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A general method is described for experimentally obtaining all components of the magnetoresistivity
tensor; thence the components of the magnetoconductivity tensor (2) can be computed. The method is
specialized to cubic materials to obtain Z(el, where e is the angle between H and the L001] direction in a
(100) plane. Mass tensor theory has been developed into a convenient form and applied to this experiment
for the three spheroidal cases. Expressions for determination of the mass ratio (A. ) have been derived.
The experiment has been performed on n-type germanium and silicon, verifying the known band structures
by means of the angular dependence of Z(p). E has been determined for germanium from 65'K to 200'K.

I. INTRODUCTION

'HE usual theories of the behavior of semicon-
ductors under the influence of electric and

magnetic fields lead directly to the magnetoconductivity
t.ensor (Z), whereas the usual voltage measurements,
due to an applied current, result in the magnetoresis-
tivity tensor (P= 2 '); the Hall constant and magneto-
resistance being proportional to two components of P.
Comparison of theory and experiment can be made
either by mathematical inversion of 2 for comparison
with selected components of P or by the much easier
arithmetical inversion of P if a suitably designed experi-
ment can be carried out t.o obtain the independent
components. The band structure of Is-type germanium
and silicon has been determined from dc galvanomag-
netic measurements by several investigators' ' over the
past. several years using the former approach; their
conclusions have been in close agreement. We shall be
concerned here with a method for using the latter
approach and in particular with it s application to
verifying the band structure of ~s-type germanium and
silicon by utilizing the dependence of 2 on the position
of H in the crystalline lattice. We have reported a
preliminary investigation of this approach its ad-

vantages include a more direct correlation between

theory and experiment which holds for all H—much of
the band structure information can be obtained without
evaluating the transport integrals. Thus, only very
broad restrictions need be made on the form of the
relaxation time, r,. on the other hand, knowledge of
the transport integrals directly involved in the theory
can make possible a more detailed investigation of ~.
Similar, although less general, experimental methods
have been mentioned by t~fcClure' and Juretschke. s

II. METHOD FOR MEASURING ALL
COMPONENTS OF P

Consider three typical rectangular samples cut from
a single crystal, in a Cartesian coordinate system as
shown in Fig. 1. H can be oriented in any direction.

This arrangement just suffices to obtain all nine
components of I' (Only s.ix are independent. ) The
sample shapes require that for samples 3, 8 and C,
the current be in the x, y and s directions, respectively.
Thus, the components PI, ~ are measured on 3, P1,2 on
8, and P1,3 on C. For example, P1~ and P2i are measured
with the usual resistivity and Hall probes. P» is
measured with Hall probes on top and bottom of the
sample (or one can turn the sample 90' about the x axis
and keep the Hall probes in the usual position —H
being moved similarly), and the other components
follow similarly from samples 8 and C. One requires
only that for any set of components of P, the magnitude
and orientation of H with respect to the crystal lattice
remain unchanged.

In most cases, attention to the particular crystal
symmetry involved will simplify the experimental
difficulties. In addition, it is advantageous to choose the
coordinate system in such a manner that the position
of H can be easily determined and will have significance
for the theory; this will usually be such that H remains
in one of the coordinate system planes which will be
chosen as one of the major planes of crystalline sym-
metry. For cubic materials, which are here considered,

~ A Division of Union Carbide and Carbon Corporation.' B. Abeles and M. Meiboom, Phys. Rev. 95, 31 (1954).
2 M. Shibuya, Phys. Rev. 95, 1385 (1954).' W. M. Bullis and W. E. Krag, Phys. Rev. 101, 580 (1956).' C. Goldberg and R. E. Davis, Phys. Rev. 102, 1254 (1956).
5 L. Gold and L. Roth, Phys. Rev. 103, 61 (1956).
6 R. M. Broudy and J. D. Venables, Phys. Rev. 103, 1129

(1956).' J. W. McClure, Bull. Am. Phys. Soc. Ser. II, 1, 255 (1956).' H. J. Juretschke, Acta Cryst. 8, 716 (1955).

CRYSTAL LATTICE VFCTORS

FrG. 1. Experimental arrangement for measuring all components
of the magnetoresistivity tensor.
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The distribution function for the mass tensor theory
was obtained by Bronstein" and by Blochinzev and
Nordheim" in a slightly different form. iAIaking use of
both theories, we obtain the current density in the
following form:

e2

j= — (p 0 M ')—F+ (p pMH) y F
63r3 ' ~M~c

PII(4) PPI(4) Pg«) = -P2I(90- III)

PM(~) =PII(") P22(&)=PII(90-&) P2&(P)= P2I(ill)

P2I(e) =P2I(e) P22(e) =PII(e)

FIG. 2. Experimental arrangement for measuring all components
of the magnetoresistivity tensor for a cubic material with H in a
cubic plane.

we choose the coordinate system to be on axes of cubic
symmetry, thus making all three samples equivalent
hence, measurements need be taken on only one sample
of this type, as shown by Fig. 2. Thus, we shall obtain

P(p), where H is rotated in a (100) plane at the angle p
with respect to an L0017 direction. Z(p) is then found

by arithmetical inversion of P(p).
It should be noted that galvanomagnetic measure-

rnents are quite sensitive to inhomogeneities and, in

order to obtain valid results, the electrical properties
of the material must be essentially uniform over the
samples chosen. The presence of nonuniformities will

usually be indicated by the deviation of components
of P(g) from necessary angular symmetry. ' For
example, in a (100) system, P»(0') must= P»(90').

1
+ (e/c)3(p X)HH. F, (3)

where the P„'s represent sums over multiple ellipsoids
(P„meaning sum over valleys in Herring's termi-
nology), and where

(Bf3/BE) r(E)EdQ

~ 1+[Er/~7'(MH H/(M[)

(Bfp/BE) r'FdP.
P=

1+Ler/c7'(MH. H/~M ~)

(Bfp/BE) r3Edn

1+Per/c7'-'(MH H/~ M ~)

(4)

The integrals are scalars but depend on the orientation
of H through the 3fH. H factor.

The integration over dQ simplifies to an integration
over dE:

III. ANGULAR DEPENDENCE OF 2

In the above-described experiment, the components
of 2 must have the following angular dependence for
spherical energy bands and isotropic relaxation time

(,): (1) Z„H,) = C, ; (2) Z„(4,) =C,+C, sin 4; (3)
233 Cg+C3 cos g; (4) 23~= C3 cosp; (5) Z3$ — C3

g sing; (6) 233 C3 sing cos&f&. If the energy band

structure and/or r are not spherical, the components
of 2 do not follow these simple angular relations —and

it is this deviation which can be used to indicate the

type of anisotropy of the material. In this work we

investigate the angular variation of Z(g).

IV. GENERAL MASS TENSOR THEORY OF
MAGNETO CONDUCTIVITY

The ellipsoidal energy dependence is

E= (k3/2) (k,'/m„+ k„'/m»+-
+k,k„/m, „+ ), (1)

and components of the reciprocal mass tensor are

given by
(M ~) 3:(1/I3)3(B E/Bk Bky) '(2).

'We have discovered anomalous magnetoresistance effects in

n-type InSb single crystals due to inhomogeneities.

Thus, for Boltzmann statistics, the integrals are of
the form

I E Ei3rrE3/3dE—
7

(—e-p
J=—j ~ ~

=nF+uXFydHH F
)

=PF+u&& F, (6)

where

P—=n+dHH,

P pMH=r P pMH
(Mfa .

(7)

"M. Bronstein, Physik. Z Sowjetunion V2, 28 (1932)."D. Blochinzev and L. Nordheim, Z. Physik 84, 168 (1933).

where m, m„, and m, are the principal axis values of
the mass tensor. This can be v ritten as follows:
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Thus

or
i = (—eg/«') (&+v)F=—~»

J= (P+y) F=—LF,
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where P is a symmetric tensor, which is even in H and

p is an antisymmetric tensor which is odd in H. Equa-
tions (6), (7), and (8) determine the method for
calculation of L for any multiple ellipsoid energy band
system.

~OIO Aiogio

FIG. 3. Effective spheroidal configurations for cubic materials
with H in the (100) plane.

V. MAGNETOCONDUCTIVITY THEORY FOR CUBIC
MATERIALS ON CUBIC AXES

We consider here the calculation of components of L
for H in the (100) plane at an angle g with respect to
the L001] direction. The effective configurations for
the three possible spheroidal arrangements (see, e.g. ,

Shibuya') are shown in Fig. 3.
The 100's remain as shown. The 111's can be con-

sidered to coalesce to form a set of two ellipsoids with
the three major axes as shown, two on the 45' positions

and one in the x direction. The 110's coalesce to form
two oblate spheroids (if the original spheroids are
considered prolate) with the major axes on y and s
directions as shown, the other two prolate spheroids
remaining at the 45' positions. The magnetoconduc-
tivity components for these three cases are calculated
in Appendix A.

The explicit results for L11 for the three cases,
where in the principal axis system of an 001 spheroid
E= ,'5'((k, '+—k„')/b+k,'/a] are:

2+ ((ur)'(1+ a/b)1) Bfp) b 1

I+( bJ " 4 BF) &aJ &1+((dr)g J 1+(cdr)'(1+a/b)+ (cur)'L(a/b)+ —,'(1—a/b)'(sin2+)']

(iq ) b) i. (Bfgq 2+ (~r)'(g) (2+a/b)
=l! —

II 2+-
I

(b j ( a) & E city 1+(idr) (g)(2+a/b)+(idr) (g)I (2+a/b) —(1—a/b) (sin2&)']
(10)

2+ (cur)'(-,') (3+a/b)
I,J-'«! 1+- II ~2I 8I

~ o(b) 3 g gg.') ( a] (1+(Q)r)'(-,') (3+a/b)+ (~r)'(-,') [(1+a/b)+ '(1—a/b—)'(sin2$)'-])

2+ ((dr)'(1+ a/b)
(11)

iy(~r)'(1+a/b)+(~r)4( 4)[(1+a/b)-' (1—a/b)"-(sin—2$)g]

co= (eH)/(ab) lc

These components are for 3, 4, and 6 spheroids, respec-
tively, and should be multiplied by 2 for 6, 8, and 12
spheroids. As might be expected from observation of
Fig. 3, L»~ and L»~ are of the same angular form
(except for a constant term) but displaced by 45' and

L44 is of the angular form C4L44 +CgL~4 . Thus, the
theory determines qualitative criteria for distinguishing
among the various possibilities. Although only L»
components are shown above, further information can
be obtained from other components of L; the method
for calculating them follows directly from the appendix.
For example, the comparison of relative magnitudes
of various components of L serves to determine if
K(—= a/b) (1 or )1.

It is possible to find certain relations among compo-
nents of L which can determine the value of E from

experimental data, once the angular dependence of

L(4k) has determined the correct band structure. We
have derived the following relations for determination

of A. for cases 3 and 8—details are shown in Appendix
B.

L pi' —(Lgg+ L,g) 1 (E+ (1/E) —2 )
(12)

K(L44' —L44) —2Lgg 4, 4, 2 0 K(1+K)—2 )

where L,~' represents the value for H=O. These expres-
sions hold for all ! HI and are independent of any
assumption on v. except that it be constant on a surface
of constant energy. In case 8, the symmetrical arrange-
ment of 111 spheroids for this experiment about @=90
makes possible a simple relation in terms of components
of the magnetoresistivity tensor —E being determined

Lo2 L»

L)4g —L44. 4, gp (2+E)(2+1/E)

pg (pr 4+ (RH)' pr.prl—
(13)

pr &p&+(RH)' pgprI—
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and take measurements in at least two quadrants
in order to eliminate undesired voltages due to probe
misalignment.
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FIG. 4. Transverse magnetoconductivity of n germanium with H
in the (100) plane at the angle p to the [001]direction.

VI. EXPERIMENTAL PROCEDURES

Single crystals of ~i-type silicon and germanium, cut;
in a 100 system were tested. An ac method of measure-
ments with dc magnetic Geld is used for speed and
elimination of thermal voltages. The sample is mounted
on a small brass block separated by a sapphire-insu]ating
plate, probes being mounted from small Teflon terminal
blocks attached to the brass. Without removing probes,
the brass block assembly can be attached to a copper
block inside a Dewar in any of the three mutually
perpendicular positions required to measure E(&,0,$)
and the whole Dewar is then rotated through 180',
readings being taken with positive and negat. ive mag-
netic field polarities at each point. Although P(p) is
needed only from 0—90', it was necessary to reverse

from pr. , pr and po (longitudinal, transverse, and zero-
field resistivity) and R (Hall constant in the appropriate
units). RH is essentially the Hall field at the ~H, '

considered.
20
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FIc. 6. Apparent mass ratio of n germanium sample as determined
from Eq. (13).

VII. EXPERIMENTAL RESULTS FOR n-TYPE
GERMANIUM AND SILICON

Figures 4 and 5 show L»(p) for germanium and
silicon. These data are to be compared wii. h (9), (10),
and (11). We see immediately that case 8 applies to
germanium and case 3 to silicon. Case C is ruled out
by the single maxima and minima for both curves and
by comparison of other components of L. Within
experimental error, the angular variation follows exactly
that predicted by the integrands of (10) and (9) for
Ge and Si; thus 7. probably does not vary strongly
with energy.

Then using (13) and (12), the apparent mass ratios
for Ge and Si at 80'K were computed to be 15.5&0.5
and 5.2&0.5, respectively.

80'K 7720 GAUSS

.224
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.208

.204

.200
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IN DEGRE, E,S

FIG. 5. Transverse magnetoconductivity of n silicon with H in
the (100) plane at the angle @ to the $001$ direction.

Thus, in agreement with the results of others, we can
conclude that the energy band structure of germanium
consists of 4 (or 8) prolate spheroids with major axes
centered along [111]directions and the energy band
structure of silicon definitely consists of 3 (or 6) prolate
spheroids with major axes centered along L100]
directions.

The mass ratio for the germanium sample was
determined over the temperature range 65'K to 200'K
by measuring pL, , pz, and XII; then E was calculated
from (13). The results are shown in Fig. 6. Above
130'K the calculated value is close to 20 (the value
obtained by cyclotron resonance experiment. s" at O'K)
and decreases rapidly below this temperature. Figure 7

shows a plot of resistivity vs temperature for the same
sample over this temperature range; it can be seen that

"Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).
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the curve deviates from a T' "straight line below about
130'K, presumably because of the effects of impurity
scattering. This behavior can be interpreted by con-
cluding that the genuine mass ratio does not change
appreciably from 4'K to 200'K. Then, if ionized im-

purity scattering is not isotropic, as predicted by
Herring" for highly anisotropic energy surfaces, the
presence of a relatively appreciable amount, of impurity
scattering would have an effect on the use of (13).
This is so because the derivation of (13) leads back to
the original Eq. (3) in which v- is assumed constant
over an energy surface. Thus below 130'K, the rela-

tively increasing effect of a nonisotropic scattering
would result in a greater departure of the calculated A.

from its correct value. However, Herring and Vogt'4

have shown that the apparent value of K can correctly
be replaced by K(r~/T„) where (r~/r„) is the ratio of
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J= +zzz
u&

—u~ +zz&
nzz+dHg'-' n.z+ dHzHz
nzz+dHzH3 ;n, +zdH.,'

F, (14)
r 001

where o.„- and u& here refer only to the 001 spheroid.
Also, from (4) and Fig. 8,

APPENDIX A. CALCULATION OF L(0) FOR
CUBIC MATERIALS

Figures 8 and 9 show the mass tensors and reciprocal
mass tensors for the spheroids of the three cases here
considered. The subscripts refer to the direction along
which the major axis of the spheroid lies. We calculate
the components of I for each spheroid and then sum
over the appropriate ones to obtain the terms given
by (7) in Eq. (6). H is in the ys plane at an angle p
vith respect to the s axis. We show the details only
for the 001 spheroid: from (6), (7), and (8),

4
X
O

where

(8fo/czE) rEd 0
000&=

1+Leos.]'I (a/b) cos'&+sin'p$
(15)

2.5

(0
Vl
UJ
K

I.fi9
gi'

co= eH/(ab) *'c,

poo~ and Xoo& being identical except for the replacement
of r by 7-' and ~' respectively. Using Fig. 8, Fig. 9,
(7), and (14), we obtain for the components of L due

60 70 8090 IOO I20 I50 200
'TEMPERATURE IN DEG REES KE LVIN

FK,'. 7. Resistivity of n germanium sample.

relaxation times in the major axis directions. Thus
Fig. 6 actually determines the latter expression; the
lattice scattering is probably isotropic.

VIII. CONCLUSIONS

The described technique, subject to the availability
of uniform material, can prove a powerful and useful

tool for band structure and relaxation time investigation
since the close correlation between theory and experi-
ment makes possible more direct information. Although

the method has been applied to silicon and germanium

in this paper for a particularly chosen orientation of H,
our purpose has been principally to demonstrate the
general significance of the experimental design.
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' Conyers Herring, Bell System Tech. J. 34, 284 (1955)."C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

FIG. 8. Mass tensors for the three simplest cubic spheroidal
arrangements in a coordinate system on cubic axes. Subscripts
refer to major axis directions.
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+tH' sin'&t&2 ()&»1+)&111),

L33 —
3 (2/b+ 1/a) (o.»1+o'111)

+tH' cos'&t 2 (Xt&1+)(&&&) &

L31 = —rH( —', )L(a+2b) sing(p»1+pl&1)

+ (b a) COS&t& (pill pill) 7&

(a+b)
l (o»0+alp&)+ ((ro&1+op»),cab) b

(a+b) 2
L33 =

l

—
l ((1&10+sopor)+—(&r&0&+pop&1)

Cab) b

+t'H sin &t&(2)&&10+2)&&01+)&0&t+Xo»),

+tH COS &t&(2)«&0+2K&01+)(0&1+ho&&)
&

Flo. 9. Reciprocal mass tensors for the three simplest cubic
sph«oidal arrangements in a coordinate system on cubic axes. L o
Subscripts refer to major axis directions. ga 011 0 110 go 011

ab
to the 001 spheroid:

L»"'= ooo&/b&

= o ppl/b+ tH3 Sins&t&)(00&,

L33 (r pol/a+tH' —COS'&t&X00&,

L93~'= tH-' cosp sinpX001= L32"'

Lg1 = t'JIQ cospppp1= —Z19

L31001———rHb sinpppp 1 L13"'.

(16)

Lll = (1/b) (o'00(+«&0)+ (1/a)o 1&&&&,

L33 = tH cos&t& sin&t&(X001+)(0&0+)(&oo),

L„=rH cos(t&Lapoo&+b(po&0+ploo)7,

L--""= (1/b) («0&+a&00)+ (1/a) («1o)
(17)+tH sin &t&()&001+~010+~100)

L33 = (1/a) (oppl)+ (1/b) (o&&10+&rip&&)

+tH cos &t&()(po&+)&0(0+)(&oo),

L31- ———rH sin(t&[b(ppo&+p&00)+apo&&&7

with similar expressions for p and X in r'- and r'. Similar
calculations for cases 8 and C result in

Lll = 3(2/b+1/a)(o'&&(+a'»&),

(b-a)
L33' = 3 l

—
l (o»1—o&»)'E aS)

+tH' cos&t sin&t 2 ()&111+)&ttl),

Performing similar computations for 100 and 010
spheroids and adding the total currents, we obtain,
ttsing LA —Lpol+Lplp+Llpp

(b al-
L33'-

l 1
(ooll —«&1)( 2abl

+tH' cos&t& sin&t&(2)&1(p+2)tlol+Xoll+)&011),

L» ——rH cos&t&[(a+b) (plot+sport+ opoI&)+ (b)2P»o7

(b a)—
+rH sin/I l (po» —poll),

2

L31 = —rH Sin&t&L(a+b) (pllo+ppo»

+3P011)+(b)2p1'017.

001
010
100
111
111
110
101
Oii
011

E cos2$+ sin'f
cos'p+E sin'Q

I
-', (2+E)—2(1—A.) co& sing
-', (2+E)+2 (1—E)
cos2&+&x (1+E') sin p
sing@+&i (1+E) cos @
—,
' (1+E)—(1—E)

TABLE I. The transport integrals are given by

p', =f (8f0/8 E)rEdft [1+B ((dr) 3j
arith similar expressions in 72 and 7-' for p, and 'A, . 8 is related
to s as sho~vn. A. —:ajb.
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|'2+It )
X 1+(ter)'I

I
. (23)

3 )APPENDIX B. RELATIONS FOR
DETERMINATION OF K Now take the relation

Case 8 Spjteroids. —Using (18), consider the relation (4i (2+1/Ei /2+E
( ) (b) ~ 3 J t. 3 )LL22 L11 ]0=90 (201 /b) (~111+71111)0=90 )

The transport integrals are given in Table I. The (4~ ( fgfg~
components of L", L~, and L can be determined from I L22 L11 ]90 I IJ I

I~+tf~(01~)2
Table I and (17), (18), and (19) respectively. L»",
L11, and L11 are shown in (9), (10), and (11).

and

[Ltt ]y gg'= s(1/b)(2+b/a)(ottt+1rnt)11=90'. (21)

(cifg) (2+K)
I
r«~L~r]2 1+(~.)'I —

I (24)
&BI ) 3 J

Since all 111-type spheroids are at the same position
relative to H on an axis of cubic symmetry, the forms
of (20) and (21) become simpler. From (18) and
Table I, we find

t'4~ t'2+1/K)
I (Bfgi

LL11 ]90'=
I

&b& ~ 3 )& &ad)

)2+E q
X 1+(01r)'I I, (22)).

Then (23) and (24) lead immediately to (13).
Note that it was not necessary to perform any

integrations to obtain (13); thus, this relation has the
very general properties of being independent of

I
HI

and of any assumption on r (other than that of the
theory: r is constant on a surface of constant energy).

Case A Splseroids For case 2.
—

, we find (12) from a
similar calculation, using (17) and Table I. This relation
also is independent of

I

H
I

and any assumption on r
The accuracy of the determination of E will increase
with

I

H I, however.
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Decay Properties of 74-Second Ag"1 t
ULRIcH L. ScHINDEwoLF) JQHN W. WINcHEsTER) AND CHARLEs D. CQRYELL

(Received July 23, 1956)

Silver activities were separated by a rapid elution with concentrated HCl from an anion-exchange column
containing 22.5-min Pd'" as PdC16= from deuteron-bombarded Pd' 0. The decay of Ag"' was observed with
a half-life of 74+3 sec, and its radiations were compared by aluminum absorption with those of 40-sec Ag"
Conversion electrons and x-rays are seen, with less than 0.1% P decay to Cd"'. Search for 49-min Cd'"
showed less than 0.01'„P decay to this species. Essentially all of the decay of Pd"' goes to Ag'" .

INTRODUCTION

''Ki connection with studies of palladium and silver
~ ~ isotopes found in fission, ' we have had occasion to
consider the isomerism in neutron-rich silver isotopes
formed by decay from palladium. The experiments
described in this paper are half-life, absorption, and
P-spectrometric measurements of short-lived silver ac-
tivities extracted from deuteron-bombarded palladium
in order to characterize Ag"'"' more sharply.

t This work was supported in part hy the U. S. Atomic Energy
Commission.
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Massachusetts Institute of Technology, Cambridge, Massa-

chusettss.

' J. W. Winchester, Ph. D. thesis in chemistry, Massachusetts
Institute of Technology, August, 1955 (unpublished).

Short-lived isomeric states are known' ' for both of the
stable isotopes of silver, 44-sec Ag'" and 40-sec Ag'" .
Additional evidence of a short-lived Ag'" has also been
reported: its conversion electrons of 60-kev energy have
been found' in equilibrium with 22.5-min Pd'", an upper
limit to its half-life has been set at 5 min, and 48.6-min
Cd'"'"' (11/2) is reported as a decay product. '

Because of similarities among Ag"', Ag'", and Ag y

it is not unlikely that Ag'" has a measurably long half-
life. In all three, Z= 47 and S is even. Measured nuclear

2 R. W. King, Revs. Modern Phys. 26, 327 (1954).' Hollander, Perlman, and Seaborg, Revs. Modern Phys. 25, 469
(1953).

4 C. L. McGinnis, Phys. Rev. 87, 202 (1952) and private
communication cited in reference 3.

'P. C. Stevenson and H. G. Hicks (private communication
cited in reference 3),


