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Variational Calculations in Geon Theory
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Idealized spherical "geons, " or gravitational-electromagnetic entities, of the type studied by Wheeler
utilizing an electronic calculator, are here studied by using a simple adaptation of the Ritz variational
principle. By using the simplest of trial functions, most of the relevant magnitudes are calculated with
considerable accuracy.

INTRODUCTION
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certain nonsingular solutions of the coupled
equations of classical relativity theorygand electro-
magnetism. ' Physically his solution corresponds to a
spherical shell of light held together by its own gravita-
tional field. Subsequently, the author has shown the
existence of another set of solutions corresponding to
beams of light highly concentrated by their own gravi-
tational field. ' Collectively these solutions are now
called "geons" and they form the first nontrivial
nonsingular solutions of the equations of classical
general relativity.

In this paper we shall show how a great deal of
information concerning geons can be ascertained with-
.out recourse to electronic digital computation. For this
purpose we now apply the Ritz variational principle to
the problem considered by Wheeler. '

IDEALIZED SPHERICAL GEON

In our discussion of spherical geons we shall follow
Wheeler by using a line element of the form

ds' =+ei&"'dr'+ r'(dg' +sin'gag& -e "t'&d T' (—1)

The action of the combined gravitational and electro-
magnetic fields may be written as a single integral,
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I= ' ' (F eF ~)+ R e""+"'r'dr, (2)
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where the brackets ( ) indicate a suitable superposition
of various possible modes of electromagnetic radiation
of circular frequency 0/c and an averaging over g, @,
and T so that the Lagrangian is just a function of r.

In the case of the idealized spherical geon, (F eF e)

may be easily expressed in terms of the expressions

(31b) which Wheeler introduced in his geon paper:

(F-eF') =4 (L~~3+L«j+ LT~3)

Furthermore, the curvature scalar,

2 (v' —X') 2 (1—e")
+ )
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where primes indicate d/dr, may be expressed in the

following form by letting e"+"=Q'and e "=1—2M(r)/r:

L'Q LQ' Q—(1 2L—/p) f'—"

f2 (f*~ '
+ —

Ql
—If' dp (3)

Q(1—2L/p) ( p i
where p=Qr, L=DM, f= (GXP/4c4)lQF, and primes
indicate d/dp. F corresponds exactly to the function
R(r) defined in Wheeler's article on geons. ' The expres-
sion (3) is valid when l, the order of spherical harmonic
involved, is large compared to unity. When this is true,
however, it is possible to expand the functions L(p),
Q(p), f(p), and p in a power series in (l*)—&. To see how
this is done, let us first introduce a new function J(p)
defined by the equation

JK= 1—(Ql*/p)'(1 2L/p), —

where K=1/Q. Then
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Now expand J, p, and f in a, power series and consider
only the first order terms in the action:

J=(f*) 'i+.
p=l*+(l*)lr+. (a new variable "r"),
f= (~*)'ip+. . . ,

I= ( ,'j K'+ ', Kr ,'K 'r)
~

„"——-—-—

RQr' = 4M'Q+ 2M"Qr+ 2MQ'+6Q'M'r
—2Q"r' 4Q'r+ 4M—Q"r.

However, if M(r) and Q(r) tend toward constants as r
goes to infinity, the divergence terms in RQr' integrate
to zero. If one neglects a factor +(c'/2GQ), Eq. (2)
may be written as follows:

Now at University of Wisconsin, Madison, Wisconsin.
' J. A. Wheeler, Phys. Rev. 97, 511 (1955).
s F J.Ernst, Jr.., following paper LPhys. Rev. 105, 1665 (1957)g.
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In order that the action be finite, it is necessary that and (58) may be written exactly:
jE have a certain asymptotic behavior, namely:

Radius of geon: r= ~pl* 0, (W57)
~j Eq

lim —
~

~y3 —E-' =0.
~goo

Letting lim„„E(r)=Ep and lim„„E(r)= 1, the
asymptotic formulas become

Mass of geon: M = (4/27) c'P/GQ .(WS8)

Corresponding to the action,

I= ((jK 3&+K—'p)K' Kp"—+j p')dz, (5)

the Euler-Lagrange equations,

Assuming these asymptotic forms for the function jE,
we may write the action integral in the simple form

I= ~ DjK 3r+K —'r)K' Ky"+—gp'(dr.

and

d'y/dx'+j (x)K(x)y (x)=0,

dE/dx+ y'= 0

dj /dx= 3 [1+(dq—/dx)' j//K'

(W48)

(W49)

(W50)

From this equation it is possible to show the significance
of Wheeler's result that ED=0.33. In fact we can show
that Eo= 3 exactly. This means that —

g44 has through-
out the interior of the geon the constant value —'„and
gI~ has the value 1.

Assume that the electromagnetic field reaches a
maximum at r = ro and falls suKciently rapidly as
~r —rp~ increases so that the integrand of the action
integral virtually vanishes except in a small region
about r=ro. A careful investigation will reveal that we
have already assumed just about the same thing in
writing minus infinity for the lower limit of the action
integral anyway.

However, the field equations, which may be easily
deduced from the action integral, in no way involve
the independent variable r. It follows from this that if
E(p), j(q), rp(g) is a solution of the problem, so is
E(rp+g), j(rp+q), y(rp+g), where rp is any constant
and may be arbitrarily designated "the position of the
maximum electromagnetic field strength. " In view of
this property of the solution of the geon problem, we

may require that the action be independent of the
constant rp. If one sets r=rp+q, the action integral
becomes

I= (4—3Kp —Ep ')rp

+ ((j K 3&+K 'p)K' K—vp"+j p') dp, —

where the primes now indicate d/dg. However, for the
action to be independent of ro, the position of the
maximum electromagnetic field strength, it follows that
4—3Eo—Eo '=0. This equation has the two roots,
ED=1 and Eo= 3. The former corresponds to empty
space; so, it is the latter value which is relevant to the
present problem.

Since gg44 Q K—', we see that a clock at the center
of a spherical geon will tick at exactly 3 the rate of a
clock far from the geon. Similarly Wheeler's Eqs. (57)

are precisely the field equations which are analyzed by
means of an I.B.M. calculator by Professor Wheeler.
In these equations dx stands for E 'dp. Notice that
Eq. (W48) is very similar to the Schrodinger equation
of quantum mechanics for a potential well v= —jE.
Where v is positive the solution is exponential in
character, while where e is negative the solution is
sinusoidal in character. In Fig. 1 appear the results of
Wheeler's calculations: the p function, —jE, and E.
Solutions y(x) with more maxima are also conceivable.

We shall now show in detail how it is possible to find
the approximate maximum value of p in the active
region, the width of the active region, and the depth of
the potential well without solving the field equations,
by a simple application of the Ritz variational method.

As a trial solution of the problem, we shall assume
that the action integrand vanishes except within a
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FIG. 1. The functions

~ (x) —j&(x)= -D(x) 0
and K(x) according to
Wheeler's machine cal-
culation.
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TABLE I. Comparison of results of very simple variational calcu-
lation with those of Wheeler's electronic machine calculation.

Results

Quantity

D
go

Significance

—,
' (well width)
well depth
electromagnetic
field amplitude

Ritz
principle

1.14
0.76
0.59

Comparable
values from

Ftg. 1

1.33~
0.90
0.59

& The figure a =1.33 is only approximate because of the haziness of
the edges of the active region and because of the difference of Professor
Wheeler's abscissa x from that which is used in the present paper.

region —n&g~&o. and that inside this region E. varies
linearly while v= —jE is a constant, —D, and p is
sinusoidal. The adjustable parameters will then be a,
D, and the maximum value of p, which we shall call pp.

Within the range —n~&g~&n, we shall let

K(n) = 3[2—(n/~)],

jK(g) =D, a constant,

p(q) = po cos(m.g/2n).

(6)

The calculation of the action (5) is straightforward and
leads to the result

I= —3D+ [3(ln3) —4]a+n po'[2D (ln3) —(m'/6n'-)] (7).

Extremizing the action I with respect to the constants
D, pp, and n results in the following simple equations:

o'= (4/9) (1 3)-',
Dn'= (n'/9) (ln3) '

(~o/ )'=(3/ ')[4—3(1 3)]

These three equations may be solved easily, so that it
is possible to compare the results of our very simple
Ritz variational calculation with the complete solution
given in Fig. 1. (See Table I.) Furthermore, by t.he
present method we have obtained a little better insight
into why the constant Ep has the value 3.

Besides yielding pp very well, the variational calcu-
lation using a square well diverges in the expected
direction with regard to the value of D.

We feel that this example clearly shows the usefulness
of variational calculations in finding solutions of the
coupled equations of gravitation and electromagnetism.
Extremely simple trial functions have been used inten-
tionally to illustrate the efI'ectiveness of this type of
calculation.

This problem was suggested by Professor Wheeler in
connection with my A.H. thesis at Princeton Uni-
versity, 1VIay, 1955 (unpublished).


