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Spectrum of Turbulent Fluctuations Produced by Convective Mixing of Gradients
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Isotropic fluctuations of a passive scalar P produced by turbulent convection are investigated. The
source of irregularities is considered to be the turbulent mixing of an established gradient of P. The mixing
velocity field is described by Heisenberg s spectrum for homogeneous, isotropic turbulence. Replacing the
(self-mixing) transfer of energy down the spectrum by an equivalent diffusion term, the local fluctuation
spectrum becomes
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where k, is the viscosity cutoff wave number of the velocity field. In the inertial range (k((k,) this result
agrees with the spectrum deduced from purely dimensional arguments. Support for the above spectrum.omes from the scattering of radio waves by dielectric fluctuations in the troposphere and ionosphere.

I. INTRODUCTION

'MPORTANT new modes of radio propagation via
~ - the ionosphere and troposphere have been identified
with scattering by irregularities of the dielectric con-
stant. The stochastic nature of signals so received
suggest that the atmospheric Quctuations themselves
form a random process in space and time. The physicist
is asked to construct a model for the production of such
irregularities and from it to predict their observed
statistical properties. In so far as the dielectric constant
is determined principally by water vapor content in the
troposphere and electron density in the ionosphere, the
problem is to describe Quctuations of a passive scalar
quantity produced by the turbulent vector velocity
field of the atmosphere's neutral Quid. Its solution
evidently transcends radio scattering and is of interest
to a variety of physical processes which are sensitive to
Quctuations in the working agency.

Villars and Weisskopf' first imagined these Quctu-
ations to be produced by pressure Quctuations in the
neutral Quid which accompany its velocity pulsations.
Variations in the density of the scalar were related to
variations of the fluid and these (adiabatically) to
variations in the pressure. A more recent view is that
this mechanism is not strong enough to account for the
observed irregularities, and it is now proposed that
mixing of the scalar's established gradient by the
neutral Quid's turbulent convection is the dominant
mode. -'' Gradients of electron density associated with
the ionospheric layers, for instance, give reasonable
agreement with measured power levels at very high
frequency (VHF).

This paper accepts the qualitative description of
gradient mixing proposed by Villars and Weisskopf and
attempts to describe the process analytically. The
scalar s spatial variations are characterized by a diGu-
sion equation in which the convection term's velocity

' F. Villars and V. F. Weisskopf, Phys. Rev. 94, 232 (1954).
2 F. Villars and V. F. Weisskopf, Proc. Inst. Radio Engrs. 43,

1232 (1955).' R. M. Gallet, Proc. Inst. Radio Engrs, 43, 1240 (1955).

vector is the turbulent solution(s) of the Navier-Stokes
equation.
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P(r, t) l=vV U (r, t) —
i i. (1.1)
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To this, we adjoin the incompressibility condition

U. (r,t) =0, (1.2)

which is valid so long as the velocity fluctuations are
small compared with the local speed of sound —as they
surely are. v=ti/p is the kinematic viscosity and one is
to sum over repeated indices. This study will exploit
previous (aerodynamical) studies of the neutral fiuid's
velocity field. 4

We shall develop and illustrate the theory by identi
fying the passive scalar f with electronic density. If
.3 0(r) is the stable plasma configuration, and X(r,t)
describes the space-time Quctuations induced in it by
the turbulent convection, the irregularity is

0 'i'(r, t) = tV (r,t) Xo(r). —(1.3)

(1.4)

The spectrum is defined in terms of q and the normal-
izing volume t/' by

S(k)
(q(k, t)q(k', t)) = 8(k+k')

Ark'
(1.5)

4 See for instance, G. K. Batchelor, The Theory of Homogenous
Turbulence (Cambridge University Press, New York, 1953).

A quantity of central interest for physical applications
is the space Fourier transform

T706



SPECTRUM OF TURBULENT FLUCTUATIONS 1707

Angular brackets indicate time and/or ensemble aver-
aging. By inverting (1.4), one finds that the mean
square fluctuation at a point is equal to the integral of
S(k) over all wave numbers:

the integro-differential equation,

Bit (k,t) dSp
+[2nNp+Dk']rt(k, t)+ j V (k, t)

Bt dh

(KV'(r, t))= I dkS(k). (1.6) +i) d'lk V (k l, t)—rt(l, t) =0, (2.4)

Insofar as the Fourier transform (1.4) describes fluctu-
ations which are localized in space to a dimension
l=k ', the wave number k may be interpreted as an
inverse blob size, and S(k) describes how each blob
size range in the decaying hierarchy contributes to the
mean square fluctuation at a point. Our task is to
deduce this function.

II. EQUATIONS OF TURBULENT MIXING

Imagine the electrons to be frozen into the neutral
turbulent fluid (gas). Now consider what happens to an
initial gradient of ionization. Motion of the neutral
carrier transfers electrons from low- to high-density
points on this gradient's profile and vice versa. These
intruding cells appear as fluctuations against the
ambient profile —and scatter accordingly. We imagine
that this transfer is accomplished by turbulent con-
vection, and that the resulting irregularities are erased
by diffusion and recombination.

Let 4V (r, t) be the local electron density in the mixing
medium. Its total time change is related to the ion-
ization rate I(r), recombination coeflicient n, and diffu-

sion constant D by the continuity equation. '

BN(r, t) 8
+V.(r, t) N (r, t)

Bt 8r

=I(r) uN'(r, t)+DP—N (r,t). (2.1)

The convective velocity V (r,t) is the divergence-free
solution of (1.1). Since V (r,t) is a stochastic function
itself, it induces statistical fluctuations in the mixed
electron configuration. If there were no turbulence, a
static profile Np(r) would be established satisfying,

O=I(r) —nT '(r)+DR Yp(r); (2.2)

and such solutions have been discussed frequently.
We are interested here in the density fluctuation,

(1.3). Subtracting (2.2) and (2.1) and neglecting non-
linear terms, we find that 6V(r, t) satisfies

88K 8
+[2ciiV p DVP]t'4N = —V —[Np+KV]. (2.3)

8t Br

It is quite a good approximation to hold Ep constant in
the recombination term and to let the gradient of lVp

be constant on the right hand side. Introducing Fourier
transforms for tiN and V, we find that it(k, t) satisfies

~ This approach was suggested by Professor Villars and Pro-
fessor Weisskopf.

where j is a unit factor in the direction of the (initial)
ionization gradient, probably vertical.

If the integral or self-mixing term in this equation
were negligible, one could proceed with an analytic
solution; it (k, t) then behaves like the output of an E I. —
filter driven by a random input. As a rule, one may
neglect recombination effects in comparison with
diffusion "damping, " so that

dEp r"
rt(k, t) = du exp( —Dk'u) j V (k, t—u). (2.5)

dh ~p

To average this expression over the statistical V, we

use a result of homogenous, isotropic turbulence
theo ry4:

(V.(k, t) V, (k', t+ r))
E(k)

=8(k+k') —8 p-
4zk' k'

k kp
C(k, r) (2.6).

C(k, r) is the time correlation of fluctuations within a
fixed wave number range, and is ~sot known adequately
at present. The spectrum of kinetic energy E(k) adopted
is Heisenberg's generalization' of Kologomoroff's simi-
larity result (k "').

Vp' 1 1 1
E(k)=- k) kp ———. (2.7)

lpga
k'" [k'/k, '+1]"' lp

The smallest blob wave number k, is given in terms of
the large blob (energy input) parameters and v.

k,4=
pP(VpP/lpv'). (2.8)

In the high wave number range, a reasonable assump-
tion for the time correlation is'

C(k, r) =exp( —vk'r), (2.10)

In the lower E region, (80 km) for instance, 2nN0 ——10 ' sec
and D=104 cm' sec ', but one is interested in values of k=~
meters) t 2o.E'p/D]~.

7 W. Heisenberg, Z. Physik 124, 628 (1948).
This C(k, ~) implies infinite values for the fluid's (rms) acceler-

ation and is hence quite improper for small r, where it should
have zero slope.

Combining Eqs. (1.5), (2.7), and (2.8), we find for the
spectrum:

(dNpq ' t'" r"
S(k)=E(k)~

~
sin'p ~~ du dv

( dh) ~p

Xexp[ —Dk'(u+v)]C(k,
~

u —v ~). (2.9)
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INPUT FROM MIXING OF
AMBIENT PROFILE

in Fig. 1, which shows the stable spectrum and the
mechanisms which maintain it. We should note an
important difference between our turbulent mixing
model and the more familiar decay of homogenous
turbulence. ' In the latter, one adds an external source
of energy e (cm'/sec') at the largest eddy wave number
ko to balance dissipation. The source of turbulent
mixing appears explicitly in (2.4), however, and makes
contributions to each wave number interval, according
to the (decreasing) magnitude of V(k, t). If one assumes
that this energy enters the spectrum only at ko, the
input

(bE') = lo'(d tVO/dh)', (2.12)
SIMILARITY

RANGE

FiG. 1. Mechanisms which sponsor stable spectrum.

where v is the kinematical viscosity appearing in (1.1).
The integrations are now easily performed and the
spectrum (2.7) introduced to give

t'CkVo) '
t Vgp t' sin'p

S(k) =
i

E dh ) ( lo&l ED(D+v)ht

1 1
(2.11)

E k'"') L1+ (k/k, )4j4h'

The angle g is that included between k and j, and hence
is very nearly zero for symmetrical scattering and a
vertical gradient. '

The point of the matter here is that local gradients
in the mixed plasma can be as steep as or steeper than
the ambient profile and need not have the directional
properties of the original gradient. The integral term
in (2.4) cannot be omitted. The ambient profile provides
a nonisotropic gradient source which is stirred into the
spectrum p(k, t) by blobs of all sizes simultaneously.
This initial in-mixing retains most of the parental
anisotropy, so that the resulting spectrum (2.11) does
not scatter forward —as we found. The next step is one
of self-mixing, which redistributes the fluctuation
"energy" of the larger blobs to smaller ones. The
integral term in (2.4) evidently describes this transfer
mechanism, for it couples different wave number ranges
together. " Since the velocity field itself is assumed
isotropic, it acts progressively to erase the anistropy of
the parent source and to create a stable isotropic scalar
field. This redistribution or self-mixing continues until
the fluctuations are damped at high wave numbers by
diGusion. The spectrum's shape evidently depends
critically on just how this energy is distributed and
how long it takes a given input to reach isotropy by
self-mixing.

These intuitive ideas are represented schematically

' See Sec. V.
' In analogy with the inertial (nonlinear) term in the Navier-

Stokes equation Lsee Eq. (1.1)g.

would overestimate the mean square fluctuation, as
Gallet has found. '

III. DIMENSIONAL SOLUTION FOR
INERTIAL RANGE

(RV'(r, t))= " dkS(k). (3.2)

The only quantity appearing in (2.4) which has the
units of b.V (i.e. , electrons/cc) is d V~/dh, so that S(k)
must be proportional to its square. Since D and v are
approximately equal, " the only other parameters are 6

and v, out of which one constructs (again by purelv
dimensional arguments) the characteristic speecl anti
length of the velocity field.

v= (Ev)' l= (v /E)~.

We need only assume that

S(k) = (chV o/dh)'Pp(kl)

(3.3)

for P(x) a dimensionless function, to insure the dimen-
sionality of (3.2). In the inertial range k«k, redistri-
bution alone is important, so that the spectrum S(k)
ought to be independent of v (or D). One satisfies this
condition with the choice P(x) =x '.

S(k) = (d'Vo/dh)'(const/k'); (3.4)

This result is quite independent of the velocity field;
except for the restriction k) 1/lo on Heisenberg's spec-
trum (2.7). This result agrees with Villars and Weiss-
kopf's treatment, ' but is at variance with both Silver-

"v—D in the ionosphere since space charge eAects bind the
electrons to their ionized carrier's frictional experience. For other
applications, one may need to discriminate between cutoff
wave numbers for the scalar and velocity fields.

In the inertial range kook(k„one may use purely
dimensional arguments to predict the spectrum. As the
self-mixing proceeds, one may expect isotropy and
thereby specialize Eq. (1.5).

(rt(k, t)g(k', t))=b(k+k')S(~k~)/4xk'. (3.1)

The mean square fluctuation at a given point in space
is thus
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man" and Batchelor" who assumed a k-independent
external source of turbulent input. [See (2.12).]

The loss of fluctuations by diffusion at high wave
numbers is described by the second term in (2.4).
Neglecting recombination, the power loss is computed as

( dlIIt 0't
dkk2S(k) =2D(

& dh)
(3 5)

IV. TRANSITION RANGE

To bridge the gap between our similarity (k ') and
dissipation (k ") results, we introduce the concept of a,

transfer diffusion D'(k) to describe the removal of
fluctuation energy from a wave number interval k to
all higher k. Heisenberg' exploited this same concept in

treating the nonlinear, inertial transfer of kinetic energy
as an equivalent viscosity in the velocity equations
(1.1), and so derived the transition spectrum (2.7).
In this spirit, we rewrite (2.4) as

Bq(k, t) t dX, ~y[D+-D'(k)]k'~(k, ~) =
~ ~q U (k, t). (4.1)
k dh

The equivalent diffusion constant D'(k) should depend
principally on the convective velocity field, so that by
purely dimensional arguments one has

D'(k)=y ~ dX[E(X)/V]l, (4.2)

where ) o is a constant determined by the spectrum's
shape alone. On purely dimensional basis, one would

have argued from (3.3) that

P = (d.VO/dh)'vl,

which is again equivalent to (3.5) for D= v. The
spectrum at high wave numbers evidently cannot be
computed from dimensional arguments, since (3.5) is
satisfied identically by (3.4). The iteration approach
which led to (2.11) could be pursued to the next step
by substituting (2.5) into the integral term of (2.4).
This converges to k " [see (2.11)] in the high wave
number range, but is not sound in the (k,) transition
range, where self-mixing is still quite the largest
redistribution mechanism.

one may substitute from (2.7), and find

D'(k) = (3y/4/oi) (Up/k"'). (4.3)

When this result is inserted into (4.1), one sees that
p(k, t) may be expressed exactly as in (4.5), except now

with an additional damping term. Using the results
(2.5) through (2.8) and dropping the viscosity v when

it appears with D (equivalent to an infinite time
correlation) for convenience, we have

sin'P(diVpi ' Uo'

s(k) =
i

E. dh ) lol [D+43' UO/E-o&k4"]2

X (4.4)
[1+k'/k, 4]4"

If k is small, this gives the similarity k ' expression
(3.4), and at high numbers it approaches the k "result
adduced in (2.11). It would appear that we have
succeeded in describing the diffusion transition range

(k,), where both self-mixing and dissipation are com-

peting.
The persistant angular (~t ) dependence in (4.4)

requires a word of explanation. By replacing the self-

mixing integral term by a transfer diffusion constant,
we have destroyed the directional properties of this
term. At this stage however, we are quite sure that
considerable self-mixing has taken place, since the
direct input mechanism at these'wave numbers is small.
To enforce this physical picture on the over-simplified
representation (4.1), we average over all angles

relating to the original gradient orientation. This is

quite important for vertical gradients associated with

ionospheric layers, and probably not so critical for
meteor trails with random orientation.

Our result (4.4) can be cast in more convenient form

by recalling the definition (2.8) of the cutoff wave

number. For our purposes, one may set D=pv, so that
the transition to high wave numbers depends only on

k/k, .

(d.V,q' 1 1 1
S(k =

E dh 3 k' [1+(k/k, )'i']2 [1+k'/k, ']"'
k) kp=1/tp (4.5).

where p is an absolute constant of order unity. One can
also argue that g(l, t) in (2.4) can be brought outside
the integral as g(k, t), since U (k f, t) is largest —a—nd
hence most effective as a convective mixer —for k near l.
The further condition k U (k,t) =0 tells one that small

values of l contribute little to the integration. When

q(k, t) is so removed, it is not dificult to infer (4.2).
The transfer diffusion evidently depends on the

inertial range of the velocity spectrum E(k), so that

'~ R. A. Silverman, J. Appl. Phys. 27, 699 (1956).
'3 G. K. Batchelor, Cornell University Electrical Engineering

Research Report 262, September 15, 1955 (unpublished).

This is the central result of our study. It is interesting
that it depends only on the velocity field which sponsors
the fluctuations through its viscosity cutoff wave num-

ber k, as given by Eq. (2.8). The fiuctuation intensity
depends rather on the steepness of the mixed profile.
In so far as the deduction of (4.5) relied solely on
averages over spatial volumes of size lo 1000 meters
(i.e. , largest blob size), the above expression may be

considered a local formula. One should therefore expect
large fluctuations at points of rapid change on the
profile (inversion layers, shears), which contradicts
neither one's intuition nor experiment.
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1 (k)
o =r (2')' —(iq(k, t) P)=r(PS 2gr'

V k'
(5 1)

where ra=2.8&10 "cm is the classical electron radius.
The vector k is the diRerence between the upgoing
and downcoming propagation vectors, and is almost
always oriented along the vertical. Its magnitude
depends on the radiation's wavelength P) and scat-
tering angle 0.

~

k
~

= (4'/X) sin( —',0). (5.2)

Comparison of simultaneous transmissions over the
same path with diferent frequencies and scaled aerials
permits one to map out S(k) by (5.1). For the National
Bureau of Standards' experiments, "it has been found"
that a good fit to the data is obtained with (4.5) if k,
is chosen as (1.5 meters) '.

The troposphere's dielectric constant is set mostly
by concentrations of water vapor. In this case, the
ionization rate must be replaced by gravitational and
buoyant forces, while the recombination term is rigor-

i4 Note:

P(0) = d're'r. o
1 . V

8~' v 8z"
isBailey, Bateman, and Kirby, Proc. Inst. Radio Engrs. 43,

1181 (1955).
& A. D. Wheelon, J. Geophys. Research (March, 1957).

V. EXPERIMENTAL SUPPORT

For radio-wave scattering at very high frequency by
electron fluctuations in the ionosphere's lower E region,
it has been shown' that the received power is propor-
tional to'4

ously zero. It has been found for uhf and shf waves
scattered by tropospheric fluctuations that the meas-
ured power is proportional to

1
P~X 'S(k)—, (5.3)

'7 A. D. Wheelon, Proc. Inst. Radio Engrs. 43, 1381 (1955).
"Norton, Rice, and Vogler, Proc. Inst. Radio Engrs. 43, 1488

(1955)."B.R. Bean and F. M. Meaney, Proc. Inst. Radio Engrs. 43,
1419 (1955).

where k has the meaning of (5.2). In the troposphere
k, ' is of the order of millimeters, " so that only the
similarity reduction of (4.5) is of interest.

P ~ (dn/dk)'X/[sin (—',0)]'. (5 4)

A linear dependence on wavelength is definitely favored

by Norton's careful analysis" of numerous broad-beam,
tropospheric scatter links. A useful correlation between
scattered power and the refractive gradient computed
from radiosonde records has also been obtained. "

In the measurement of dielectric fluctuations directly
with microwave refractometers (resonant cavities)
mounted in aircraft, there is no sensible correlation
between gust (velocity) forces acting on the aircraft
and intensity of refractive fluctuations. This experience
at least does not contradict the minor role played by
the turbulent velocity field (i.e., Uo, lo) in the spectrum
(4.5).
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