
PH YSICAL REVIEW VOLUME 105, NUMB ER 5 MARCH 1, 1957

Linear and Toroidal Geons

FREDERICK J. ERNST, JR.
Palmer Physical Laboratory, Princeton University, Princeton, New Jersey, and University of California,

Los Alamos Scientific Laboratory, Los Alamos, Nem Mexico

(Received August 16, 1956)

It has been argued by Wheeler that the coupled equations of
the electromagnetic field and the gravitational field of general
relativity,

R;I ——,'g;gR = (87'G/c4) T;I,
T;"=(1/4 7)r(F;;F"' ,'F pF—S—b;~),

( g) 1(r1—/s*')( f)tF—"=0
I';, = 8A;/Bx' —W;idx&,

should admit a set of completely singularity-free solutions,
A;, g;& (i, j, 0=1, 2, 3, 4), with the following properties: 1. The
gravitational mass originates solely from the energy stored in the
electromagnetic field. In particular there are no material masses
present. 2. No charges or currents are present, and A4=0 every-
where. 3. The other components of the electromagnetic vector
potential A; are vanishingly small except within a toroidal region
of space. Physically the electromagnetic field consists of light
waves circling the torus in either direction. Such a torus of electro-
magnetic field energy is called a toroidal geon. An exact and
detailed mathematical treatment of the general toroidal geon
problem would be extremely complicated, requiring the solution

of a set of coupled nonlinear partial differential equations. How-
ever, in the present paper it is shown how toroidal geons of large
major radius to minor radius ratio may be studied by a simple
method of approximation, providing one has a complete knowledge
of the so-called linear geons, the electromagnetic field energy of
which is confined to an infinitely long circular cylinder rather than
to a torus. A detailed mathematical treatment of linear geons
proves to be possible, as is demonstrated in this paper. The
electromagnetic field potentials A; i = (1, 2, 3) of a toroidal geon
or of a linear geon possess the same general nature as the electro-
magnetic field potentials encountered in the solution of classical
toroidal and cylindrical wave guide problems. In this paper the
case is considered where the electromagnetic field of the linear
geon is a monochromatic standing wave vibrating in the lowest
transverse-electric mode of the system. The field equations are
derived from a variational principle, and these equations are
solved numerically. The results are not surprising, as the general
form of the unknown functions can be ascertained by quite simple
considerations. These results give the foundation material for a
proposed later treatment of toroidal geons.

of an electromagnetic field implies the existence of a
gravitational field. Because electromagnetic fields are
ordinarily weak, they ordinarily produce a gravitational
field and a curvature in the metric small enough to be
neglected. However, in the present paper we propose
to consider very strong electromagnetic fields, for which
a considerable deviation from Bat space-time is induced.
The problem will be that of finding solutions of the
coupled gravitational and electromagnetic field equa-
tions, in the absence of material bodies, charges, and
currents. One such solution has already been found by
numerical integration of the field equations. ' The
electromagnetic field energy is essentially confined to a
spherical shell of radius R. The gravitational field
outside the shell is an ordinary Schwarzschild field
corresponding to a mass M, where M=4c'R/9G; c is
the velocity of light and G is the gravitational constant.
Such a ball of light Wheeler calls a spherical geon or
gravitational-electromagnetic entity.

Wheeler has argued that spherical geons must be
unstable, tending to transform into another form of
gravitational-electromagnetic entity with the electro-
magnetic field energy essentially confined to a toroidal
region of space. He suggested this study of the nature
of toroidal geons. '

1. INTRODUCTION

'AXWELL'S theory of the classical electromag-
- ~ netic field may be easily expressed in terms of

the general theory of relativity. Let 3; be a covariant
vector, to be interpreted as an electromagnetic 4-

potential; then an electromagnetic field tensor may be
defined by the relations,

F,;=8&,/coax' 8 4,/r—)x'.

The second Maxwell's systems of equations is then
defined by the tensor equation, resulting from this,

r)F;,/r)x" +r)F) r/r)x'+ r)Fg ,/r)x& =0, . (2)

and the first of Maxwell's systems of equations is

defined by the tensor-density relation

BQ"/c)x&=~~',
in which

We shall assume that the current-density is identically
zero throughout space-time, so that g'=0. Therefore,
we shall be dealing always with a space-time free of all

atomic electricity and matter. Mass will arise only as
a concomitant of the energy of the singularity-free
electromagnetic field.

Since Maxwell's equations depend upon the metric
tensor g;I„ in the presence of a gravitational field the
solution of those equations will be difI'erent than the
solution in free space. However, strictly speaking there
is no such thing as "free" space, since the very presenc

Now at University of Wisconsin, Madison, Wisconsin.

2. TOROIDAL GEON

The electromagnetic field of a toroidal geon is very
similar to that within a toroidal wave guide. Each of

' J. A. %heeler, Phys. Rev. 97, 511 (1955).
s F. J. Ernst, senior thesis, Princeton (May 2, 1955) (unpuh-

lished).
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these fields is characterized by possessing two orthog-
onal sets of normal modes of vibration. In the limiting
case of a toroidal wave guide of infinitely large major
radius (i.e. , a straight wave guide of circular cross
section) and in the limiting case of a toroidal geon of
infinitely large major radius (i.e., a linear geon) the
two orthogonal sets of normal modes are designated
TE (transverse-electric) and TM (transverse-mag-
netic): in the former there is no component of the
electric field along the axis of the guide or geon while in
the latter there is no component of the magnetic field

along the axis. Even in the case of the toroidal configur-
ations of finite major radius we shall use the terminology
TE and TM to designate the two orthogonal sets of
normal modes, although the words are not quite
appropriate. Since the simple substitution E~H,
II—+—E transforms the complete set of TE modes into
the complete set of TM modes, it is only necessary
that we consider TE modes in our discussion of the
geon, thus simplifying the problem somewhat.

We shall specialize the problem of the toroidal geon
by assuming that the electromagnetic field consists of
a standing wave which is monochromatic and vibrating
in the lowest TE mode of the system. We could equally
well consider the case where three times as much energy,
for example, runs in the +p direction as in the —p
direction, but this would unduly complicate the
analysis. Similarly one could consider higher modes of
vibration, corresponding —in ray languag" to photons
executing spirals about the line of energy concentration.

Let us adopt a cylindrical coordinate system
(x&,x&,@,T) where the x&-axis is the axis of symmetry of
the toroidal geon, x2 measures distance from the x~-axis,
and @ measures the angle about the x&-axis. Weyl has
shown that any axially symmetric static gravitational
field can be completely described by a line element of
the form

ds'=+V(dxP+dx ')+Vdg' WdT', (4)—
where U, V, and t/t/' are functions of x~ and x~ alone
and where T is the cotime (i.e., time multiplied by the
velocity of light, c).' Of course, the energy of the
toroidal geon will show ripples with a spacing in the p
direction of one-half wavelength —,'X, where X/2n-=X
=1/k. This is unavoidable as long as we are unwilling
to superpose solutions with a continuous spectrum of
frequencies. However, if ~'A is much smaller than the
minor radius of the torus, the gravitational field will

be almost exactly axially symmetric because of the
long-range character of gravitational forces. This long-
range character will also help to smooth out the
temporal variations of the gravitational field because
of the finite velocity of light. Hence, by restricting
ourselves in such a way that ~~X is smaller than the
minor radius of the torus, we may make use of Weyl's
simple form of the line element (4).

Weyl's line element (4) is expressed in terms of
' H, Weyl, Ann. Physik 54, 117 (1917).

and

haik

Naturally the g;, 's represent the coefficients of the
quadratic form (5). The signs ( ) about F;,F'& signify'
that Ii;;Ii" is to be averaged over the coordinates p
and T. The field equations which result from carrying
out the indicated variation are rather involved partial
differential equations. No attempt has been made to
solve them exactly, for hydrodynamics ofI'ers instances
where the same type of problem has been encountered
and solved by a simple method of approximation. 4

Here, as there, consider the case of an annular source
of gravitation whose minor radius is very small com-
pared to its major radius. At distances large with respect
to the minor radius of the toroidal geon the electro-
magnetic field can be considered vanishingly small and
the gravitational field can be considered identical to
the gravitational field due to an infinitely thin ring of
energy. The latter field, however, can be described
rather simply in terms of elliptic functions. The ratio
of the minor radius to the major radius is assumed to
be so small that the exterior field just described is
valid for distances quite small with respect to the
major radius of the geon. As one approaches closer to
the torus, however, the gravitational field will diverge
from that of an infinitely thin ring. This region of
space we shall call the transition region. We may
consider the electromagnetic field relatively small in
this region also. Right at the torus itself, however, the
electromagnetic field will suddenly become very large.

4 H. Lamb, Hydrodynamics (Cambridge University Press,
Cambridge, 1932), sixth edition, p. 707.

cylindrical coordinates. It is of advantage to reexpress
it in terms of coordinates particularly appropriate to
the toroidal geometry of the present problem. Letting
xi= p sin8 and x&=n+p cos9, where n is approximately
the major radius of the geon, we can rewrite the line
element in the form

ds'= p 'R'e '&fdp'+p fd9'+II 'R 'e'&(1+D)n'dqP])
e'&d—T') (5)

where R, P, and D are functions of p and 0 a.lone, and
the constant 0= 1/[c (the frequency of the radiation)].

The electromagnetic field equations (3) together with
the gravitational field equations may be obtained by
means of the variational principle'

f
' L(c'/16~G)R

J J J J
—(I/16~c)(F'sF")j(—g)'~I'=o (6)

Here the F;; are defined by Eq. (1) while R is the
space-time curvature scalar
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A, =O, A„=O,

Ag=B(r) sins cosQT, Ar =0,

where we have chosen the unit of length is such a way
that the wavelength along the z axis is exactly 2x.
Using (10) and (11) to evaluate Eq. (6), we obtain the
action principle of the linear geon,

]dBy' — dR dP
8 ——,'R 'e'&

I I
—DB' +4

i E dr ) dr dr

In this interior region the torus looks very much like
an infinitely long cylinder, and hence we expect it is
reasonable to assume the electromagnetic and gravita-
tional fields in the interior region may be considered
identical to the corresponding fields in a linear geon,
that is, in a straight beam of light. In the present paper
we are primarily concerned with the study of the fields
which occur within the interior region of the toroidal
geon.

3. LINEAR GEON

In the interior region of the toroidal geon the line
element (5) may be simplified, because there R, P, and
D are merely functions of p. We define a new inde-
pendent variable z such that ds=n~ and a new
independent variable r such that

d(lnp)/dr=Q '(1+D—) &R 'e'e— (9)

As a result of this transformation, the line element (5)
may be written

ds'=Q '(1+D)e'&(ds'+dr')+R'e '&d8' e'&dT' (—10)

where R, P, and D are now considered to be functions
of r alone. This line element (10) is in the general form

(4) given by Weyl for axially symmetric static gravita-
tional fields.

In the case of the linear geon the lowest mode of TK
radiation is characterized in the (s,r,8,T) coordinate
system by the vector potential components.

R—+r,

P—+2M ln(r/a),

D~Q2 (r/a) SM2—sill

(17)

where M=G/c' times the mass per "unit length" and
where a is a constant analogous to the free additive
constant in the Newtonian potential function
=2M ln(r/a). The values of a, Q, and M cannot be
determined in the case of a linear geon that is really
infinitely long.

Each solution B(r), R(r), f(r), and D(r) of Eqs. (13)
through (16) possesses an asymptotic form (17)
uniquely determined by the three constants, M, 0,
and a. It might appear at first sight that we would
have to numerically integrate Eqs. (13) through (16)
for every possible value of the three constants. However,
there exists a scaling law for linear geons, such that
every solution of the field equations may be obtained
from those solutions for which a= i. Observe that the
transformation

B~g2MB

R—+R,

P~—2M lna,

D—+D,

(18)

leaves the field equations (13) through (16) unchanged
in form, but it changes the asymptotic form of the
solution from

/~2M lnr,

D ~Q"rsM~-SM

At large distances r from the axis of the beam of
light, the function B will tend rapidly to zero. From
Eq. (14), we see that R(r) tends then to a linear
function of r, which without loss of generality we may
take to be simply r. Then

to)dP~ ' dR d—2RI —
I + —Pln(1+D)7 dr=0 (12).

E dr) dr dr

where
By carrying out the variations with respect to the four
unknown functions, B, R, P, and D, we obtain the
field equations of the linear geon:

R~,
~2M ln(r/a),
D~Q2 (r/a) 8jr2 8M—

4M 4M' gI (19)

d'B/dr*'+R 'e'&DB=O, where dr*/dr=Re '& (13)

d'R/dr'= ,'R 'e'&(1+D)B', - (14)

d |dPq d'R — )dBq'
R—

I

— = ;R 'e'&
I I

DB2 -(15)
dr E dr) dr' E dr )

TABLE I. Summary of solutions by electronic computer of the
eigenvalue problem for the linear geon. Column 1:number of the
curves in Figs. 1, 2, 3, and 4. Column 2: mass per unit length
(unit=c~/G). Column 4: characteristic vibration frequency of
the standing electromagnetic wave (unit =c)/X).

(dPq ' d'
4 +2

I

—
I + Lln(1+D)7

dr' E dr) dr'

No.

dB
= iR-2e~~

I I
DB2 (16)—

E dr)

0.15075
0.132
0.109
0.080
0.042

4M —4M&

0.512
0.458
0.388
0.294
0.161

2.895
2.66
2.48
2.41
2.45
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Corresponding to each solution of the field equations
which we find, we can deduce values of the constants
4M 4M—' and 0' in Eq. (19). At this time we have
numerically solved the field equations five times. For
each of the five solutions we have graphed s—'~B(r),
R(z'), P(r)+2M in@, and B(r)—= ln(1+D). The circular
frequency is given by Eq. (19), where the constants
4M —4M' and 0' are tabulated in Table I.

Finally it should be recalled that the unit of distance
in all the preceding equations has been fixed by re-

quiring that the wavelength in the s direction be
exactly 2zr. This means that all distances (e.g. , r, a,
and R) have been expressed in terms of the reduced
wavelength of the radiation in the s direction. The
reduced wavelength, lt=X/2zr, is equal to the wave-

length divided by 2z. It is also true that the frequency
0 has been expressed in terms of c/X, where c is the
velocity of light. Finally, the mass per unit length M
has been expressed in terms of cz/G as a unit, where G
is the Newtonian gravitational constant. In this way
all the quantities which enter our equations have been
expressed as dimensionless quantities.

Examp/e. To find the p—eak rms electric field strength
Ep k, and the values of the various metric compo-
nents at the point of maximum field strength. Suppose
it is given that the reduced wavelength of the radiation
X= 10' cm, the frequency 0= 7.72 sec ', the mass per
unit length M = 2.04)& 10" g/cm, and a = 10" cm.
However, the unit of frequency which we employ is
c/K=300 sec ', while the unit of mass per unit length
is c'/G=1. 35X10" g/cm and the unit of a is X=10'
cm. Hence, in dimensionless units, we have 0=2.57
X10 ', M=0.151, and a=104. Furthermore, by Eq.
(19), O'=Qa4M 4M'=2. 891. It is clear from Table I
that solution No. 1 is the appropriate one in this case.

From Figs. 1—4 we see that the maximum of B(z)
occurs at =z2.6%=2. &6(1 Qcm and that here u '~B(r)
=0.37, R(r) = 2%= 2&(10' cm, 1f (r)+2M lna=0. 4, and
B(r)—= ln(1+D) =0.4. It follows that E~,,„i,=c'G 'X 'D'
gR '-e &8= 0.935)&10' cgs units. For the metric
components, we have in cgs units (assuming the use
of cotime rather than time as the fourth component)
the following:

gzi=gzz=Q '(1+D)e'&=0 'eV&=200,

gzz=R'e '&= (2K)'e '&=20.2lt'=20. 2X10"cm',

g44 = —e'& = —0.198.

The details of the numerical calculation are contained
in the Appendix to this paper. The calculation was
performed with Dr. John Gammel at the Los Alamos
Scientific Laboratory.

4. EXTERIOR REGION

1 B ( Bf)
I=Q,

BxP xz Bxz ( Bx, &

(21)

and & satisfies the two-dimensional Poisson equation,

By By (+$ (BP)
,+,=-

I I+I I
=-O(', '.), (22)

Bxl Bxz 4 Bxi) 4Bxz 3

jith the boundary conditions y(xi,0)=0 and y(x, , ao)
=0. In the case of an infinitely thin ring, the solution
of (21) may be expressed in terms of the elliptic function
E(k). We have

where

Gzzz kE(k)
P(xz, xz) =-

zrn (xz/a)&
(23)

k=k(xi&xz) = [4axz/(xz'+xz'+n'+2axz)]&, (24)

lp

I I f & I I I I I I

5

In Sec. 3 we discussed a method of numerically
finding the values of the functions B(r), R(r), P(r),
and D(r) in the interior region of a toroidal geon. By
solving the differential equation (9), we can obtain r
as a function of p, and hence we can obtain 8, R, and
D as functions of p in the interior region of the toroidal
geon. We have, therefore, found a method of evaluating
the line element (5) in the interior region. The evalu-
ation of the line element (5) in the transition region
will be left to a later publication. Let us now consider
the simpler exterior region, in which we have to find
the gravitational field of a thin ring of energy.

V'eyl has indicated the way to solve the thin-ring
problem. ' He claims that a line element of the form

ds'= e"~ &'(dxP+dxzz)+xzze '&dP' e'&dT' —(20)

where f and y are functions of xi and xz, is a solution
of Einstein's field equa, tions R;& 00zzly if——' P satisfies
Laplace's equation,

0-2N p,2-

p.I-

0

f I i z f I i r

2 4 6 8 ip i2

I

2 4 6 8 IO 12

Fzo. 2. The func-
tion

Z(r) = (—g»&„)&,

where r is expressed
in terms of the re-
duced wavelength X.

FIG. 1. The electromagnetic field strength function B(r), where r
is expressed in terms of the reduced wavelength X,

. . . but not necessarily if, for certain subsidiary equations
must be satisfied.
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FIG. 3. The gravi-
tational potential

P(r) =-,' ln( —g„),
where r is expressed
in terms of the re-
duced wavelength X.

and

0.8

e 0.6-

~ 0.4-
+

0.2~——
0 2

l I

4

5

8 10 l2

Frc. 4. The func-
tion

S(~) =In(r+D)
= 1n (—Dpgq~/g44),

where r is expressed
in terms of the re-
duced wavelength A, .

0.4-

0
8

-0.4-

-0.8-

5

e
2 4 6 8 IO Ie

r
d(u

E(k) =
Jo L1—k' sin'cgj&

(25)

The constant m is the total mass of the ring.
In turn, if one utilizes the theory of Green's functions,

the solution of Eq. (22) may be written

I Q(yg, yp) ln/(x~ —y,)'+ (xp —yp)']&dy)dyp. (26)

We conclude that finding the exterior gravitational
field of a toroidal geon reduces to the evaluation of the
integral (26). It is not clear now whether or not y(x~, xp)
can be evaluated in terms of elliptic functions, but in
any event the integral can be computed numerically.

APPENDIX. NUMERICAL INTEGRATION OF
THE FIELD EQUATIONS

The field equations (13) through (16) may be written
in the form

5. SUMMARY AND CONCLUSIONS

The graphs contained in Sec. 3. constitute a
solution of Einstein's and Maxwell's equations free
from singularities. Physically the solution represents
an intense electromagnetic field localized within a
cylinder by the gravitational field which it creates.
Drawing an analogy with Lamb's treatment of the
problem of a rotating annulus in hydrodynamical
theory, we suspect that it is permissible to extend this
solution to include the case of the toroidal geon, a
toroidal-shaped concentration of electromagnetic field
energy. The field far from the torus and the field within
the torus have been treated in this paper. The field in
the intermediate region has yet to be calculated, but
there is hope of an easy solution via the methods
employed in hydrodynamics.

I would like to thank Professor John A. Wheeler for

suggesting the problem of the toroidal geon, and for
his willing advice and helpful criticism. Much of the
work involved in setting up Eqs. (A1) through (A5)
for numerical calculation was shared by Dr. John
Gammel of the Los Alamos Scientific Laboratory of
New Mexico. I am very grateful to Dr. Gammel for
his assistance in coding the problem for machine calcu-
lation.

8"+(e'—i)e '"B=O,

(9,') '+ '(8')'+ -'e '"8'=-0
~"+ 'p (&')'—p(e' —1)e '"~'= o

(A1)

(A2)

(A3)

8=b~r*+bp(r*)'+bp(r*)'+

l= lir*+lp(r*)'+lp(r*)py
X= -' ln(r'Lp')+Xyr*+Xp(r*)'+

b=bp+b, (r*)&+ ".
(A6)

Substituting (A6) into the field equations (A1), (A2),
(A4), and (A5), one obtains the following relations
among bj., b2, b3, l&, l2, l3, Lp, &y, &2, &p, and 6~.

bp
——In (1+Dp),

bp= —D bxo2/L ',o

lp= —Dol~/Lo',

Xg=3lp/2lg,

b p
= —(2bp/3) [Dp/4Lp'+ Xg$,

),= (7„/3)L(1——;D,)/L, —),),
hp= (2) g/3Lp') (2+Dp).

(A7)

b"+X'b'+ (2l)
—'[(8')'+ (1+3e')e—'"8'j
+4/ 'l'), ' (—3/2l') —(l')' —2 (V)'= 0 (A4)

where primes signify differentiation with respect to r*,
3= R'e '&, X= lnR —2P, and b= ln(1+D). By using Eq.
(A1), Eq. (A3) may be readily integrated twice,
yielding the simple relation

(A5)

between l and B.Here l& may be any positive constant,
but since the simultaneous multiplication of l by a
constant n and 8 by the constant n& leaves the field
equations (A1) through (A4) unchanged in form, we
can now work with any value of l& (say 1.75) in Eq.
(A5); and then, after the entire numerical integration
has been performed for this l& (1.75), by a simple
transformation we may obtain the l and 8 functions
corresponding to any other value of l&. In particular,
in order to end up with the asymptotic form (17) it
will be necessary to make l&=2—4M. Only with this
value of /q will R(r) tend to r for large values of r.

We shall first expand the functions 8, l, X, and 6 in
terms of power series about r*=0:
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From the form of Eqs. (A7) it is clear that to specify
completely any solution of the field equations which
possesses the form (A6) in the neighborhood of r*=0,
only four constants l&, Lp, Dp, and b& must be specified.
Most assignments of values to these four constants,
however, will correspond to solutions unacceptable on
physical grounds —i.e., solutions in which the wave
functions 8(r*) tends to plus or minus infinity as
r*~~. For a given set of values of /y, Lp, and Dp there
will be some maximum value of b& beyond which the
function 8(r*) turns out to be. everywhere positive
(i.e., for r*)0) and tends to plus infinity as r*—pp4p.

For slightly lower values of bi the function 8(r*) will
cross the r*-axis just once, tending to minus infinity
as r*—+~. For the intermediate. value of b~ the curve
8(r*) will approach the r* axis exponentially as r*~~
but never actually will become negative. This value of
b~ is the "eigenvalue" which we seek, for it corresponds
to the lowest mode of vibration of the system. In
practice we found that it is not at all dificult to localize
the eigenvalue b& by successive numerical integrations
of the field equations.

It is not very difFicult to derive difference equations
which in the limit of infinitely small step size Dr* reduce
to Fqs. (A1), (A2), (A4), and (A5). For this purpose
we define for any point rp* two other points, r &*=rp*
—Ar* and ri*——ro*+Ar*, and at these points define

8 18(&—1 ) 8—0 8(rp ) 81 8(rl )
1=I(t' 1 ), Zo= l(P )021 l(rl )

A, =li(r 1*), Ao ——X(rp*), Ai ——X(ri*),

A 1=5(r 1*), Ap=b(ro*), Ai=b(ri*).
In terms of these quantities the difference equations
may be written

81 280—8 1—(——Ar*)'(eQ4 1)e—'0080—

821AQ —A 1(420—21+2 1)
1(8 8 )2 2 (Ark)2e —2ApB 2

4&0+ &i—&-1

SAO —A 1(4—Ai+A 1) 4H—

TABLE II. The values of 3f, c, and 0 for the five sets
of power series coeKcients chosen.

Do
Lp
lI
b1

M
a
0

0.2
1
1.75
0.0765
0.042
0.172
1.85

0.4

1.75
0.210
0.080
0.548
2.02

0.6
1
1.75
0.3674
0.109
0.694
2.15

0.8
1
1.75
0.5352
0.132
0.726
2.30

1.0
1
1.75
0.7092
0.15075
0.717
2.44

dg2 (r/42)
OMP 4M (ds2+ dr—2)

r'(r/a) 'MdqP+—(p/ri)'Md2'

The rather complicated expression for AI was adopted
after it was discovered that the simpler expressions
that were first employed did not give good results.

Notice that Eqs. (A8) allow one to calcula, te 8, I, X,
and 5 at any point r* if the functions axe already known
at the two previous points r*—Dr~ and r~ —2hr~.
Once this process is begun, one can keep iterating in
this manner until one reaches as large values of r~ as
is desired. The only problem lies in starting the iter-
ation, and for this purpose we use the power series
expansion (A6) valid for small r*. In practice we found
that letting r &*=0.1 and Dr*= 0.01 initially and
increasing the step size as the iteration proceeded gave
quite satisfactory results. The values of 8, t, X, and 6

were calculated at the points r*=0.10 and r*=0.11 by
means of the power series. Then the values of 8, t, 'A,

and 6 at r*=0.12 were calculated by means of the
difference equations (A8) as well as by the power series.
If the two sets of values agreed, we continued to apply
(A8) until large r* values were reached and the char-
acter of the solution had been ascertained. Simultane-
ously we solved the equation dr*/dr=e" to discover
the relationship between r and r~.

The values of M, a, and 0 were computed from the
functions l(r*), X(r*), and b(r*) at large values of r",
where 8(r*) is essentially zero and where the line ele-

ment is of the form

4+Ai —A. 1

1 (81—8 1)'
+ (1+3e'o)e "o802(Ar*)2—

2Zp

—(E+F) (Ar */r0*+-,2E+ 22F),

E= (—,
' lnri* —Ai) —(—,

' lnr 1*—A 1),

Zgrp* 2 yrp*
p 1

2
/pry* gpr g*

(AS)

(see Table II). Of course it was necessary to multiply
l(r*) by n= (2—4M)/1. 75 and 8(r*) by n& in order to
compensate for the fact that we arbitrarily set l&=1.75
in all cases while we should have set l~

——2—4M.
Finally, the functions E(r), g(r), and b(r) were com-

puted and plotted. We observed that the peak value
of 8(r) did not vary considerably during the last sta, ges
of the eigenvalue search. Hence we believe that only
the tail of the function B(r) is inaccurately portrayed
in the graphs.


