field approximation by means of the Hartree-Fock-
Slater method which gives the most general theory
consistent with the central-field approximation.

For this purpose, we give in Sec. V the Hartree-Fock
equations for the various “orbitals” in the O', O
and O' nuclei. The V(r;—r;) for O is determined in
Secs. IT and ITI. One may make the assumption that for
neighboring nuclei such as O, O O!7 the pair-inter-
action V(r;—r,) is the same. With this V(r,—r;) from
O'% one can obtain the (approximate) binding energies
of the individual nucleons in the various shells in these
nuclei from the eigenvalues of the Hartree-Fock equa-
tions (Sec. VI), or one can calculate the total binding
energy of O% (Sec. IV) by means of the method of
Secs. IT and III, with the V (r;—r;) as determined from
O, Or one may reverse the procedure by carrying out
similar but independent variational calculations (as in
Secs. II and III) for O'5, O and O and see if the
V(r;—r;) so determined for the different nuclei are
reasonably close to one another. In Sec. VI, the “central
fields” for the individual nucleons are given for both
the Fock and the Hartree theory and the difference
between them emphasized.

The treatment illustrated by the O, O% and OY
nuclei in the present work can obviously be extended
to any nuclei. To explore and exhaust the possibilities
and limitations of the individual-particle model as
contrasted with the “collective model,” the present
writers plan to further refine and extend the treatment
here by introducing nucleon-nucleon correlations in the

1 See Sec. VI below.
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wave functions so as to include the polarization effect,
by introducing spin-orbit or tensor forces, and to treat
such problems as the distribution of the neutrons and
the protons in the heavy nuclei. Work on this program
is being carried out and will be reported in due course.

II. VARIATIONAL TREATMENT OF A NUCLEUS
IN THE INDEPENDENT-PARTIAL MODEL

Let the Hamiltonian of a nucleus be

H=S HO+Z Vr—r)+L — (1)

%] i1

where H (1) is the kinetic energy of nucleon 7 and may
also contain a spin-orbit interaction, V(r;—r;) is the
nucleon-nucleon interaction, and e*/r;; the Coulomb
interaction between protons. V (r;—r;) is to be summed
over all pairs of nucleons while €?/7;; is to be summed
over all pairs of protons. The wave function of the
nucleus is taken to be

¥ =determinant|[] ¢n(rso:,%.)], (2)

b (riy(’ 0% i) = ‘P"L(r i)Xm (0'1);7" (1 i)y (3)

l.e., a determinant formed from the products of single-
nucleon wave functions ¢,(r;,0;,%;) which are in turn
the products of a space-part y,,(r;), a spin part x, (o),
and an isotopic spin part {,(t;). The subscript m
indicates the quantum numbers. In the present work,
we shall assume the shell structure and assign the spin
and the angular momentum quantum numbers to the
various nucleons in accordance with the Pauli prin-
ciple; but we shall leave the radial dependence of
¥ (r;) to be determined by the variational principle.

The potential V(r;—r;), as discussed below, is con-
sidered to have an unknown parameter, say the
strength factor V. The wave functions ¢, (r;) and the
parameter V, are to be determined by the variational
principle

SE=5 f V*[IWdg=0, (4)

together with the requirement that the total energy E
of the nucleus be equal to the empirical value E, of the
binding energy of the nucleus®:

f VH[IWdg=E,. (5)

The variational equation (4) leads to a system of
Hartree-Fock equations equal in number to the number
of different shells in the nucleus. The solution of this
system of coupled differential-integral equations to-
gether with (5) will be very difficult in general, and in
our present work, we shall solve (4) approximately by

5 W. Heisenberg, Z. Physik 96, 1421 (1935).
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the modified Ritz method so familiar in atomic and
molecular problems. The ¢, (r) are given reasonable
analytic forms with variable parameters, say v,
Equations (4) and (5) are then a system of k41
equations:

IE/Jv,=0,

sy Vi

1.=11 k) E(Vlv"'yyl\‘):EO: (6)

for the k+1 unknowns vy, - - v, V.

For the nucleon-nucleon potential V(r;—r;), we
shall ignore tensor forces in the present preliminary
approach and assume a general combination of Wigner,
Majorana, Bartlett, and Heisenberg interactions having
the same central field dependence:

V(fr,--r,-!)= ((1u*—f—(lj[PM—f—aBPIf+GIIPlI)J(7,'j) (7)

It would have been most satisfactory if there existed
an interaction V(r;—r;) for two “free” nucleons in the
sense of the Coulomb interaction between electrons in
the atomic problem. It is known, however, that no
single V(r;—r;) succeeds in accounting for all the
known data (deuteron, low and high energy scatter-
ings) for the two-nucleon systems. As we are not con-
cerned with very |igh nucleon energies in a nucleus,
we shall choose V(r;—r;) to be consistent with such
low-energy data as (i) the binding energy of the
deuteron, (ii) the cross sections of the slow neutron
proton scattering, and (iil)) the effective ranges as
determined by these scattering data. Furthermore, for
the central field J(r;;), we shall assume the Yukawa
potential

J(ri)=Vee=/x, x=r:/r0, (8)
where Vy and r, are adjustable constants. Other forms
of J(r:;) can be used, (8) being chosen only for definite-
ness. Voin (8) is defined to be negative in the following.

Now, from (7) and (8), one finds for the triplet-even
and singlet-even states the potential

syeven(r; )= (aw+ay+ap+aun)J (r:))
=34 Voo t/x,

yeven(y; ;)= (aw—+ay—ap— am)J (r:;)
=14 Vee/x.

)

Analysis of the experimental data (i), (ii), and (iii)
shows that, with the Yukawa potential (8), the value
of 7, is different for the triplet-even and the singlet-even
states, namely®

3 Vc\'en .

r¢==21.4X107" cm,

10
7¢=21.08 X107 cm, (10)

lVe\'en:
and for 7o=1.4X107"% cm, $((A+14)Vy~—46 NMev.
Without attempting to fit the two data (10) in our
V(ri—r;), nor the empirical values of the strength
factor 34 Vy and '4 Vo, we shall merely employ one
single Yukawa potential (8) in (7), (i.e., one single

5 E. E. Salpeter, Phys. Rev. 82, 60 (1951); G. E. Tauber and
T. Y. Wu, Phys. Rev. 94, 1307 (1954).
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value of 7y) and the relations (9). It turns out in the
following that only the combination (C44'4)V,
appears in the variational problem which determines
((A+'4)V, as a function of the value ay whose choice
is at our disposal. (See Sec. III, Table I.)

We shall further narrow down the arbitrary choice
of the coefficients in (7) by assuming that the inter-
action V(r;—r;) vanishes for the singlet-odd states,’
namely

1V°‘ld(7’,'j = (dW'—dM—(IB‘f—GH) Voe‘x/x=0.

(11)

This assumption is admittedly arbitrary, it having been
made for the purpose of representing to some extent
the high symmetry in the observed angular distribution
of proton-neutron scattering at ~100 Mev about the
scattering angle do~w/2 in the center-of-mass system,
and yet without sacrificing the possibility of meeting
the saturation requirement by making V(r,—r;)
vanish also for the triplet-odd states, as in Serber’s
potential. The relations (9) and (11) enable three of
the four coefficients in (7) to be expressed in terms of
the fourth. Thus, we may write

GA1[=%(3A+1A)—0W,
a;,=%(3A) —aw,
ap= —%(IA)+dw.

We shall finally require the potential V(| r;—r;]) to
satisfy the requirement of saturation of nuclear forces,
which is expressed by some well-known relations among
the @’s.® On combining these relations with (12), one
obtains the following condition:

(le()Z %(3:1—{‘144) Vo.

Vo has been defined as negative in (8). We shall denote
by & and aw’

(12)

(13)

b=3CA+'A), aw'=aw/b. (14)
The condition (13) becomes then
aw’' <3. (135)

We wish to emphasize here that the specific assump-
tions (8), (10), (11), or even the saturation condition
are not an inherent part of our main thesis. They have
been made merely to enable a definite calculation to
be carried out in the present work, which is a pre-
liminary exploratory step in our general program. One
might object that the Yukawa potential (8) does not
contain the repulsive core indicated both by the high-
energy nucleon scattering data and by the meson field
theoretical considerations. It may be pointed out,
however, that as long as one works in the central-field
approximation represented by (3), there is no difficulty
in introducing a repulsive core represented by an

"A. B. Bhatia and S. M. Shah (to be published). We are
grateful to Dr. Bhatia for letting us see his manuscript before
publication.

8 See J. M. Blatt and V. Weisskopf, Theoretical Nuclear Physics
(John Wiley and Sons, Inc., New York, 1952).
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inverse power law not steeper than 1/7%. The energy of
the system is expressible in terms of Slater integrals of
the form (21) below; and these integrals can be trans-
formed into integrals of the form J*®(r)J (r)dr, r=r;;
[of which the Talmi integrals (24) below are a special
case corresponding to the oscillator wave functions
(19)7]. Such integrals are convergent if J(r) in (7) is not
more singular than 1/7%

We have not introduced such repulsive cores in
J(r;;) mainly for reason of simplicity. This may be
justified since in the nuclear model we are not dealing
with high-energy nucleons, and for low energies the
effect of a repulsive core is not important. In any case,
modifications and refinements of our specific assump-
tions such as (8), (10), and (11) can be made if desired
and warranted on the basis of the result of the present
work.

III. V, AND 4, (r;) FROM A MODIFIED
RITZ METHOD: O!'¢ NUCLEUS
The space and the spin part of the single-nucleon
wave function (3) can be put either in the m;, m,
representation,

Y(nlmy; 1)x(me; @) = (1/1)Rur(r) Yimi(8,0)x (s 0),
(16)

which is appropriate for the case of L, .S coupling, or in
the J, M representation in the form of linear combina-

tions
Z Clml\,‘u‘l’(ﬂyl;”ll; T)X(ms; 0') (17)

l,my

which is appropriate for the case of strong spin-orbit
coupling. For the present purpose, we shall neglect the
spin-orbit interactions and shall employ the form (16).

For the O nucleus, the nucleon configurations are
(152) 5 (195) 5 (15%) p(1p%) p. On account of the presence of
the Coulomb interactions between protons in (1), the
1s wave functions are different for the neutrons and the
protons, and similarly for the 1p wave functions, even
though the nucleon-nucleon potential V(|r;—r;|) is
assumed to be charge independent. Thus there are 4
different orbitals (1s)x, (1p)~, (1s)p, (1p)p which are
given by (4), or the Hartree-Fock equations. As men-
tioned before, we shall solve (4) by the usual modified
form of Ritz method, and on account of the analytical
complexity involved in the calculation, we shall as a
first approximation assume for the radial functions
R.,.(r) in (16) the analytic form of the wave function of
a 3-dimensional harmonic oscillator, namely,®

Rnl(") =A\rnl(”nl) exp(_%an,‘.’)r!Jran+l+%l+é(anr‘l)’ (18)
[ QI 1) RN L 2(va) = 2042 (204204 1) U,

9 1. Talmi, Helv. Phys. Acta, 25, 185 (1952). The use of har-
monic oscillator wave functions in our present work is of course
mainly for reason of simplicity. The rapid decrease with distance
as given by the factor exp(—3»,%) seems preferable to the use
of hydrogenic wave functions, when considered in the light of the
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where n,/ are the radial and azimuthal quantum
numbers respectively, L is the associated Laguerre
polynomial, and »,,; is a constant regarded as a varia-
tional parameter, to be determined by (6). One should
employ different v,; for the proton and the neutron on
account of the Coulomb interaction, but as a simplifying
approximation in the present exploratory work, we
shall ignore the difference in the wave functions of the
neutron and the proton, although the energy contribu-
tion from the Coulomb interaction €*/r;; in (1) is
included.

To obtain the energy integral in (4), we note that
with the use of the wave function (18), the diagonal
matrix element of the one-particle Hamiltonian
H({@)=(1/2M)p? is simply

(| H @) [n,h)y= (342040 (72/2M)var,  (19)

so that for the 16 nucleons (1s%) v (1p%)n(1s%)p(19%p
the kinetic energy part of the energy integral (4) is

T= GBuo+15m) (B/ M), (20)

where vy and »; are the variational parameters for the
1s and 1p wave functions in (18) respectively.

The matrix element of the potential energy terms
in (1) can be shown to be expressible in terms of the
following generalized Slater integrals:

F"(n,n’)=ff R.2(r)R,A(ro)wi(ryr)dridr,,  (21)
o Yo

G"(n,n’)=j;wj;w R,.(r)R,(r2) R, (r1)

XRn/(fz)‘wk<71,1’2>d7’1d7’2, (22)

2k+1 ot
Wi (7’1,1’2) =—2— f ](rlg)Pk(COS('))d COS("),
-1

where © is the angle between r; and rs, and similar
integrals f%(n,n’), g¥(n,n’) in which wi(ry,rs) is given
by (22) with J(r12) of (7) replaced by the Coulomb
potential. Py(cos®) is the Legendre polynomial.

With the use of the determinantal wave function (2),
each type of the potential V(| ri—rz|) in (7) gives rise
to a “direct” and an “exchange” integral. The matrix
elements of each type of interactionin X_s=; V(| r;—1,|)
for all nucleons and of Y €®/7;; in the O nucleus are

short-range nature of the ‘central field” both expected and
obtained in Sec. VII below. Eventually one may replace the simple
functions (18) by combinations of R, for different » but the
same [. They may be regarded as the wave functions of an anhar-
monic isotropic oscillator.
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given below.
aw Y,
i
=aw[6F°(0,0)+48F°(0,1)—4G"(0,1)
+66F°(1,1)— (12/3)F2(1,1) ],
WPy J (ri;)Vdg

‘I/*] (fij)\I’d(]

GMZ

i
=a[6F°(0,0)—12F°(0,1)416G*(0,1)
+-6F°(1,1)+(48/5)F*(1,1)],

ap 2 | Y*PgpJ(ri;)¥dg

i#]
=ap[24F°(0,1)—8G'(0,1)

+24F°(1,1)— (24/5)F*(1,1) ],
‘I»’*PH] (h’j)‘l’dq

(23)

GHZ

177
= —an[24F°(0,1)—8G'(0,1)
+24F9(1,1)— (24/5)F2(1,1) ],

protons e
> U*—Wdq
i 7i5

= /°(0,0)4-12/°(0,1)—2¢'(0,1)
+15/°(1,1) = (6/5) /A(1,1).

Here and below, we denote the 1s, 1p, 1d state by the
“collective” quantum number 0, 1, 2, respectively.

In the present approximation, if one uses the simple
harmonic oscillator wave functions (18), all the integrals
F* G*, f*% g in (21) can be expressed in terms of the
integrals!®

L) =N (v/2) f exp(—3vir?)rH2J (r)dr,

0 (24
51(V¢)=32A\rl2(,,l/2)f exp(_%ylyz)rzzﬂdr’

0

where J(7) is given by (18). Thus

F°(0,0)=14(vy),

F(1,1)=G"(1,1) = (1/12)[5(Zo(v1) +12(»1)) +211(v1) ],
F2(1,1)=G2(1,1) = (25/12) [ To(v1) +T2(v1) — 211 (v1) ],

G (0,1)=24(ve*v1®) *(vot+rv) Y Lo(») —I1(9) ], (25)
FO(0,1)= (votv1) [l o(9)+rvol1(7) ],

5= 2vor1/ (votr1),

© T, Talmi, reference 9; G. E. Tauber and T. Y. Wu, Phys. Rev.
94, 1307 (1954). It is important to note that the integrals I; and
9Jiin (24) refer not to the wave functions (19) but to normalized
wave functions obtained by replacing » by $» in (19). Thus all the
integrals 7; in Talmi’s paper should have v replaced by 3». While
this amounts only to a redefinition of » in Talmi’s paper and is in-
consequential, this is important in the present work since the
matrix elements of the kinetic energies contain ».
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and similar expressions for the Coulomb part f* g,
with g, replacing 7, in (253).

The Talmi integrals (24) can be evaluated for certain
potentials V(r). For the Yukawa potential (8), one

finds!®
p=1/[ro(2v)*],
Ly(»)=C(w)—D(w),
Ii(v) = 3(14-p)C(w) — (1436 D (),
I:(v)= (8/15)[1+ (9/4) > +3u*1C ()
—[1+4(4/3)u*+ (4/15)u*]D (),
I3(v)= (16/335)[ 14 (29/8)u*+ (5/3) '+ §u®JC (1)
—[14-2p2 4 '+ (8/103)u]D (u),
& 24!
rou(r)i1-3-5- - (20+1)
CwW)=Vo/(ur?),
D(u)=Vo[1—® ()] exp(u?),

(26)

g.(v)=

2 M
D (u)y=— f exp(—)dt.

s

By means of (23) and (26), one obtains for the total
energy of the O'® nucleus:

E(0'%) = Bvo+15v) B/ M+6(aw—+aar) L o(vo)
+12(40117—(13{-{‘203—2(111)F0(0,1)
—'4(dlv—4(l‘\1+2(13—2(111)61(0,1>
+ (45/2) (GW‘*—(ZM)[IO(VI)‘FIQ(VO]

—{'-3(7(1.;1’— 13(1;;1—*—8(15—8(1;1)[1(111)

+ 90(v0) +12/°(0,1) = 2¢(0,1)+ (43/4) o(v1).  (27)
It is to be noted that this expression follows from (1)
and the potential (7), and is independent of any of the
specific assumptions (10), (11), and (15). We shall now
use (12) and (14), and absorb the factor & in the as

yet undetermined Vo by replacing the Vy in all the
Talmi integrals I; in (24), (27), by V', where
Vo'=bVo. (28)
Equation (27) can then be written in the form
E(0Y) = (3vo+15v1) B2/ M+ 61 o(vo) +AF°(0,1)
+BGI(O,1)+C[1(V1)+ (45/2)[[0(V1)+12(V1)]

+ 90(r0)+12/°(0,1) — 28" (0,1) + (43/4) 9o (»1), (27a)
A4=363aw’'—1), B=12(2—3ay’),
C=9(12(lu"—7). (2())

The empirical value of £(O) is taken to be —127.56
Mev.
For the variational equations (6), we make use of
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the following recurrence formulas:
alz(ll) 3+2l (991(1/) 1
—= L7i(») =T (v) ], =—4:(v) (30)
v 2v v v
Equation (6) leads to
642y, 347
*—*—f‘lg[[o(ﬂo) —Il(Vu)]—*—*—*—[(sVl— 21/0)[0(17)+ (711()—31’1)[1(17) —SV(][;}(I—/)]
M 4oy,
33175 Vo
————l[l 17o0(9)—1611(9)+31:(9) — 10— 14(7)— 11(17)]]
4(vo"v®)} v
7\? 1_)5(4111—5110)
+go(llo)+3(~—) 50(17)—‘——‘—*9(1(17)20, (318.)
Vo V07V1 ¥

Sohzﬂl

—+
M 4ygp,?

549

;[Vllo(f/)—f‘ (V@* Vl)ll(l—’)— V()[g(ﬁ)]+sc[l1(1/1)- ]2(1’2)]+

3B
—~—[1110(iz)— 161,(7)

4(V0V1)5/2

V1 45 43
+5[2("’)“67[10(1")—]1(17)]]4“;{3[10(1’1)—[1(V1)]+7[12(V1)—1:4(1'1)]}‘*‘:90(”1)

Equations (27a), (31a), and (31b) are three equations
in the three unknowns V', »,, and »; with ap’ as a
parameter. For each choice of aw’ which is still at our
disposal and is subject only to the saturation require-
ment (15), Egs. (27a), (31a), and (31b) give a set of
values for V', v, and »1. Table I gives the solution of
these three equations for

ro=1.4X10"5 cm, (32)

and the solutions for awp’=0.3, 0.22 and the same 7,
but with the further approximation »1=wo. The value
bV¢>~—354 Mev is to be compared with the value —46
Mev in (10) for two “free” nucleons.

Other choices of aw’ and 7, are obviously possible,
and trial wave functions more general then (19) should
be used. In the present preliminary work, however, we
intend to bring out the general features of the varia-
tional treatment. Since any calculation must neces-
sarily be based on an assumed pair interaction such
as (7) and (8), it does not seem warranted to carry out
very long calculations at this stage."

7_ 1
aw =3,

IV. TOTAL BINDING ENERGY OF 0!
AND O'7 NUCLEI

We shall calculate the total binding energy of O
by means of the assumption that the potential

11 A calculation similar to that described here has been carried
out by M. G. Redlich [Phys. Rev. 99, 1421 (1955)] for O. The
main difference between his work and the present work is that he
uses an explicit harmonic oscillator potential V’ for the central
potential and then calculates the binding energy, while we use
the empirical value of the binding energy to fix the constant V',
of the two-body interaction and make no assumption about the
central potential, which is obtained from the Hartree-Fock
equations (see Secs. V and VII).

v 2 5V1 173(21/0—111)
+6(*) [1___,_*_ ]go(f/)=0. (31b)
) 6vg 4(1’071‘1)%

V(|ri—r;]) in O% is the same as that determined for
O in the preceding section, and the further approxi-
mation that the wave functions for the 1s and 1p
nucleons in O' are also nearly the same as those in O'®.
Thus for the configuration (1s%)~(1p%) ~(15%)p(15%p,
the expressions for the kinetic and the potential energy
in (20) and (23) are replaced by

h? 55
T= —(3V0+—V1) 5
M 4
and

aw[6F°(0,0)+44F°(0,1)— (11/3)G*(0,1)
+355F°(1,1) = 2F2(1,1) J4-ax[6F°(0,0) — 11F°(0,1)
+(44/3)G'(0,1)+5F°(1,1)4+8F2(1,1) ]
+ (ap—an)[22F°(0,1)— (22/3)G*(0,1)4-20F°(1,1)
—4F2(1,1) ]+ /°(0,0)+12/9(0,1) — 2¢'(0,1)
+157°(1,1)—(6/3)f*(1,1).
The expression for the energy £(O') corresponding to

(27a) for O can be written down. Again, we shall make

the choice ay’=131 as in (33), and with the values
wo="0.5808, u1=0.5650, V=0V = —54 Mev in Table I

obtained by the variational calculation for O we find

(20-B)

(23-B)

TABLE I. Variational calculation for O%.»

o Vo' =b1y

aw’ cm ©o ut Mev
1/3 1.4X1071 0.5808 0.5650 —54
0.3 1.4X1071 0.60 —60
0.22 1.4X10713 0.70 —75

a See (8), (14), (18), (26), (28) for definition of the various quantities.
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TasLE II. Variational calculation for O,
(Compare with Table I.)

aw’ m bVo (Mev)
1/3 0.56 —56.3
0.3 0.60 —61.5

for E(OY) the value
E(0O%)=—88.1 Mev,

which is much too small compared with the empirical
value —111.97 Mev. We have also calculated E(O")
corresponding to awy'=0.3, ap’=0.22, and pe=u;1 in
Table I, and found E(O')=-—96.80, —95.01 Mev
respectively. The agreement with the empirical value
is only partly improved.

A part of the discrepancy noted above obviously can
arise from insufficient variations in the range of the
trial values for aw’ and from the nature of approxima-
tion introduced by the use of the wave functions (18).
Also the Talmi integrals 7,(») in (26) appearing in the
energy expressions, and hence the energy values (for O
and O%), depend very sensitively on the parameters ;.
Hence the above comparison between the calculation
E(0") and the empirical value may not be a fair test.
We have, therefore, inverted the test by calculating
the O' problem by an independent variational calcu-
lation similar to that for O'%, and compare the solutions
i, 0V so obtained with those of O in Table 1. With
the empirical value E(O0')=—111.97 Mev and vo=vy,
the result of solving (27a-B) with the following varia-
tional equation [see remark before (28)]

(6772/2M)+3ATo(v)+ (5B'— 34" 1(»)
+(7C"=5B") L(v) = TC"I3(»)+ (83/4) 9o(v) =0, (31-B)
A'=165/4, B'=(189ay’'—102), C'=75/4,

1s given in Table II.

A comparison of Table II and Table I shows that
for the same value of aw’ the variational calculation
leads to very much the same wave functions and very
nearly the same potential &V for the pair-interaction
in O and O'. One can conclude from this that the
fundamental ideas of this model (namely, a central-
field approximation starting from a pair-interaction
between two nucleons) have at least not been con-
tradicted by this test.

For O'7) we have an additional 1d neutron, and the
total energy is obtained by adding to (20) and (23)
terms arising of this 1d neutron namely,

E(O7)=E(0O) in (27a)+ (7TH*vs/4M)
+ (daw—+2ap—ay—2an)[F°(2,0)+3F(2,1)]
+ (darn+2ay—2ap—aw)[ 1G2(2,0)
+3G'(2,1)+(9/35)G*(2,1) ],
where »p is the parameter in (18) for the 1d wave
function, and the #’s and G’s are given by (21).

(27-A)
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Two calculations have been made. (1) With the V¢’
and the parameters v, »; for the 1s, 1p nucleons which
have already been determined for O'® (Table I), the
parameter v2(1d) and E(O') in (27-A) are calculated
from the variational equation. (42) With the vy, »; for
O’ from Table I and the empirical value of E(O')
= —131.66 Mev, the parameter vy(1d) and V' are
calculated. In each case the limiting value awp’=3
and (12) have been used. The calculation () gives

ws(1d)=0.585, E(O7)=—116.77 Mev, (33a)
while calculation (77) gives
p2(1d)=0.584, V,'=-—355.2 Mev. (33b)

It is seen that the same remarks above for O' hold
here for OV,

V. HARTREE-FOCK EQUATIONS (FOR O!5, O3, O
NUCLEI IN PARTICULAR)!?

The variational equation (4) with the assumption (2)
is equivalent to the following system of Fock equations

CH )4V (1) = Gnn()) =N Jpn (1)
= Z m,l:Gmn (l) +Ln ]¢ n (l) .

Here and in the following, the single index 7 stands for
the set of space, spin, and isotopic spin variables r;,
a;, =; and the index »# or m stands for the totality of
quantum numbers (of the one-particle state) in (3).
H(7) is the one-nucleon Hamiltonian nucleon 7 in (1),
and

(n ()| m)= f 60t G)VH ()u()dJ,

(34)

Gon(i) = f 6DV (| 1= 5:)6()d),

V(i) =2m Grn (i), (35)

k]G 1) = [ 6,2 ()Y (11,
Xga(i)bu(J)di dj,
L= H(j) )
+ X L] Gl 1) = (|G luD) ]

The prime in the summation sign in (34) indicates
exclusion of state m=n.

On multiplying (34) by the complex conjugate of
the spin, isotopic spin, and the space angular part of
¢n(i)) i~e-; Xn*(uix-n*(“i)Yn*(oiyﬂpi) in (3) and (18),
and summing or integrating over these variables o;,
<i, ¥, @i, One obtains the radial equations for R,(r;)

12 Recently M. Rotenberg [Phys. Rev. 100, 439 (1955)] has
carried out a calculation for a 184-nucleon (Z=N=92) nucleus
in which the Hartree-Fock equations are solved with a Slater
average of the exchange term. The charge and particle density
distributions are calculated.
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of (18):

CHA(r)+V (r)—Ns]Rn(rs)

=2 man[ 2ok A (nm) VE(nym; 7)) IR (r:), (36)
where
Brd L(.41)
Hn(n)=—‘[———-—J,
2M d?’,‘z 7’,‘2
=N = (u| H(j) | n)— S [ (4| G| 1)
—(n|G|nl
(In|G|nl)], 37

d+(n,m) = f f V(400 Vo (85,05) Pa(cos®)

XY (84i,05) V(@ ),05)dw dw;,

dlﬁi:sinz?,-dz?idgo,-, etc.,

Py being the Legendre polynomial and © the angle
between r; and r;. a,, is a constant obtained from the
coefficients aq, etc., in the expression (7) or (8) for the
potential V(| r;—r;|).

Before going on further, we shall bring out explicitly
in (37) the distinction between the radial wave functions
of the neutrons and the protons on account of the
Coulomb interactions €?/r;; in (1). Let us denote the
neutron wave functions by R,(r) and those of the
protons by S,(r). The V#(n,m; r) are integrals defined
by

Vol 1) = [ Rulr)Ra(rustriar,

= V,,,,"(m,n; f,'),
Vb (nm;ri)= fR,,(r,-)Sm(rj)wk(ri,-)dr;

= Vﬂ’"k (m)ny ri))

Vet )= f Sulr)S(rwelrss)dr;

= V‘R"Ik (m)n) ri);

(38)

where wy(r;;) is defined in (22). The subscripts », 7
denote a neutron and a proton respectively. For the
protons, there are additional similarly defined integrals:

Ut (s ) = f Su(r)S(ron(rdrs, (39

in which wk(7,;) is obtained from the expression (22)
for wi(r:;) by replacing J(7;;) by the Coulomb potential
e*/r;;. The integrals V* are essentially negative [see
(10)7] while the U* are essentially positive. For the
evaluation of these integrals, see Appendix.

With this distinction between the neutron and
proton, the Fock equations for any given nuclear con-
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figuration can be written out. Thus, for the lowest con-
figuration in the O' nucleus, the Fock equations (36)
are a system of 4 differential-integral equations in the
1s and 1p wave functions of the neutrons and the
protons. In the following, we shall denote for brevity
the 1s, 1p, 1d state by the single quantum number m
or n=0, 1, 2 as a subscript respectively, and denotes
the eigenvalue parameters for the neutron and proton
by A, €m, respectively. Thus

B Bood 2
Hy=—— —, H1=-—(———),
2M dr

[Ho+V,(r) =N ]Ro(r)
=a[V,,9(0,0; 7)Ro(r)+ V., (0,1; 7)Ri(7) ]
+6[Vv70(0,0; 7’)50(7’) + Vwrl (0)1 ) 7)51(7’)],

[Hi+V,(r)—\]Ri(r)
=a{3V,,2(0,1; 7)Ro(r)+[V,,0(1,1; 7)
+2V.,2(1,1; 1) JRu(r)}+B{3 V. (0,15 7)So(r)
+[Vv7r0(1y15 T)—f-%V”Z(l,l 5 7)151(7)}7

[Ho+V . (r)— e ]So(r)
=[aV2:2(0,0; 1)+ U°(0,0; ) ]So(r)
+[aV.(0,1; )+ U 0,1;7)]S:(r)
+BLV (0,05 r)Ro(7)+ V20,15 7)Ri(r) ],

LH A+ V() —ea]Si(r)
=3aV.(0,1;7)+ UL 0,1;7)]So(r)
F{o[ V"1, 1)+ 2V 21,15 7) ]
+U(1,1; )+ 20%(1,1;7)}S1(r)
+B{3V="(0,1;7)Ro(r)
+VR (L1 7)+3V 2 (L1 7) IR (7)),

(41-»)

(42-v)

(41-7)

(42-7)
where
=aw+3ap—an—3Say,
(¢4 W+2 33 H™—20M (43)
B=-— %ali*z(lnl.
V,(r)=2a4 V,,0(0,0; )+ V..2(0,0;7)
+3V,.,0(1,1;7)+3V.2(1,1;7)], (44)
where
ag= dW‘l‘%(dB-dH) - %GM, (45)
Ve(2)=V,(r)+2[0°0,0: )+30°(1,1; ) ].
In general, V(r) can be readily expressed in terms of
the integrals (38). It is to be noted that the Eqgs. (41)
and (42) with e, 8 given by (43) are perfectly general
in the sense that they are independent of such assump-
tions as (9), (11), and (15) on V(r;—r;).
For the O nucleus in the (1s*)x(1p%)x(1d)x(1s?)p
(1p%p configuration, the following terms have to be
added to the right-hand side of Egs. (41-v), (42-»),
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(41-m), (42-m), respectively:
3a[3V,2(0,2;7)Rx(r)], (41-r-A)

3e[(2/135)V1 (1,25 1)+ (3/35) V(1,25 ) JRa(r),
(42-v-A)
3B[3V2*(0,2;7)Rx(r) ], (41-m-A)
3BL(2/15)V 1 (1,2; 1)+ (3/35)Vri(1,2; ) JRa(r).
(42-7-A)
The “equation for the 1d¢” neutron is
[HoA+V,/ (1) —X2]Rx(7)
=a{3V,2(2,0; N Ro(n)+[2V.,1(2,157)
+(9/35)V.* (2,15 1) JRi(n)} +3a{ V(2,25 7)
+(2/D)V*(2,2; 1)+ (2/63) V' (2,25 1)} Ra(7)
+B{1V,.2(2,0;7)So. (43-r-A)
In Egs. (41-v-A), (42-v-A), (43-v-A) for the neutron

and (41-mw-A), (42-m-A) for the proton in O the V,(r)
in (44), (45) is to be reqlaced by

V) (")=V,(r)+asV,,0(2,2;7). (44-A)

For O in the configuration (1s%)y (1% x(15%)p(1p%)r

the Fock equations are obtained by subtracting the

following terms from the right-hand side of (41-»),
(42-v), (41-7), (42-7) respectively:

1a[1V,,1(0,1; )Ry (r)], (41-»-B)
3o 3[V.0(L,1; 1)+ 2V,2(1,1; r) R (n)}, (42-»-B)
B3V 10,1, 1) R1(2) ], (41-7-B)
BELVA (L 0)+3V (1,15 7) JRiu(n)}, (42-7-B)

where «, B are as given in (43), and the V,(r) in
(41-»-B), (42-»-B), (41-w-B), (42-r-B) is obtained by
replacing V, () in (44) and (45) for O'¢ by

vV, (r)=V,(r)—aV,'(1,1; 7). (44-B)

V1. BINDING ENERGY OF THE “LAST” NUCLEON
(OR “IONIZATION POTENTIALS”)

For any given nucleus, either the variational equation
(2) with the product wave function (2), or the above
system of Fock equations, is the complete statement of
the central-field approximation. In the form (2), the
modified Ritz method so familiar in atomic and mo-
lecular problems is convenient; the solution of the
Fock equations, while also familiar in atomic and
molecular problems, is more easily obtained with the aid
of calculating machines. The difficulty in the present
nuclear case is the lack of knowledge of the pair-
interaction V(r;—r;), and the consequent necessity for
having to explore many assumed forms for V(r,—r,).
The calculations in Secs. IIT and IV must only be
regarded as preliminary explorations illustrating the
ideas rather than giving quantitative results. In the
same spirit, we shall further discuss some consequences
of the central-field approximation.

For this purpose of obtaining only the essential
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qualitative features of the theory, let us ignore the
difference between the neutron and the proton wave
functions R,,(r) and S,,(r) in each individual equation,
without neglecting the Coulomb interaction entirely.
Thus, for example, instead of (41v), (41w), and (45),
we shall consider the following equations for the 1s
neutron and 1s proton in O'¢:

[Ho+V,(r) =N ]Ro(7)
= (a+B)[Vn’(0,0; 7)Ro(r)+ V' (0,1; 1) Ri(r) ], (46v)

[Ho‘l‘ Vr(”) - €0]So(1’)
= (a+/8)[:V1r1r0(0,0, T)So(r)+ V.”_I(O,]_ ; T)Sl(f)]

+U0°0,0;7)So+U'(0,1;7)S:1(r), (46m)
V., (r)=4a,[V.,°(0,0;7)+3V,, (1,1;7)],
Vo (r)=4a[V2:9(0,0; 1) +3Ver2(1,1;1)] (47)

+2[U°(0,0; ) +3U(1,1; 7).

This approximation simplifies the system of Eqs. (41)
and (42) for Ro(r), Ri(r), So(r), and Si(r) into two
independent systems, one for Ro(r) and R(r), and one
for So¢(r) and S1(r). While an accurate solution of each
system for the wave functions and the eigenvalues Aq,
A1, €, e can be carried out, one may obtain an
approximate value of Ao, for example, by using in (46»)
the approximation variational (normalized) wave
functions Ry(r) and Ri(r) obtained by the modified
Ritz method in Sec. III.

Equations (46v) and (46m) can be further simplified
if we set aq=0 (44-A) (i.e., aw’=1% in Tables I and II).
From (43), (14b), and (14), one obtains readily

a+B=(25/9)as—5(CA+14) = (25/9)aa— (5/3)b  (48)
=—(5/3)b for a;=0. (48a)

With a,=0, one obtains, for example, from (46v) and
(48),

5
)\0: fRo[IoRodf‘l—;bfRo(?’)I:VWO(O,O, T)Ro (7’)

+V,10,1; NR.(r)Jdr.  (49)

The integrals in (49) and in similar expressions for
(1s proton), A1 (1p neutron), e (1p proton) can all be
expressed in terms of the Talmi integrals in (26). The
resulting expressions are

2

3 5
(1)y: No=——t—LTo(r0)+G1(0,1)],
4M 3

, (50)
¢
(1s)p:  eo=Ao—g'(0,1)+ +61°(0,1),
T oMo
5ﬁ2V1 5
(Ap)v: M= +§[‘%G‘(O,1)+’}{510(V1)
\ +515(v)—61(v)}], (51)
43¢*
(1pp:  a=M—3g(0,1)+2/0,1)+—,

T o1
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where the expressions I3, G'(0,1) and f°(0,1) are given
in (25) and (26), with V, replaced by V=0V, as in
(27a). With the values of w©e=0.5808, u1=0.5650,
aw'=%, V¢=—54 Mev, one obtains the result in
Table III. These are the approximate binding energy
of the “last” 1s, 1p neutron, proton, respectively, in
the O!% and O nuclei. The differences between the
neutron and the proton energy for the corresponding
orbit are due to the Coulomb interactions among the
protons.

These binding energies in Table III, especially the
positive values for the 1p state are seen to be unsatis-
factory. It must be remembered, however, that the
values of the parameter \,e in the Fock equations are
not exactly the “ionization potentials,” which must be
obtained from the difference between the energies of
the 4- and (4 —1)-nucleon nuclei. Nevertheless, Table
IIT shows that the eigenvalues A and e of the Fock
equations do not give sufficiently good approximate
values of the binding energies for the individual
nucleons.

VIL. CENTRAL FIELD: HARTREE AND FOCK
APPROXIMATIONS
All the individual Fock equations (41) and (42)
can be regarded as the radial equations of a particle in
a central field. Thus, for example, Eq. (41-») for the 1s
neutron may be regarded as an equation of a central
field problem

[Ho+ W, (r)—A]Ro(r) =0, (52)
where the central field W, () is
W, (1) =V,(r)—aV,,2(0,0;7)
—R [aV,,}(0,1; )R (r)+BV.-2(0,0; r)So(r)
7
’ FBV,2(0,1;08:()]. (53)

This field W,(r) is obviously different for the various
shells (1s)x, (1p)~, etc. On the other hand, the usual
treatment of the shell model implies an average central
field V(r) which is the same for all the individual
nucleons, like the Thomas-Fermi field for an atom.
Such a field does not exist in the rigorous sense of the
theory of Fock, but must be identified with some sort
of average of the W,(r) in (52) over all the occupied
states Ry, Ri, R, etc. One way of introducing an
approximate central field, denoted by W,'(r) for a
neutron and W.,’(r), for a proton, is to follow the
idea of Slater® of using a weighted exchange potential
suggested for the problem of an electron in an atom or
in a metal. It is to be remembered that, apart from the
fact that the W/(r) so defined is only approximate,
W’ (r) serves only as a convenient help to visualize the
“central field” approximation and is not essential in the
theory, since the binding energy of a nucleon in any

13 ] C. Slater, Phys. Rev. 81, 385 (1951).
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Tasie III. Binding energy of last particle in O and O,

Nucleus O16 o1
Kinetic energy 23.502 23.50
Potential energy —69.79 —65.76
Is)y: N —46.29 —42.26
Coulomb energy 5.56 3.99
(1s)p: e —40.73 —39.27
Kinetic energy 41.40 41.40
Potential energy —45.26 —41.07
1P N —3.86 0.33
Coulomb energy 5.20 2.53
1p)p: @ 1.34 2.86

a All energies are given in Mev,

shell can be obtained directly from the difference
between the total energies of the two nuclei having A
and 4 —1 nucleons. For this reason, we shall not over-
emphasize the significance of any such average central
field, but give the potential W(r) in (53) and similar
equations for the (1p)n, (1s)p, and (1p)p in the O
nucleus. For our present illustrative purpose, we have
chosen ay’=3% in (33) and (a+B)=—5b/3 in (48), and
have made the same approximation as in (46v) and
(46m). The result is shown in Fig. 1.4

It is also of interest to obtain the ‘“‘central field” for
the nucleons by further simplifying the Fock system
(46) by making the Hartree approximation. This is done
by neglecting all the “exchange” terms from the Fock
equations (41), (42). We shall denote this “Hartree”
field by U (r). Thus instead of (46v), (467), for example,
we consider

[:I]o—}—'(),,(r)—)\o:]Ro(r):O, (54)
[Ho+0x(r) = e]So(r) =0, (55)

where
OV, (1)=V,(r)— (a+B) V,,°(0,0; 7), (56)

eO"'(’) = V?I' (’) - (a+:8) VWWO(O)O; 1’) - U0(070) T).

Again, with ¢;=0 and (a+8)=—5b/3 in (48), one
obtains the following “‘effective central field” for the
1s, 1p neutron and protons in O in the Hartree ap-
proximation :

(As)w: V.(r)=(5/3)bV.,,°(0,0;7),
(15)p: Va(r)=(5/3)bV+:"(0,0;7)
+U0°0,0; n)+60U°(1,1;7),
Ap)n: V()= (5/3)b[V,,)(1,1; 1)+ 3V, (1,1;7)],
1p)p: V()= (5/3)b[V2(1,1; )+ 2V :2(1,1;7)]
+20°0,0; »)+50°(1,1;7)
- —202(1,1; 7). (S7)

14 Recently P. Gombas [Acta Phys. Acad. Sci. Hung. 5, 511
(1956)7], in a treatment based on the Thomas-Fermi statistical
model, has obtained potentials of shapes similar to those in
Fig. 1.
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Fic. 1. Central field in the Fock approximation for 1s, 1p
neutron and proton in O nucleus. 7o 1s the parameter in (10)
and W (r) is given by (53) and similar expressions.

These central fields U, (1s), U (1s), U,(1p), and V. (1p)
are given in Fig. 2.

A comparison between these Hartree approximations
and the Fock approximation W,(r), W, (r) shows that
for any given “orbital,” they differ considerably from
each other; that the Fock fields W (r) are lower than
the corresponding Hartree field V(7). It is also seen
that, while the diffusive nature of the boundary of the
fields is as expected [i.e., they reflect on the general
nature of the wave function (18) employed], the Fock
fields W,(1s), W,(ls), W,(1p), and W,(1p) all
exhibit the interesting “wine-bottle” shape. It may be
recalled that this wine bottle shape was introduced
empirically before the advent of the spin-orbit coupling
theory to account for the order of the nuclear energy
levels and hence the magic-number nuclei. Thus it is
interesting that this feature comes about without any
additional assumption from the self-consistent (i.e.,
Fock’s theory) treatment of the central-field approxi-
mation," although one may not yet dispense with the
assumption of a spin-orbit interaction to account for
the magic-number nuclei. Further investigations of a
few more nuclei in the neighborhood of the magic-
number nuclei along the same line as described in the
present paper are being carried out to throw more light
on this point.
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Fic. 2. Central field in the Hartree approximation for 1s, 1p
neutron and proton in O nucleus. 7o is the parameter in (10)
and U (r) is given by (57).

At this point, it is important to emphasize the dif-
ference between the V() in the Hartree approximation
and the W(r) in the Fock approximation. One sees
from (44), (45), (48), (56) that for sufficiently large
negative values of aq (ie., aw’<3%), the U,(r) and
V.(r) can become repulsive so that the individual
nucleons are not bound to the rest of the nucleus at all.
This result is of course inconsistent with the result in
Table I which shows that the empirical binding energy
of the nucleus is compatible with large negative values
of aqs. This difference in the conclusion between the
Hartree and the Fock approximation lies of course in
the neglect of the ‘“exchange” terms from the Fock
equations (41) and (42), which are really very im-
portant in contributing to the binding of the nucleons.
This illustrates the great difference between the central-
field approximations in the atomic and the nuclear
problem. In the atomic problem, the binding of the
electrons and the “central field” comes primarily from
the Coulomb field of the nucleus, and the Hartree
approximation gives a fairly good approximation com-
pared with the Fock approximation. In the nuclear
problem, where there is no predominantly attractive
central field, the “direct” and the ‘“exchange” inter-
actions between the nucleons are equally important and
the neglect of the exchange terms in the Hartree ap-
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proximation is a far more serious, in fact invalidating,
approximation than in the case of the atomic problem.

The writers wish to thank Mr. R. Alford for helping
with the calculations.

APPENDIX: EVALUATION OF THE INTEGRALS
Vk(n,m; r;) AND U*(n,m; r;)

In order to evaluate the integrals defined by (38)
and (39), the following method has proved useful. If
one uses the integral representation for w; [Eq. (22)],
a typical one of the above integrals becomes

Vk(m,n;n)=? [ [ [ratiratrd

X](?’,',')Pk(COS@)d COS@d’j, (A~1)
where O is the angle between r; and r;. Integration is to
be carried out over the space of particle 7, and for that
purpose it is sufficient to choose r; as the polar axis.
If we now define new coordinates » and ¥ by

ri—rjcos®=r cosy, r;sin@=rsiny, (A-2)

the volume element 7;%dr;d cos® transforms into
r%drd cosy and integration over r; can be replaced by
that over r. The integration over the angle ¢ can be
readily carried out in terms of the following integrals

1

I(a,b)= f e**abdx
S §

Sn? St
=e* ) (— l)mﬁ—e"“ > (ﬁy (A-3)
where
x=cosy, a=2rry, Spb=1,
Spb=0b(b—1)---(b—m+1), m==0,

while integrations over r results in integrals of the type

0

fiE= f exp[—v(r2+7r) ] exp(£2rrw)J (r)rldr, (A-4)

whose evaluation leads to error functions.

The evaluation of the U integrals proceeds similarly,
except that (A-4) is now replaced by the simpler
expression

mi———ezf exp[—v(r2+r2) ] exp(£2rrw)r-dr.  (A-5)
0

1783

For the integrals occurring in (38)-(57), one obtains
finally the following expressions:

AV
V"(O,O;re)=—2 exp(—p))[fx(0)—f(7)],
)

Lir)=(=) ——exp(=p)| ——»
2/ 2p T

e (2p2+2pv+1)—f(r)(2p2—2pa+1)],
, AV \ 4
V1) = e )[—\——/;p
(A-6)
+(2#2+3)[fi(0)—f(r)]],
V(1,1;7)=V(1,1;7,)+2V2(1,1;7)
AV

4
= |

+ f(0)[(20*+1) (02+1) 4200 (2p2+po+1)]

= f(n)[(20*+1) (p*+1)
—2p7(2p°—pr+1)]¢,

where
f(r)=exp(H)[1—&(7)],
fi(@)=exp(a)[1£2(|o|)] for p>u or p<p, o=p—p,

r=putp,

2 P
"= f exp(— ),

™
p=viry, A=vlr, u=1/2),
and
et
090,05 9= a(p),
p
1 2
00,15 7) = l| (o) exp<_,,2)],
P mip
1 2 (A-7)
(1,15 1) = o] (o) exp(—p2)],
L O 3T

ULL;n=U11;1)+30%(1,1;57)

2
= e (DB (1) exp(—;ﬁ)].
p i
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