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The purpose of the present work is, starting from a given
assumed nucleon-nucleon interaction V(r; —r, ) and the inde-
pendent-particle, central-field approximation, to deduce all the
consequences of this model by means of the Hartree-Fock-Slater
theory. The V(r,;

—r, ) is chosen to satisfy the saturation require-
ment and to be consistent with some of the properties of the
two-nucleon system, but contains the strength factor Vo as an
undetermined parameter. This Vo and the single-particle wave
functions tt „(r;) are determined by the variational principle
together with the requirement that the total binding energy of
the nucleus be equal to its empirical value. The binding energies
of the individual nucleons in the various shells are themselves
approximately given by the Fock equations which also lead to a
central field which is different for the different shells. The average
central field implied in the usual treatment of the shell model is,
however, the same for a nucleon in any shell, and this must be
identified with some approximate average field obtained by a
procedure such as that suggested by Slater for an electron in an
atom or in a metal. On the other hand, the central field in the
sense of Hartree (i.e. , obtained from the Fock theory by neglecting
the exchange terms) would be a very poor approximation as the
exchange terms are not negligible compared ivith the direct terms.

It is emphasized in the present work that the application of the
variational principle to the problem rids the shell model of the
inconsistent procedure in the usual treatments in ivhich t~vo

independent assumptions concerning V(r, —r, ) and the average
central field V(r) are made. A comparison of the result of the
present program with the empirical facts will form a correct basis
on which to judge the fairness or failure of the central-field approxi-
mation in the shell model.

Numerical calculations have been carried out for the 0", 0",
and 0" nuclei to illustrate the ideas of the self-consistent treat-
ment of the independent-particle, central-fieM nuclear model. In
a first approximation, the Vo and the wave functions P„(r;) are
determined by the modified Ritz method. The binding energies
and the effective "central fields" for the individual nucleons in
the various shells are then calculated from the Fock equations by
means of these p„(r,). It is found that the parameter Vfl in 0",
0', and 0" comes out to be very nearly the same, that the Fock
central potentials are considerably lower than the Hartree poten-
tials; that the former exhibit a general shape of a ~vine-bottle
with a diffuse boundary; and that the "binding energy of the last
nucleon" does not come out very vvell from the Fock equations.

I. INTRODUCTION AND AN OUTLINE
OF THE PRESENT WORK

''N the well-known nuclear shell model of ~layer,
& ~ Jensen, et at. ,

' each nucleon is assumed to move in
a central field V(r) arising from the interaction between
that nucleon and the other nucleons in the nucleus. The
assumption of a reasonable potential V(r) together
with a strong interaction between the spin and the
orbit of each nucleon determines the energy levels of
each nucleon. This model finds an immediate success in
accounting for the so-called magic-number nuclei, the
spins and the magnetic rnornents of many nuclei. YVhen

attempts are made to calculate such properties as the
energies, spins, parities and magnetic moments of the
excited states of a nucleus on this model, it has been
customary in the literature to assume a certain central
field V(r) for the interaction of each individual nucleon
with all the other nucleons in the nucleus, and an
interaction V(r, r,) betw—een any two nucleons that
lie outside a closed shell and whose configurations are
being calculated. A knowledge of V(r) is necessary in
order to obtain the individual-nucleon wave junctions
in terms of which the properties of the nucleus arising
from the nucleons outside the closed shells are calcu-
lated. In most of the existing work on the basis of this
shell model, various specific forms have been assumed

' M. G. Mayer, Phys. Rev. 78, 16 (1950); Haxel, Jensen, and
Suess, Phys. Rev. 75, 1766 (1949).

for V(r) and V(r; —r,).' Certain successes in accounting
for certain observed energy levels, their spin and
parities, etc. , have been achieved by properly choosing
these potentials, together with some further refinements
in the original model so as to include the eGect of inter-
mediate couplings and the deviations of V(r) from a
spherically symmetric field. But despite these successes,
a feature remains in these studies that seems unsatis-
factory, namely, separate assumptions seem to have
been made for the central field V(r) and the pair-
interaction V(r; —r,).' These two potentials are not
independent, but are connected by simple, definite
relations from the point of view of the self-consistent
field method of Hartree-pock-Slater.

The purpose of the present work is to carry out a
self-consistent treatment of the central-field nuclear
shell model. One starts with a pair interaction V(r; —r, )
for two nucleons inside a nucleus which satisfies the
requirement of saturation of nucleus forces and is
chosen to be consistent with some of the properties for
a pair of "free" nucleons (i.e., not inside a nucleus).
This potential V(r, —r, ) is to contain an adjustable
parameter which, together with the single-nucleon
wave functions P„(r,), is to be determined by means of
the variational principle and the empirical value of the
total binding energy of the nucleus (Secs. II, III). Xo
independent assumption about a central field V(r)

2 A. M. Lane, Proc. Phys. Soc. (I.ondon) A68, 197 (1955), and
references given there.' For example, M. G. Redlich, Phys. Rev. 99, 1421 (1955).
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will be made so that there is no internal inconsistency
in the theory.

This determination of V(r; —r,) would by itself not
be of any particular interest since it is the immediate
result of our assumptions, namely, the "central field"
approximation and the various properties imposed on
U(r, —r,). For this "central field" approximation to
form a useful basis for a nuclear model, it is necessary
that the closed-shell structures do stand out from the
neighboring nuclei in having greater stabilities. This is
not at all obvious as in the case of the electronic
structure in the atoms. The nuclei differ from the atoms
in two fundamental aspects, namely (i) the absence of
a predominating attractive central Coulomb field and
(ii) the saturation property of the nucleon interaction
V(r;—r,). In the case of the atoms of nuclear charge
Ze, it is a good qualitative approximation to regard
each electron as moving in a central field V(r) (for
example, a Thomas-Fermi field) which behaves as

lim r V(r) —+ Ze, lim r V(r) ~ e.
r~p r ~00

In the case of the nuclei, the (.entral field approximation
itself is no longer such a natural one, but has assumed
the nature of a strong assumption. ' It is therefore
necessary to examine the consequences of the central-
field approximation by means of the Hartree-Fock-
Slater method which gives the most general theory
consistent with the central-field approximation.

For this purpose, we give in Sec. V the Hartree-Fock
equations for the various "orbitals" in the 0", 0",
and 0'" nuclei. The U(r, —r,) for 0" is determined in
Secs. II and III. One may make the assumption that for
neighboring nuclei such as 0", 0", 0" the pair-inter-
action V(r, —r, ) is the same. With this V(r, r, ) fr—om
0", one ca,n obtain the (approximate) binding energies
of the individual nucleons in the various shells in these
nuclei from the eigenvalues of the Hartree-Pock equa-
tions (Sec. VI), or one can calculate the total binding
energy of 0" (Sec. IV) by means of the method of
Secs. II and III, with the V(r;—r, ) as determined from
0".Or one may reverse the procedure by carrying out
simila, r but independent variational calculations (as in
Secs. II and III) for 0", 0", and 0" and see if the
V(r; —r,) so determined for the different nuclei are
reasonably close to one another. In Sec. VI, the "central
fields" for the individual nucleons are given for both
the Fock and the Hartree theory and the difference
between them emphasized.

The treatment illustrated by the 0"', 0'", and 0"
nuclei in the present work can obviously be extended
to any nuclei. To explore and exhaust the possibilities
and limitations of the individual-particle model as
contrasted with the "collective model, " the present
writers plan to further refine and extend the treatment
here by introducing nucleon-nucleon correlations in the

4 See Sec. VI belov. .

wave functions so as to include the polarization effect,
by introducing spin-orbit or tensor forces, and to treat
such problems as the distribution of the neutrons and
the protons in the heavy nuclei. Work on this program
is being carried out and will be reported in due course.

II. VARIATIONAL TREATMENT OF A NUCLEUS
IN THE INDEPENDENT-PARTIAL MODEL

Let the Hamiltonian of a nucleus be

e'-'

H=Q H(i)+Q V(r, —r;)+P
'~jr 2

where H(i) is the kinetic energy of nucleon i and may
also contain a spin-orbit interaction, V(r; —r,) is the
nucleon-nucleon interaction, and e2//r;, the Coulomb
interaction between protons. V(r, —r,) is to be summed
over all pairs of nucleons while e'/r, , is to be summed
over all pairs of protons. The wave function of the
nucleus is taken to be

4 = determinant
~ Q p (r;,e;,~;) ~,

i.e., a determinant formed from the products of single-
nucleon wave functions P„(r;,e, ,~,) which are in turn
the products of a space-part P„,(r;), a spin part y (o;),
and an isotopic spin part |(~;). The subscript m
indicates the quantum numbers. In the present work,
we shall assume the shell structure and assign the spin
and the angular momentum quantum numbers to the
various nucleons in accordance with the Pauli prin-
ciple; but we shall leave the radial dependence of

(r.;) to be determined by the variational principle.
The potential V(r;—r,), as discussed below, is con-

sidered to have an unknown parameter, say the
strength factor Vo. The wave functions P (r,) and the
parameter Vp are to be determined by the variational
principle

8E=b t +*H+dq=0,

together with the requirement that the total energy E
of the nucleus be equal to the empirical value Fp of the
binding energy of the nucleus':

f
' 4*H%'dq= F&p.

The variational equation (4) leads to a system of
Hartree-Fock equations equal in number to the number
of different shells in the nucleus. The solution of this
system of coupled differential-integral equations to-
gether with (5) will be very dificult in general, and in
our present work, we shall solve (4) approximately by

' W. Heisenberg, Z. Physik 96, 1421 (1935).
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where Uo and ro are adjustable constants. Other forms
of J(r, ,) can be used, (8) heing chosen only for definite-
ness. Vp in (8) is defined to be negative in the following.

Now, from (7) and (8), one finds for the triplet-even
and singlet-even states the potential

'U' '"(r;,) = (air+a ir+aa+aa) J(r;,)
=',4 Vpe /x,

(9)'U"'"(v„)= («iiv+«i ir «ia «ii«) J(r;,.)— —
='A Vpe */x.

Analysis of the experimental data, (i), (ii), and (iii)
shows tha, t, with the Yukawa potential (8), the value
of ro is diR'erent for the triplet-even and the singlet-even
states, namely'

reve&i. r ~i 4&( i0
1 )~even. r ~i 0$)( i0—13 cm

(10)

and for rp ——1.4X10 " cm, —', ('.4+'A) Up —46 AIev.
Without attempting to fit the two data (10) in our
V(r; r,), nor the empirical values —of the strength
factor '2 Vo and '2 Vo, we shall merely employ one
single Yukawa potential (8) in (7), (i.e. , one single

' E. E. Salpeter, Phys. Rev. 82, 60 (1951); G. E. Tauber and
T, Y. Wu, Phys. Rev. 94, 1307 (1954).

the modified Ritz method so familiar in atomic and
molecular problems. The P„(r) are given reasonable
analytic forms with variable parameters, say v&, .

, vA, .
Equa, tions (4) and (5) are then a system of k+1
equations:

r7E/Bv, = 0, i= 1, k; E(vi, .
, v«,) =Ep, (6)

for the 0+1 unknowns v~, . vt„., Uo.
For the nucleon-nucleon potential V(r, —r, ), we

shall ignore tensor forces in the present preliminary
approach and assume a general combination of Wigner,
i~lajorana, Bartlett, and Heisenberg interactions having
the same central field dependence:

V(~ r.;—r, ~) = (a.ii+a rPpr+aa. Pa+«i««P««) J(&: ) (7)

It would have been most satisfactory if there existed
an interaction V(r, —r,) for two "free" nucleons in the
sense of the Coulomb interaction between electrons in
the atomic problem. It is known, however, that no
single V(r, —r, ) succeecls in accounting for all the
known data (deuteron, low and high energy scatter-
ings) for the two-nucleon systems. As we are not con-
cerned with very I igh nucleon energies in a nucleus,
we shall choose U(r; —r, ) to be consistent with such
low-energy data as (i) the binding energy of the
deuteron, (ii) the cross sections of the slow neutron
proton scattering, and (iii) the effective ranges as
determined by these scattering data. Furthermore, for
the central field J(r;,), we shall assume the Yukawa,
poten tial

J(r;,) = Vpe */x, x=r ;;/rp, .

a.&«
——-', ('A+ 'A) —ay. ,

Q«I= p( A) —Qs&

aa ———-', ('A)+aiv.
(12)

We shall finally require the potential U(~ r, —r, j) to
satisfy the requirement of saturation of nuclear forces,
which is expressed by some well-known relations among
the a' s.' On combining these relations with (12), one
obtains the following condition:

aiv Up & p ('A+'A) Vp. (13)

Vp has been defined as negative in (8). We shall denote
by b and a~'

b= ', (' 4+'A), aiv' -——ay/b

The condition (13) becomes then

(14)

Ke wish to emphasize here that the specific assump-
tions (8), (10), (11), or even the saturation condition
are not an inherent part of our main thesis. They have
been made merely to enable a definite calculation to
be carried out in the present work, which is a pre-
liminary exploratory step in our general program. One
might object that the Yukawa potential (8) does not
contain the repulsive core indicated both by the high-
energy nucleon scattering data and by the meson field
theoretical considerations. It may be pointed ou t,
however, that as long as one works in the central-field
approximation represented by (3), there is no difficulty
in introducing a repulsive core represented by an

A. B. Bhatia and S. M. Shah (to be published). We are
grateful to Dr. Bhatia for letting us see his manuscript before
publication.' See J. M. Blatt and V. Weisskopf, Theoretical .«V7fchear P/Iysics
(John Wiley and Sons, Inc. , New York, 1952).

value of rp) and the relations (9). It turns out in the
following that only the combination ('.4+ '.4) Vp

appears in the variational problem which determines
(PA+'A) Vp as a function of the value as, whose choice
is at our disposal. (See Sec. III, Table I.)

We shall further narrow down the arbitrary choice
of the coefficients in (7) by assuming that the inter-
action V(r; r, ) van—ishes for the singlet-odd states, '
namely

'V dd(r, ,) = (as —a~, aa+aa—) Vpe */x=0. (11)

This assumption is admittedly arbitrary, it having been
made for the purpose of representing to some extent
the high symmetry in the observed angular distribution
of proton-neutron scattering at 100 3lev about the
scattering angle il«~m/2 in the center-of-mass system,
and yet without sacrificing the possibility of meeting
the saturation requirement by making V(r, —r, )
vanish also for the triplet-odd states, as in Serber's
potential. The relations (9) and (11) enable three of
the four coefficients in (7) to be expressed in terms of
the fourth. Thus, we may write
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inverse power law not steeper than 1/r'. The energy of
the system is expressible in terms of Slater integrals of
the form (21) below; and these integrals can be trans-
formed into integrals of the form AC (r)J(r)dr, r=r;,
(of which the Talmi integrals (24) below are a, special
case corresponding to the oscillator wave functions
(19)].Such integrals are convergent if J(r) in (7) is not
more singular than 1/r'

KVe have not introduced such repulsive cores in

J(r,,) mainly for reason of simplicity. This may be
justified since in the nuclear model we are not dealing
with high-energy nucleons, and for low energies the
effect of a repulsive core is not important. In any case,
modifications and refinements of our specific assump-
tions such as (8), (10), and (11) can be made if desired
and warranted on the basis of the result of the present
work.

which is appropriate for the case of I, S coupling, or in

the J, M representation in the form of linear combina-
tions

p elm~ ~rp(zz, t, m~, r)X(m, ; zr)
L, m~

(17)

which is appropriate for the case of strong spin-orbit
coupling. For the present purpose, we shall neglect the
spin-orbit interactions and shall employ the form (16).

For the 0' nucleus, the nucleon configurations are
(is')v(1P') v(is' )p(ip')z. On account of the presence of
the Coulomb interactions between protons in (1), the
1s wave functions are different for the neutrons and the
protons, and similarly for the 1p wave functions, even

though the nucleon-nucleon potential V(~ r;—r, ~) is

assumed to be charge independent. Thus there are 4
different orbitals (is)~, (ip).v, (is)p, (ip)z which are
given by (4), or the Hartree-Fock equations. As men-

tioned before, we shall solve (4) by the usual modified

form of Ritz method, and on account of the analytical
complexity involved in the calculation, we shall as a
first approximation assume for the radial functions

R„&(r) in (16) the analytic form of the wave function of

a 3-dimensional harmonic oscillator, namely, '

R.((r) =.V„((v„()exp( ——,'v„(r'-)r'+'L„+(+ +l(v„(r'),
(18)

m. 'zz![(2l+1) '!]"(' '(v„i) =2' "+"-(2l+2n+I) iiv„'+'

III. Vo AND zIt„, (r, l FROM A MODIFIED
RITZ METHOD: 0" NUCLEUS

The space and the spin part of the single-nucleon
wave function (3) can be put either in the m~, m,
representation,

$(zz, l,m&, r)x(m„zr) = (1 /r)R„&(r) Yl,m~(&, p)x(m, ; zr),

(16)

where n, ,l are the radial and azimuthal quantum
numbers respectively, I. is the associated Laguerre
polynomial, and v„~ is a constant regarded as a varia-
tional parameter, to be determined by (6). One should

employ different v„~ for the proton and the neutron on

account of the Coulomb interaction, but as a simplifying
approximation in the present exploratory work, we

shall ignore the difference in the wave functions of the
neutron and the proton, although the energy contribu-
tion from the Coulomb interaction e /r;, in (1) is

included.
To obtain the energy integral in (4), we note that

with the use of the wave function (18), the diagonal
matrix element of the one-particle Hamiltonian

H(i) = (1/2M)P, z is simply

(n, l
~
li'(i)

~
n, t) = (-', +2zz+t) (Iz'/2M) v„,, (19)

so that for the 16 nucleons (is'-),v(ip"),v(is'-') p(1p') p
the kinetic energy pa, rt of the energy integral (4) is

T= (3vo+15vz) (kz/M), (20)

where vp and v& are the variational parameters for the
is and 1p wave functions in (18) respectively.

The matrix element of the potential energy terms
in (1) can be shown to be expressible in terms of the

following generalized Slater integrals:

F (n, zz') =
~I ~t R„(rq)R,„:-'(rz)wq(rz, rz)drzdrz,

0 0

(21)

G (zz, zz') = R„(r&)R„(~z)R„(rz)
0 0

XR„(rz)wk(rz, rz)dr&drz, (22)

2k+1
wi„. (r„r~) = ! J(rzz) P,.(cos())d cos(),

2 ]

where () is the angle between r~ and r2, and similar

integrals f'(n, n'), g"( nn') in which w~(rz, r,) is given

by (22) with J(r») of (7) replaced by the Coulomb

potential. PA, (cosH) is the Legendre polynomial.

Kith the use of the determinantal wave function (2),
each type of the potential V(~ rz —

rz ~) in (7) gives rise

to a "direct" and an "exchange" integral. The matrix

elements of each type of interaction in P;» V(
~
r,—r,

~ )
for all nucleons and of Q e'/r;, in the 0" nucleus are

' I. Talmi, Helv. Phys. Acta, 25, 185 (1952). The use of har-
rnonic oscillator wave functions in our present work is of course
mainly for reason of simplicity. The rapid decrease with distance
as given by the factor exp( ——,'I „&r ) seems preferable to the use
of hydrogenic wave functions, when considered in the light of the

short-range nature of the "central field" both expected and
obtained in Sec. VII below. Eventually one may replace the simple
functions (18) by combinations of R„& for different n but the
same l. They may be regarded as the wave functions of an anhar-
monic isotropic oscillator.
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given below.

as. Q O' J(r;;)4dq

= aiv[6F'(0, 0)+48F'(0,1)—4G'(0, 1)

+ 66Fo (1,1)—(12/5) F'(1,1)],
a.~ P, +*P,~J(r;;)+dq

i~j 0

=atr[6F'(0, 0)—12F'(0,1)+16G'(0,1)

+6F'(1,1)+(48/5) F'(1,1)],

as P e*P&J(r,;)%dq
iv j

(23)=as[24F'(0, 1)—SG'(0, 1)

+24F'(1,1)—(24/5) F'(1,1)],
a~ P ~@*PHJ(r;;)4dq

igj ~

= —aH[24F'(0, 1)—8G'(0, 1)

+24F (1,1)—(24/5) F'(1,1)],
protons

p
go

0*—4dq
r;;

go (0,0)+12fo (0,1)—2g' (0,1)

+»f'(1,1)—(6/5)f'(1, 1)

and similar expressions for the Coulomb part f', g",
with dt replacing It in (25).

The Talmi integrals (24) can be evaluated for certain
potentials U(r). For the Yukawa potential (8), one
finds"

p= 1/[rp(2v) l],

I.(v) =C(~)—&(~),

Ii(v) = o(1+v')C(p) —(1+op')D(p),

Io(v) = (8/15) [1+(9/4) p'+ op']C(~)

—[1+(4/3) p'+ (4/15)~']D(p),

lo(v) = (16/35) [1+(29/8) p'+ (5/3) p'+-p'po]C(p)

—[1+2''+—,'p'+ (8/105) po]D(p), (26)

e'
~t(v) =

rpp(n-)l 1 3 5 (2l+1)

C(„)= Uo/(& ')

D(„)= Uo[1 —C (p)] exp(~'),

2
4 (p) =— exp( —t')dt.

By means of (23) and (26), one obtains for the total
energy of the 0"nucleus:

E(O")= (3vp+15vi) A'/Hi+6(aiv+ a tf)lo(vp)

+12(4art. a it+ 2a~ 2air)F—'(0,1)—
4(air 4a,ir+—2a~ —2alr) G'(0, 1)—

+ (45/2) (aw+ apr) [Io(vi)+Io (vt) ]
+3(7as —13a t,+Sait —SaH) I i(v, )

+gp(vp)+ 12f'(0, 1)—2g'(0, 1)+(43/4) gp(vt). (27)

Here and below, we denote the is, ip, 1d state by the
"collective" quantum number 0, 1, 2, respectively.

In the present approximation, if one uses the simple
harmonic oscillator wave functions (18), all the integrals
Fo, Gk, fo, g" in (21) can be expressed in terms of the
integrals"

It (vt) = GYP (vt/2) )I exp( —,' v&r') r"+'I (r)dr, —

p

dt(vt) =e'iVP(vt/2) jl exp( ——', v r'i)r"+' rd,

0

where J(r) is given by (18). Thus

F'(0,0) = Ip(vp),

F (1,1)=G (l, i) = (1/12)[&(lo(vt)+Io(vi))+2lt(vt)],
F (1,1)=G (1,1)= (25/12)[lp(vi)+Io( vi) —2li(vi)],
G'(0, 1)= 24(vp'vto) '*(vp+ vi) '[Ip(v) —Ii(v)], (25)

F'(0, 1)= (vp+vi) '[vilp(v)+vpli(v)],
v= 2vo»/(vo+vi),

Vp'=bV p. (28)

Equation (27) can then be written in the form

F(O' ) = (3vp+15vt)lt /M+6lp(vp)+AF (0, 1)

+BG'(0,1)+Cli(vt)+ (45/2) [Io(»)+I.(»)]
+go(vp)+12fo(0, 1)—2g'(0, 1)+(43/4) gp(vt), (27a)

.:1 = 36(3as ' —1), 8= 12(2—3aw ),
C = 9 (12a ii-' —7). (29)

"I.Talmi, reference 9; G. E. Tauber and T. Y. Wu, Phys. Rev.
94, 1307 (1954). It is important to note that the integrals Ij, and
g~ in (24) refer not to the wave functions (19) but to normalized
wave functions obtained by replacing v by —', v in (19).Thus all the
integrals I& in Talmi's paper should have v replaced by —,'v. While
this amounts only to a redehnition of v in Talrni s paper and is in-
consequential, this is important in the present work since the
.matrix elements of the kinetic energies contain v,

The empirical value of F(O") is taken to be —127.56
AiIev.

For the variational equations (6), we make use of

(24) It is to be noted that this expression follows from (1)
and the potential (7), and is independent of any of the
specific assumptions (10), (11), and (15). We shall now
use (12) and (14), and absorb the factor b in the as
yet undetermined Vp by replacing the Vp in all the
Talmi integrals I& in (24), (27), by Vp', where
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the following recurrence formulas:

oIIi(v) 3+2l
[I)(v)—I(+,(v)],

BP 2P
Equation (6) leads to

aa, (v)
8 ( (v) .

Ov 2P
(30)

38v'
+ 11lo(v) —16I&(v)+5li(v) —10—[II~(v) —li(v)]

4(vp vi )i— P

v'(4vi —5v,)
9p(v) =0, (31a)

f v)"-
+&o(vo)+3( —

[ &o(v)—
( vp) 2(vp vi )'

66 Pp 3A v'
—+18[lp(vo) Ii(vp)]+ — [(3vi—2vp)lp(v)+ (7vo 3vi)li(v) —5vol9(v)]

M 4vp P1

30k vt 5A v 38P'——+ [vilo(v)+(vp —vi)li(v) —volp(v)]+5C[li(vi) —Io(vp)]+ —11lo(v) —16li(v)
M 4vpvg'- 4(vov, )'~'

P 1 45 43
+5I'(v) —6—[lo(v) —Ii(v)] +—{3[lo(vi)—I~(v~)]+7[lp(vi) —I~(vi)])+—8o(v~)

v 2

f v y
' 5vi v'(2vp —vi)

+6
I

—
(

1 — —— iIp(v) =0. (31b)( vp) 6vp 4(vp vi)'

Equations (27a), (31a), and (31b) are three equations
in the three unknowns Up', vp, and vt with a~' as a
parameter. For each choice of a~' which is still at our
disposal and is subject only to the saturation require-
ment (15), Eqs. (27a), (31a), and (31b) give a set of
values for Vp, vp, and P1. Table I gives the solution of
these three equations for

ag'= —'„rp=1.4&10 "cm, (32)

and the solutions for a~'=0.3, 0.22 and the same rp

but with the further approximation vy= vp. The value
bUp~ —54 AIev is to be compared with the value —46
Mev in (10) for two "free" nucleons.

Other choices of a~' and rp are obviously possible,
and trial wave functions more general then (19) should
be used. In the present preliminary work, however, we
intend to bring out the general features of the varia-
tional treatment. Since any calculation must neces-
sarily be based on an assumed pair interaction such
as (7) and (8), it does not seem warranted to carry out
very long calculations at this stage. "

IV TOTAL BINDING ENERGY OF Ois
AND 0" NUCLEI

Ke shall calculate the total binding energy of 0"'
by means of the assumption that the potential

"A calculation similar to that described here has been carried
out by M. G. Redlich LPhys. Rev. 99, 1421 (1955)j for 0".The
main difference between his work and the present work is that he
uses an explicit harmonic oscillator potential V' for the central
potential and then calculates the binding energy, while we use
the empirical value of the binding energy to fix the constant V0
of the two-body interaction and make no assumption about the
central potential, which is obtained from the Hartree-Fock
equations (see Secs. V and VII).

V( ~r, r, j) in 0'" is —the same as that determined for
0" in the preceding section, and the further approxi-
mation that the wave functions for the is and 1p
nucleons in 0"are also nearly the same as those in 0".
Thus for the configuration (is'-),v(1P')&(is' )&(IPP)Q,
the expressions for the kinetic and the potential energy
in (20) and (23) are replaced by

and

55
T= (3vo+—» I— (20-B)

TABLE I. Variational calculation for 0'".

&l W

1/3
0.3
0.22

i o

cm

1.4X 10-'
1.4X10 "
1.4X10 "

0.5808
0.60
0.70

0.5650

l'o' =bl'o
Mei

—54—60—75

a See (8), (14), (18), (26), (28) for definition of the various quantities.

as [6F'(0,0)+44F'(0, 1)—(11/3)G'(0, 1)
+55F'(1,1)—2F'(1,1)]+aor [6F'(0,0) —11F'(0,1)
+ (44/3)Gi(0 1)+5Fo(1 1)+8FP(1 1)]
+ (as —aH) [22Fo(0,1)—(22/3)G'(0, 1)+20F"(1,1)
—4F'(1,1)]+f "(0,0)+12f"(0,1)—2g'(0, 1)

+15f'(1,1)—(6/5)f '(1,1). (23-B)

The expression for the energy F(0'") corresponding to
(27a) for 0"can be written down. Again, we shall make
the choice aiv' ———', as in (33), and with the values
pp=0. 5808, p] = 0.5650, Vp = b Vp= —54 iA'Iev in Table I
obtained by the variational calculation for 0'", we find



G. I:. TAUBER AN I) T. WU

TABLE II. Variational calculation for 0".
(Compare with Table I.)

aw'

1/3
0.3

0.56
0.60

bgp (Mev)

—56.3
—61.5

for E(O") the value

E(O")= —88.1 Af ev,

which is much too small compared with the empirical
value —111.97 A'Iev. We have also calculated E(O")
corresponding to a~y' ——0.3, a~'=0.22, and po ——p~ in
Table I, and found E(O")= —96.80, —95.01 ilfev
respectively. The agreement with the empirical value
is only partly improved.

A part of the discrepancy noted above obviously can
arise from insufhcient variations in the range of the
trial values for ag ' and from the nature of approxima-
tion introduced by the use of the wave functions (18).
Also the Talmi integrals I~(v) in (26) appearing in the
energy expressions, and hence the energy values (for 0"
and 0"), depend very sensitively on the parameters v&.

Hence the above comparison between the calculation
E(O'"') and the empirical value may not be a fair test.
We have, therefore, inverted the test by calculating
the 0" problem by an independent variational calcu-
lation similar to that for 0", and compare the solutions
p, bVO so obtained with those of 0" in Table I. With
the empirical value E(O")= —111.97 Alev and vo ——v~,

the result of solving (27a-B) with the following varia-
tional equation [see remark before (28)7

(67h'v/2M)+32'I 0(v)+ (58'—3.4')Ig(v)
+ (7C' —58')I~(v) —7C'I3(v)+ (83/4) 8o(v) =0, (31-B)

A'= 165/4, 8'= (189as.' —102), C'= 75/4,

Two calculations have been made. (i) With the Vo'

and the parameters vo vy for the is, 1p nucleons which
have already been determined for 0" (Ta,ble I), the
parameter v2(ld) and E(O") in (27-A) are calculated
from the variational equation. (ii) With the vo, v~ for
0" from Table I and the empirical value of E(O")
= —131.66 3lev, the parameter v2(id) a,nd Vo' are
calculated. In each case the limiting value a~~'= 3

and (12) have been used. The calculation (j) gives

g2(1d) = 0.585, E(O")= —116.77 Ilev, (33a)

while calculation (il) gives

p (id) =0.584, Vt~' =—55.2 AIev. (33b)

It is seen that the same remarks above for 0" hold
here for 0".

V. HARTREE-FOCK EQUATIONS (FOR 0" 0" 0"
NUCLEI IN PARTICULAR)"

The variational equation (4) with the assumption (2)
is equivalent to the following system of Foci equations

[H (i)+ V(i) —G„„(i) X„'7—&„(i)
=2-'[G-(')+I-- -74. (') (34)

Here and in the following, the single index i stands for
the set of space, spin, and isotopic spin variables r;,
o,, ~; and the index sz or m stands for the totality of
quantum numbers (of the one-particle state) in (3).
II(i) is the one-nucleon Hamiltonian nucleon i in (1),
and

(»III(j) I») =
~

~-*V)II(i)~-(i)di,

q.*(i)V (I ' r,
I )q-(i )di, —

is given in Table II.
A comparison of Table II and Table I shows that

for the same value of a~q' the variational calculation
leads to very much the same wave functions and very
nearly the same potential bVO for the pair-interaction
in 0" and 0". One can conclude from this that the
fundamental ideas of this model (namely, a central-
field approximation starting from a pair-interaction
between two nucleons) have at least not been con-
tradicted by this test.

For 0", we have an additional 1d neutron, and the
total energy is obtained by adding to (20) and (23)
terms arising of this 1d neutron namely,

E(O")=E(O") in (27a)+(7h v2/4M)

+ (4as +2as a~r 2alq) [F'(2—,0)+—3F'(2, 1)7
+ (4a.~r+2a~~ —2as —aw) [-',G'(2, 0)

+-,'G'(2, 1)+(9/35)G'(2, 1)7, (27-A)

where v2 is the parameter in (18) for the 1d wave
function, and the F's and G's are given by (21).

V() =2- G-(l), (35)

(»klGlnl)= y *(i)yI,*(j)V(lr,—r, l)

xy. (i)y, (j)d~ dj,

~„.=(»III(j) I.)
+P ([(l» I

G
I
ln) —(1»

I
G

I
el) 7

The prime in the summation sign in (34) indica, tes
exclusion of state m=e.

On multiplying (34) by the complex conjugate of
the spin, isotopic spin, and the space angular part of
P„(i), i.e., (xe,)f „*(~;)V„*(8;,p;) in (3) and (18),
and summing or integrating over these variables a, ,

p;, one obtains the radial equations for R„(r;)
'2 Recently M. Rotenberg LPhys. Rev. 100, 439 (1955)g has

carried out a calculation for a 184-nucleon (Z =E=92) nucleus
in which the Hartree-Fock equations are solved with a Slater
average of the exchange term. The charge and particle density
distributions are calculated.
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of (18):

[H„(r,)+V(r~) —X„]R„(r,)
n [PpdP(n, m)V"(N, m;r~)]R (r;), (36)

where
Ii' d' l„(l„+1)

H„(r,)=—
2M dr

figuration can be written out. Thus, for the lowest con-
figuration in the 0" nucleus, the Fock equations (36)
are a system of 4 differential-integral equations in the
1s and 1p wave functions of the neutrons and the
protons. In the following, we shall denote for brevity
the 1s, 1p, 1d state by the single quantum number m
or v =0, 1, 2 as a subscript respectively, and denotes
the eigenvalue parameters for the neutron and proton
by A, , e, respectively. Thus

X„=X„'—(e
)
H (j ) (

tz) —g &[(tI [
G

(
Ee)

—(ln
i
G

i
el) ],

(37)

d" (n, m) = ~I ~I V„*(8,, iv;) V *(8;,iv;)Pp(cosO)

h' d'
Hp ———

2M dr'

fi,' (d' 2)

(4o)
2M &dr' r')

XV„(+;,tv, ) V„(&,, p, )d~'dppi,

dP, = sin6, d8,dp, , etc. ,

PI, being the Legendre polynomial and 0 the angle
between r; and r;. n is a constant obtained from the
coefficients ad, etc. , in the expression (7) or (8) for the
potential V(~ r, —r, ~).

Before going on further, we shall bring out explicitly
in (37) the distinction between the radial wave functions
of the neutrons and the protons on account of the
Coulomb interactions e'/r, , in (1). Let us denote the
neutron wave functions by R„(r) and those of the
protons by S„(r).The V~(ii,m; r) are integrals defined
by

[Hp+ V„(r)—Xp]Rp(r)

=n[V„P(0,0; r)Rp(r)+ V„„'(0,1; r)Ri(r)]
+P[V„P(0,0; r)Sp(r)+ V, '(0,1; r)Si(r)], (41-v)

[Hi+ V„(r)—Xi]Ri(r)
=a{p U„„'(0,1; r)Rp(r)+[V, „'(1,1; r)

+-', V„„'(1,1; r)]Ri(r))+P{-',V„'(0,1; r)Sp(r)
+[V„'(1,1; r)+-',V„'(1,1; r)]Si(r) ), (42-v)

[Hp+ V (r) pp]Sp(r)
=[ V..o(O,O;.)+Uo(O, O; r)]S,(r)

+[ V..i(O, 1; r)+ U (O, 1; r)]S,(r)
+P[V „"(0,0; r)Rp(~)+ U „'(0,1; r)Ri(r)], (41-ir)

V„„"(e,m; r;) =
~

R„(r,)R (r,)wi, (r;,)dr;

= V„,"(m,n; r;),

V„~(e,m; r,) =~ R„(r;)S (r;)wz(r;;)dr;

= V.„P(m,ii; r,),
(38)

[H,+V (r) pi]Si(r)—
= —',[aV '(0, 1; r)+ U'(0, 1; r)]Sp(r)

+{n[V (1,1; r)+ —V '(l, 1; r)]
+U'(1, 1;r)+ —,

' U'(1, 1; r) )Si(r)
+-P{-',V„„(O,1;.)R,(r)

+[U P(1,1; r)+ p V „'(1,1; r)]Ri(r) }, (42-ir)

wheref
V (ti,m; r,) = S„(r;)S (r,)wi, (r;;)dr;

= V .'(m, rs; r;),

g+B &H g&3f p

I 3 3

2 ~II 4+IIa (43)

where wi(r;, ) is defined in (22). The subscripts v, ir

denote a neutron and a proton respectively. For the
protons, there are additional similarly defined integrals:

V„(r)= 2ad[V„„'(0,0; r)+ V '(0,0; r)
+3V„„'(1,1; r)+3U '(1,1; r)], (44)

U"(n,m; r,) = ~tS„(r;)S (r,)ipse(r, ,)dr, , (39)

ad aw+ p (aB aH) &a.vy

V (2) = V„(r)+2[U (0,0; r)+3U (1,1; r)]. (45)

in which &oi(r, ,) is obtained from the expression (22)
for wI, (r;,) by replacing J(r,,) by the Coulomb potential
e'/r, , The integrals V" are essentially negative [see
(10)] while the U~ are essentially positive. For the
evaluation of these integrals, see Appendix.

With this distinction between the neutron and
proton, the Fock equations for any given nuclear con-

In general, V(r) can be readily expressed in terms of
the integrals (38). It is to be noted that the Eqs. (41)
and (42) with a, P given by (43) are perfectly general
in the sense that they are independent of such assump-
tions as (9), (11), and (15) on V(r;—r;).

For the 0" nucleus in the (1s')~(1pp)~(1d)~(1s')v
(1PP)v configuration, the following terms have to be
added to the right-hand side of Eqs. (41-v), (42-v),
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(41-pr), (42-n.), respectively:

', n-[-,'V,P(0,2; r)Rp(r)], (41-v-A)

pn[(2/15) V„„'(1,2; r)+ (3/35) V„P(1,2; r)]Rp(r),
(42-v-A)

—,'P[-,' V „'(0,2; r)Rp(r)], (41-pr-A)

—',P[-',V „'(0,1; r)Rg(2)], (41-pr-B)

—,'Pf —',[U P(1,1; r)+ pU „-'(1,1; r)]R~(r)), (42-pr-B)

where n, P are as given in (43), and the V„(r) in
(41-v-B), (42-v-B), (41-7r-B), (42-pr-B) is obtained by
replacing V„(r) in (44) and (45) for 0"by

U„"(r)= V„(r)—aqV„P(1,1; r) (44-B).
VI. BINDING ENERGY OF THE "LAST" NUCLEON

(OR "IONIZATION POTENTIALS" )

For any given nucleus, either the variational equation
(2) with the product wave function (2), or the above
system of Fock equations, is the complete statement of
the central-field approximation. In the form (2), the
modified Ritz method so familiar in atomic and mo-
lecular problems is convenient; the solution of the
Fock equations, while also familiar in atomic and
molecular problems, is more easily obtained with the aid
of calculating machines. The difhculty in the present
nuclear case is the lack of knowledge of the pair-
interaction V(r;—r,), and the consequent necessity for
having to explore many assumed forms for V(r;—r,).
The calculations in Secs. III and IV must only be
regarded as preliminary explorations illustrating the
ideas rather than giving quantitative results. In the
same spirit, we shall further discuss some consequences
of the central-field approximation.

For this purpose of obtaining only the essex') tial

pP[(2/15) V „'(1,2; r)+ (3/35) V „'(1,2; r)]Rp(r).
(42-pr-A)

The "equation for the id" neutron is

[H,+U„'(r) —~,]R,(r)
=n(p'U„P(2, 0; r)Rp(r)+[ —',V„„'(2,1; r)

+(9/35) U„„P(2,1; r)]Rq(r))+ pn{ V„„"(2,2; r)

+ (2/7) V„P(2,2; r)+ (2/63) U„„'(2,2; r)) Rp(r)

+P( —,
' V„'(2,0; r)Sp. (43-v-A)

In Eqs. (41-v-A), (42-v-A), (43-v-A) for the neutron
and (41-pr-A), (42-pr-A) for the proton in 0", the V„(r)
in (44), (45) is to be reqlaced by

V„'(r) = V„(r)+a&U„P (2,2; r). (44-A)

For 0" in the configuration (is') v(1PP) ~(1s')v(1PP)v
the Fock equations are obtained by subtracting the
following terms from the right-hand side of (41-v),
(42-v), (41-7r), (42-pr) respectively:

pn[p V„„'(0)1;r)Rg(r)], (41-v-B)

pn(-p, [V„P(1,1;r)+ p V,P(1,1; r)]Rq(r)), (42-v-B)

V„(r) =4aq[V, P(0,0; r)+3U„„'(1,1; r)],
V (r) =4ad[V '(0,0; r)+3V ' (1,1;-r)]

+2[UP(0,0; r)+3U'(1, 1; r)].
(47)

This approximation simplifies the system of Eqs. (41)
and (42) for Rp(r), R~(r), Sp(r), and S~(r) into two
independent systems, one for Rp(r) and R~(r), and one
for Sp(r) and S~(r). While an accurate solution of each
system for the wave functions and the eigenvalues Xp,

e& can be carried out, one may obtain an
approximate value of Xp, for example, by using in (46v)
the approximation variational (normalized) wa, ve
functions Rp(r) and Rq(r) obtained by the modified
Ritz method in Sec. III.

Equations (46v) and (467r) can be further simplified
if we set aq ——0 (44-A) (i.e., as ' =

p in Tables I and II).
From (43), (14b), and (14), one obta, ins readily

n+P = (25/9) ad —
p ('A+'A) = (25/9)ag —(5/3) b (48)

= —(5/3) b for ad ——0. (48a)

With a,~
——0, one obtains. for example, from (46v) an&i

(48),

f 5
Xp=

J
RpHpRpdr+ b t Rp(r)[V„P(0,0; r)Rp(r)

3
+V„„'(0,1; r)R&(r)]dr. (49)

The integrals in (49) and in similar expressions for pp

(is proton), X~ (ip neutron), p~ (1p proton) can all be
expressecl in terms of the Talmi integrals in (26). The
resulting expressions are

(1s)v..

(1s)v.

3A'vp 5
+—[Ip(vp)+G'(0, 1)],

4M 3

e2

pp
——Xp —g'(0, 1)+ +6f '(0,1),

7i fop

(50)

5A-'vI 5
+—[-p,G'(0, 1)+ -,

'- (5Ip(vg)
4M 3

+5Ip(») —6I~(») )], (51)

(1p)x.

(1p) v:
43e'

pi =~i —pg'(0, 1)+2f'(0 1)+
1271re y

qualitative features of the theory, let us ignore the
difference between the neutron and the proton wave
functions R (r) and S (r) in each individual equation,
without neglecting the Coulomb interaction entirely.
Thus, for example, instead of (41v), (417r), and (45),
we shall consider the following equations for the is
neutron and is proton in 0":
[Hp+ U„(r) —Xp]Rp(r)

= (n+P)[V„P(0,0; r)Rp(r)+ V„„'(0,1; r)Rq(r)], (46v)

[Hp+U (r) —pp]Sp(r)
=- ( +P)[V P(0,0; r)S (r)+ U, '(0, 1; r)S (r)]

+UP(0, 0; r)Sp+U'(0, 1; r)Sq(r), (46m)



INDEPENDENT —PARTICI E CENTRAL —FIELD NUCLEAR MODEL j781

where the expressions Ii, G'(0, 1) and fP(0, 1) are given
in (25) and (26), with Vp replaced by Vp =bVp as in
(27a). With the values of pp = 0.5808, pi = 0.5650,
a~'= 3, Uo' ———54 ilIev, one obtains the result in
Table III. These are the approximate binding energy
of the "last" is, 1p neutron, proton, respectively, in
the 0" and 0" nuclei. The di6erences between the
neutron and the proton energy for the corresponding
orbit are due to the Coulomb interactions among the
protons.

These binding energies in Table III, especially the
positive values for the 1p state are seen to be unsatis-
factory. It must be remembered, however, that the
values of the parameter X,e in the Fock equations are
not exactly the "ionization potentials, " which must be
obtained from the difference between the energies of
the A- and (A —1)-nucleon nuclei. Nevertheless, Table
III shows that the eigenvalues I, and e of the Fock
equations do not give sufficiently good approximate
values of the binding energies for the individual
nucleons.

[Hp+ 9t „(r)—X]Rp (r) = 0,

where the central field %„(r) is

%V„(r)= V„(r)—nV„P(0,0; r)

(52)

—[n V„„'(0,1; r)Ri(r)+P V„'(0,0; r)sp(r)
Rp(r)

+P V„.'(0,1; r)S,(r)]. (53)

This field %"„(r) is obviously different for the various
shells (is)rv, (ip),v, etc. On the other hand, the usual
treatment of the shell model implies an average central
field l (r) which is the saine for all the individual
nucleons, like the Thomas-Fermi field for an atom.
Such a field does not exist in the rigorous sense of the
theory of Fock, but must be identified with some sort
of average of the %'„(r) in (52) over all the occupied
states Ro, R&, R2, etc. One way of introducing an
approximate central field, denoted by 'N„'(r) for a
neutron and VP '(r), for a proton, is to follow the
idea of Slater" of using a weighted exchange potential
suggested for the problem of an electron in an atom or
in a metal. It is to be remembered that, apart from the
fact that the %V'(r) so defined is only approximate,
'VP'(i) serves only as a convenient help to visualize the
"central field" approximation and is not essential in the
theory, since the binding energy of a nucleon in any

"J.C. Slater, Phys. Rev. 81, 385 l1951l.

VII. CENTRAL FIELD: HARTREE AND FOCK
APPROXIMATIONS

All the individual Fock equations (41) and (42)
can be regarded as the radial equations of a particle in
a central field. Thus, for example, Eq. (41-v) for the is
neutron may be regarded as an equation of a central
field problem

TABLE III. Binding energy of last particle in 0" and 0'5.

Nuclens

Kinetic energy
Potential energy
(1s)„:
Coulomb energy
(1s)p. e0

Kinetic energy
Potential energy
(1p) &-.

Coulomb energy
(1P)p ..

P1S

23.50a
—69.79—46.29

5.56—40.73

41.40
—45.26—3.86

5.20
1.34

P1'

23.50—65.76—42.26

3.99—39.27

41.40—41.07
0.33

2.53
2.86

a All energies are given in Mev.

shell can be obtained directly from the difference
between the total energies of the two nuclei having 3
and 3—1 nucleons. For this reason, we shall not over-
emphasize the significance of any such average central
field, but give the potential W(r) in (53) and similar
equations for the (ip) ~, (is)v, and (1p)v in the Oip

nucleus. For our present illustrative purpose, we have
chosen aiv'= —', in (33) and (n+P) = Sb/3 —in (48), and
have made the same approximation as in (46v) and
(46ir). The result is shown in Fig. 1.'4

It is also of interest to obtain the "central field" for
the nucleons by further simplifying the Fock system
(46) by making the Hartree approximation. This is done
by neglecting all the "exchange" terms from the Fock
equations (41), (42). We shall denote this "Hartree"
field by 'U(r). Thus instead of (46v), (46pr), for example,
we consider

where

PFZp+ 'U„(t') XpgRp (r) = 0,

[Hp+'U (r) —ep75p(r) =0,

(54)

(55)

(is) iv .. 'U„(r) = (5/3) b V„„'(0,0; r),

(is)v.''U (r) = (5/3)bV P(0,0; r)

+U'(0, 0; r)+6U'(l, 1; r),

(1P)pr. 'U„(r) = (5/3)bLV„P(1, 1; r)+ s V„P(1,1; r) j,
(1P)v'. 'U (r) = (5/3)bLV '(1,1; r)+a V '(1,1; r)j

+2P(0,0; r)+5U'(1, 1; r)
—-'U'(1, 1;r). (57)

"Recently P, Gombas LActa Phys. Acad. Sci. Hung. 5, 511
(1956)j, in a treatment based on the Thomas-Fermi statistical
model has obtained potentials of shapes similar to those in
Fig. 1.

'U (r) = V.(r) - ( +P) V.,'(0,0; «),
'U (r) = V (r) (n+P) V—'(0,0; r) U'(0, 0; r). —(56)

Again, with aq ——0 and (n+P) = 5b/3 in (48), —one
obtains the following "efI'ective central field" for the
is, 1p neutron and protons in Ois in the Hartree ap-
proximation:
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For the integrals occurring in (38)—(57), one obtains
finally the following expressions:

proximation is a far more serious, in fact invalidating,

approximation than in the case of the atomic problem.
The writers wish to thank AIIr. R. Alford for helping

with the calculations. 3Vp
vo(o, o; r,) =

2p
exp( —p') )f,(o) —f(r)],

4
exp( —p') — p

+f~(o) (2p2+2po+ 1)—f(r) (2p —2pa+ 1)

XVp
V'(1,1; r;) =

6p
exp( —p') — p2k+ 1

V"(m, ,n; r;) =
~~ R (r;)R„(r;)Jd~ (A-6)

APPENDIX' EVALUATION OF THE INTEGRALS
V~(n, m; r;) AND U~(n, m; r;) (3) ~ XVo

In order to evaluate the integrals defined by (38)
V'(0, 1; r;) =

~

—
~

and (39), the following method has proved useful. If
one uses the integral representation for v)1, [Eq. (22)],
a typical one of the above integrals becomes

)&J(r;;)Pi, (cosO~)d cosOdr;, (A-1)

ea P( 1)m —e P, (A-3)
o,m+1

where

x= cosP, n= 2rr, v, Sq~ ——1,

5 '=b(b 1) . . (b I+—1)—, mWO,

while integrations over r results in integrals of the type

where 0 is the angle between r; and r, . Integration is to
be carried out over the space of particle j, and for that
purpose it is sufhcient to choose r; as the polar axis.
If we now define new coordinates r and P by

r; r; cosO=r c—os/, r, sinO=r sing, (A-2)

the volume element r,'dr; d cosa transforms into
r'drd cosf and integration over r, can be replaced by
that over r. The integration over the angle P can be
readily carried out in terms of the following integrals

I

I(n, b) = t e-x'dx

S

arid
p=v'r;, X= vitro, p= 1/2X,

Uo(0 0; r) = 4 (p),
p

+ (2t '+3)Lf+(o) f(r—)],
V(1,1; r~) =—V (1,1;r;)+—V'(1,1;r;)

XVp
exp( —p') — (1+p') p

2p'

+f~(o)L(2p~+1)(p2+1)+2po (2p2+po+1)]
—f(r)L(2p'+1)( '+1)

—2pr (2p pr+1)]-
where

f(r) =exp(r')L1 —0(r)], r=p+p,

f+(o) =exp(o')L1&4(~o. ~)] for p) p or p(p, o= p —p,

2
4 (p) = exp( —t')dt,

Q~ &o

1 2
expL —v(rp+r')] exp(&2rr, v) J(r)r'dr, (A-4) U'(0, 1; r) =e2v& ~(p) — exp( —p2)

p 7l p

whose evaluation leads to error functions.
The evaluation of the U integrals proceeds similarly,

except that (A-4) is now replaced by the simpler
expression

1 2
Uo(1,1; r) =e'vl —C&(p) — exp( —p')

p 3+~

U(1,1; r) —= U'(1, 1; r)+ 5 U'(1, 1; r)

(A-7)

qP=e exp/ —v(rP+r')] exp(&2rr;v)r' 'dr. (A-5)
0

1 2
=e'v& —(p'+1)C (p) — (p+1) exp( —p') .

p3 ~&p'


