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Radiative Corrections to Pair Annihilation
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The e' corrections to the probability of direct two-photon pair annihilation are obtained by applying the
substitution law to the Compton scattering radiative corrections. General results are given, as well as low-

and high-energy limits. Divergence of the corrected matrix element for small relative velocity, due to failure
of the Born approximation, is removed by a more accurate treatment of Coulomb effects based on the
Sommerfeld factor. The results are applied to the singlet ground state of positronium, yielding an increase
in the lifetime of 0.59%.

I. INTRODUCTION

'HE e' corrections to the two-quantum annihila-
tion of the electron-positron system can be

obtained by appropriate application of the "substitu-
tion law'" to the work on Compton scattering of
Brown and Feynman. ' Features requiring a certain
care are the infrared divergence, the inclusion of
Coulomb interaction for direct annihilation at low

energy and, for positronium, the extraction of the
singlet cross section from a cross section averaged over
spin s.

A rigorous treatment of the electron-positron system
requires a recognition of its two-body relativistic
character. Such an approach has been successfully
applied to a discussion of the energy levels of posi-
tronium. ' We shall find that corrections of accuracy
e'/hc to the lifetime of singlet positronium can be
consistently obtained by use of the one-particie kernel.
This is because the Born approximation is satisfactory
at high energies and a nonrelativistic center-of-mass
treatment suKces, to our order of approximation, at
low energies.

II. DIRECT ANNIHILATION

To obtain the absolute square of the matrix element
for two-photon annihilation, averaged over spins and
summed over polarizations, we apply the substitution
law to Eqs. (27) through (30) of BF by changing the
signs of the four-momenta of the incoming photon and
the final electron and the sign of the trace. This is con-
veniently accomplished by defining anew the invariants
R and r used by BF.Let (with ti=c=1)

1II II =2p I '
g I= 2 ps

' gs,

trI~T =2pt '
If s = 2ps gt,

* Now at United States Naval Research Laboratory, Washing-
ton, D. C.
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' J. M. Jauch and F. Rohrlich, The Theory of Photons and
E/ectrons (Addison-Wesley Publishing Co. , Cambridge, 1955).' L. M. Brown and R. P. Feynman, Phys. Rev. 85, 231 (1952)
(referred to hereafter as BF). See also M. R. Schafroth, Helv.
Phys. Acta 22, 50 (1949) and 23, 542 (1950).' R. Karplus and A. Klein, Phys. Rev. 87, 848 (1952).

where now pt and ps are the four-momenta of the
electron and positron, respectively, and q& and g2 are
the four-momenta of the annihilation quanta.

The result of BF is expressed in terms of transcen-
dental functions of these invariants. In particular, they
introduce

where

h(y) =y
—' udu cothu,

dp

4 sinh'y= —(rc+ r)

(2)

(2a)

In the center-of-momentum system we have

sinh'y = E'/nz', —

where E is the energy of the electron or positron. Thus
the parameter y becomes complex for the annihilation
problem and h(y) requires further interpretat. ion. AVe

define the real variable x by

and, accordingly,

4 cosh'x= II+r,

y =x iIr/2. —

—
2

(x ,'i7r)h(x —I2-i7r) =i)—-Ddt cothn
p

t r'
——,'i7r du tanhu+ udu tanhu. (4)

Jp 4 p

The signs in (3a) are fixed in accordance with the
Feynman prescription for defining the hole theory
propagators (namely, infinitesimal negative ima, ginary
parts are added to the electron and photon masses)
but the absolute square of the matrix element is inde-
pendent of this sign choice. The path of integration in

(2) is now a straight line from the origin to the point
y=x —iIr/2, or any equivalent path. All the relevant
momentum integrals have been recalculated directly
for the annihilation case, yielding agreement with
substitution (3a) and the specified integration path.
An example is given in Appendix A.

Applying this rule to h(y) with the path shown in
Fig. 1(a), we have
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After integrating the first term by parts, we get

(x —,'i—rr)h (x —,'i—v)

= —2'iv. In(2 coshx)+ t udu tanhu. (5)
0

To evaluate 2yh(2y) we choose a similar path, shown in
Fig. 1(b), but there is now a pole at —iv which yields
a term equal to one fourth the residue. The result is

0,

X-lP/g

ax-irr

X ——
K K 2K T

I

1 —4 (»r) 'sinh'x—

2x (»—6) 3r 3
I+—(1+»)+-+1

sinh2x ( r ) 2»P

ro 2»+»2r —2» +r

2» r(K 1) 2r(» 1)—
7 8 8

K7 K K

I ~2 g2 2 7~ 3]P 1 11—4x cothx ———
cosh. x x 4 47' 2 K

2$

(2x irr) k—(2x irr) =——~~7ro+ udu cothu
"0 —i7r ln(2 sinh2x). (6)

Making the necessary substitutions, we obtain the
result given below for the diA'erential cross section for
direct annihilation, to order e, averaged over spins
and summed over polarizations:

da=do'(1 —(e'/v) [2(1—2x coth2x) In(X; /m)
—4x coth2x(2g (x) —h (2x)+n-'/4x)

+ 9(» r)+ 6(r»)]} (7)

where d(T is the cross section in lowest Born approxima-
tion, X;„is the usual fictitious photon mass, and

g(», r)U= [4(»r) ' sinh2x(1+2 cosh'x)

+2x tanhx]g(x)+ln1»1 4x coth2x

Fro. 1. Paths of integration in the complex plane
(a) for h(y) and (b) for h(2y).

To the expression (7) must be added the cross sec-
tion for direct three-quantum annihilation, integrated
over the direction and energy of one photon, whose
energy is assumed to be small. This results in the re-
placement of A. ;„by the experimental energy resolution
as explained, for example, in BF. Jauch and Rohrlich'
have shown, following Bloch and Nordsieck, ' that the
combination of soft-photon emission and soft-photon
radiative corrections eliminates completely the infrared
divergence in a scattering process. However, an explicit
calculation is necessary in order to obtain not merely
the expansion term logarithmically dependent on k,
the maximum excluded photon energy, but also the
term independent of k . This "constant" term is an
essential part of the e' corrections.

The calculation, which is similar to that in BF for
the double Compton scattering, gives for three-quantum
annihilation (note that tanh2x=v, the positron velocity
in the laboratory system)

dop= (e'/~)dao(2(2x coth2x —1) ln[(2k /X; )—z]
+4x coth2x[1 —k(2x)]}. (9)

This expression, which holds for k «m in the reference
frame in which the electron is at rest, is exactly that in
BF, Eq. (39), with y replaced by x and do x N replaced
by do-'. However, the substitution law cannot be
applied here since k «m is not a covariant restriction.

Adding Eq. (9) to Eq. (7) replaces

t1 1y'
+41 -+-1

E» rl
12 3» 2» 1 (» 1)

+
1

-+-
1

2r ro» —1 tr 2)

2 (1—2x coth2x) [ln (X;,/tn) ]
—4x coth2x[7ro/4x+2g(x) —h(2x)] (10)

by

with

K 7 K 7 2 3
+Go(») + + +»+ +

T K r 2 IC

t1 1q (1 1q'
U=

I
-+- I+41 -+-

1

—41 -+-
1

Er K) EK r) (K r)
1

g(x) =—
~

udu tanhu,
X 0

1
h(x) =— udu cothu,

x p

1—c

Gp(») =-
~t In11 —u1du/u.

(8)

(8b)

(8c)

(8d)

III. LOW ENERGY LIMIT

In the nonrelativistic limit, with the electron at rest
and the positron velocity e= tanh2x«1, we get

x=v/2, U=2,

g(», r)+ g(r, ») =3 ,'vr', ——(12)

4 J.M. Jauch and F. Rohrlich, Helv. Phys. Acta 27, 613 (1954).' F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

2(1—2x coth2x)[ln(2k /m) —2]
—4x coth2x[or'/4x+2g(x) —2h(2x)+1]. (11)

The resulting cross section has the validity of the Born
approximation, i.e., it is applicable providing P= e'/v«1.
This restriction will be removed in the following section.
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and the differential cross section becomes

do Na= doNRot (1+me'/v) —(e /7r) (5—7r /4)]. (13)

The infrared-divergent part and the compensating
three-quantum cross section vanish in this limit and do
not concern us here, but the result (13) diverges as v

tends toward zero. This clearly exhibits the failure of
the Born approximation in that part of the radiative
corrections which arises from Coulomb interaction.

It is well known that a satisfactory approximate
method of modifying a plane-wave cross section in-
volving charged particles, to include the effects of
Coulomb interaction at low energies, is to multiply
by the "Sommerfeld factor. "This factor is the absolute
square of the Coulomb continuum wave function,
evaluated for contact, and is for this case

~P(0) ~'=2m)(1 e'—~r') ' )=e% . (14)

The differential cross section, corrected for Coulomb
effects alone, is then

doc' ——da'. 2~&(1—e 'r) ',

which for $«1 can be expanded as

(15)

do c'= do'(1+~$), (16)

identical with (13) within terms of order of the fine
structure constant. '

We can obtain, therefore, a smooth result, valid at
all energies to the desired accura, cy (that is, of accuracy
e'), by subtracting (me'/v)dao from do [Eq. (7) with
the substitution of (11) for (10)] and multiplying the
remainder by the Sommerfeld factor. This yields for
da-t.-, the cross section corrected for Coulomb and
radiative effects':

doc=dirc'f1 —(e'/n) [2(1—2x coth2x) (ln(2k /m) —2)
—4x coth2x(1+ 2g(x) —2h (2x))

+e(, )+s(, )]) (»)
In the nonrelativistic limit we get

(«c)NR (do'c )NRL1 —(~'/~) (5—-',~')]. (1g)

The NR cross section is thus reduced by 0.59%.

IV. LIFETIME OF POSITRONIUM GROUND STATE

We show now that the 0.59% decrease of the non-
relativistic direct annihilation cross section implies an
increase of the same magnitude in the lifetime of the
singlet ground state of positronium. Justification of the
procedure here outlined will be found in Appendix B.

For a bound state, the matrix element for annihila-
tion is calculated by integrating the appropriate (in
this case the singlet) plane-wave annihilation matrix
element, including the e radiative corrections, over

'We wish to thank Professor Y. Nambu for a valuable con-
versation on this point.

7 Coulomb effects are included by this method to all orders in
e', though only, of course, approximately.

the momentum distribution of the state, i.e.,

~.(p)~..(p)dp (19)

V. NUMERICAL RESULTS AND EXTREME
RELATIVISTIC LIMITS

For further examination of the radiative corrections,
we define

X= ro(K, r)+ g(r, ~) 1—
—4x coth2xL-,'+2g(x) —2h(2x)], (21)

so that the expression (17) for the cross section with
radiative corrections, including the low-frequency part
of the three-quantum annihilation, can be written as

doc der c'{1. ——(e'/~) L2—(1—2x coth2x)

Xln(2k /m)+X]}. (22)

Figure 2 illustrates the behavior of X for two cases of
interest. The solid curves are calculated from the exact
formula and the dotted curves from simpler formulas
for the extreme relativistic (ER) limit.

The lowest order triplet term, being squared, vanishes as v',
the interference term vanishes at least as e'v. Though it is only
in the limit of zero velocity that linear combinations of plane
wave spinors become spin wave functions for the triplet state,
Yang has shown that two-quantum annihilation from the triplet
ground state of positronium is absolutely forbidden. This follov s
also in a simple way from the charge conjugation properties of the
system. See C. N. Yang, Phys. Rev. 77, 242 (1950) and L. Wolfen-
stein and D. G. Ravenhall, Phys. Rev. 88, 297 (1953).

The momentum distribution p, (p) is st.rongly peaked
at the Bohr momentum of positronium, e'm/2. To
obtain corrections of relative order e'-, therefore, it is
sufficient to expand the plane-wave singlet matrix
element M, (p) in powers of the momentum, retaining
only the constant part, since terms linear in the mo-
mentum are not present. The integral over the mo-
mentum distribution then yields the value P, (0) of
the singlet space wave function at contact. Taking the
absolute square, we obtain a probability of annihilation
proportional to

I~I'= I+ (0)l'l~ «) I' (20)

It is shown in Appendix B that, to the desired
accuracy, P, (r) is identical with the Schrodinger wave
function. ~M, (0) ~' is four times the spin-a, veraged
plane-wave result obtained in the previous section.
This follows from the fact that the spin average can be
expressed as an average over singlet and triplet states,
but the triplet contribution va, nishess (including its
radiative corrections) in the nonrelativistic limit. The
arguments we have presented are well-known as applied
to the lowest order result, but it is interesting that
they apply also to the more general case being here
considered. The usual calculation for the lifetime then
leads to the result given in the first paragraph of this
section.
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Case 1 corresponds to the emission of the two annihi-
lation quanta 180' apart in the laboratory system. For
extremely high energies this is the most probable case.
The ER limit is defined by a»r=1. The ER limit of
X is, if one drops terms of order» '(ln»)',

Xi= (ln»)' —ln»+3+ pr'/3 (23)

Case 2 is defined by K= r corresponding to the emis-
sion of the two photons at 90 to the positron momen-
tum in the c.m. system. For moderate energies this is
the most probable case. In the ER limit, given by
»= r))1, we have for X, to order 1/»,

Xp ———,
' (ln»)' —(5/2) ln2»+5. 97

+ (2»)
—'[18.5 (ln2»)' —67.25 ln2»+41. 2j. (24)

22 X
20.
I8
l6
l4
l2
l0

6

-CaSe 2.

case

2 4 6 8 10 l2 l4 l6 l8 2022 2426
E('ob)™c'

mc
APPENDIX A

As an example of the methods used in the evaluation
of the integrals for direct annihilation, we recalculate
the integral Hp defined by BF as (writing it for X; )

Fio. 2. X LEq. (211$ as a function of the kinetic energy of the
positron in the laboratory frame (electron at rest). Case 1:anni-
hilation quanta 180' apart in the laboratory frame. Case 2:
annihilation quanta at 90' to the positron momentum in the
center-of-mass frame.

Ho= gi ~d'&/(1) (2) (0)
be given an additional infinitesimal negative imaginary

J part. When one uses I as a new integration variable,
and uses the symmetry of the integrand to integrate
only over positive u, the pole at u=a is displaced above

=gsJ d ~ ~ 2pi ~ ~ 2p' ' the real axis and the logarithm in (A2) becomes

4n
(dz/p ') ln(p '/9) (A2)

This integral and all others which, in the annihilation
case, contribute a term proportional to 1/v for small
velocity v arise from the Feynman diagram, designated
J by BF, which contains a virtual photon connecting
the initial electron and positron lines. Diagrams of this
type may be expected to contain contributions from
the Coulomb interaction.

The integral Hp is evaluated by Feynman'; however,
his method" leads to the complex limit in the integrals
h(y) and h(2y) in the annihilation problem, and re-
quires clarification. We start from reference 7, Eq.
(23a), which is

Thus

lnt Q'(u' —a')/ij, '7 when u) a,

lnLQ'(a' —u')/X'j —iv. when u a.

Hp=
J

duLQP(us as) i$—) ' l—n[Q (u —a)/g [

p

—jv. du)Qs (us —as) —j$j-t (A4)
~p

To evaluate the first term of (A4), we break the
integration region into three parts, denoting the corre-
sponding integrals by Hp&", Hp&", and Hp&", re-
spectively:

with

p, =zpi+(1 —z)pp,

from which (with momenta in units of m)

(1) 0&u&a —e,

(2) a—p&u&a+e,

(3) a+e&u&1.
(A5)

with
p,' =Q'(u-"—a-') —i8,

Q'=-', (»+ v) =cosh'x,

a= tanhx, I=2s—1.

(A3)
In Hpt'& we put u/a=tanhv and in Hpt" we put u/a
= cothv, obtaining (as e—4)

Hp"'+Hp"'=4x csch2x ln(it cschx)
The term —ib in (A3) has been added in accordance
with the Feynman prescription that all masses are to

' R. P. Feynman, Phys. Rev. 76, 769 (1949). See Eqs. (22a),
(23a), (26a). Note that the sign of the left side of (23a) should
be plus.

'0 Specifically, the difhculty arises from the substitution 2y —1
= tann/tan&, in the notation of reference 9 (where y and a are in-
tegration variables). We evaluate (A1) avoiding this substitution.

Using
f

dv ln(tanh'v) = —4i pr',

p
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FIG. 3. Diagrams included in the ladder approximation for
two-photon annihilation of a bound state.

and performing in (A6) an integration by parts, we have

H o)+H (&)
~c gzr

7 (A13)

tively, and 0(x,x) is a matrix representing the anni-
hilation. For the lowest order approximation it can
be taken as the matrix for annihilation of plane waves,
with the intermediate state taken as free. Alternatively
it can be taken to include radiative corrections.

It is convenient to use the charge conjugation opera-
tor C to define the charge conjugate spinor

where T represents the transpose. We have the follow-= csch2x 4x ink —,'rr' —4 r)dh~ cothr) .
ing recurrence relationship:

0

In Hp( ) we set I—a=y and neglect y', yielding

py f

Ho&') = I dy(2aQ'y —i5) '[ln(2aQ'/X')+ln
I y I ]

= ior csch2x ln(2aQ'/X')

+(iB/2aQ')~ dv(y'+P) ' 1n~»~. (AS)
0

a

i7r)~ du[Q'(u' ——a') —i6j '

csch2=x[ irr 1 n—(8 /2 a)+ rr$—(A10)
to order 5.

Thus we have for Ho ..

Ho ——csch2x 4x in)r+m' —4~t ed') cothr
G

The second term is easily evaluated by letting y=b tan9
and dropping terms of order 8, giving finally (as e—+0)

H &') =irr csch2x ln(8/li') (A9)

Returning to (A4), the second integral is

u c(x') Xu. (x) =
J

Eo(x' y')1'(y')u i (y')

XZ,(,y)1(y) „,(y)S(y', y)dy'd», (A14)

)P,b(.r', x) =Q u„c(x') Xu„(x).
nm

(A15)

The subscripts a and b designate an ordering of the
spinor factors in the calculation of a matrix element,
and can be considered to refer to the electron and
positron, respectively. The transpose of the spinor
associated with b, placed on the left, and the spinor
associated with a, placed on the right, are to be under-
stood in the calculation of any matrix element. Kith
this understanding, (A12) can be written

which corresponds to allowing an additional virtual
photon to be emitted and absorbed. F(x) is the vertex
operator for emission or absorption of the photon, Eo is
the electron propagator, and S is the photon propagator.
The cross in (A14) denotes the direct product.

Define

+2iri ln(2 sinhx/li) . (A11)
ÃL= )P—.b(x', x)C '0(x', x)dxdx'. (A16)

Substituting A14 in A15, we obtainThis agrees with the application to Feynman s result g

of the rule given in Sec. II.

l—1

,&Tf= p )I v. (x')0(x',x)u. (x)dxdx', (A12)

APPENDIX B

To obtain the matrix element for annihilation from
a bound state, we shall sum selectively Feynman dia-
grams to all orders in the "ladder" approximation of
Salpeter and Bethe, "as indicated in Fig. 3. The matrix
element corresponding to the sum of the first l ladder
diagrams can be written as

4'ab (x x) If- ob (x',y') &b (y')Eo. (*,y)r. (y)

XS(y', y) p. (y)', yb)dy'dy+ u, (x') Xu (x) (A17).
Following Salpeter and Bethe, we drop uoc(x')

Xuo(x) as we are interested only in bound states. It
is evident that Eq. (A17) is then the SB equation
[Eq. (11a) of reference 11]in the ladder approximation.

In the center-of-mass system, with X,b(P) the four
dimensional momentum transform of the SB wave
function, Eq. (A16) becomes

where x and x' are points in space-time, 8 „and u„are
)t

iterated positron and electron wave functions, respec- ~=~(9+0 &) dpXab(p)c

"E.E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951)
(referred to as SB). X[0, (p ——(g' —g))+0 (p+ —(g' —q))j, (A1S)
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where E is the four-momentum of the center-of-mass
and q, q' are the four-momenta of the annihilation
quanta. The second term in the square brackets arises
from the interchange of q and q'.

As the positronium ground state wave function has
characteristic momentum em/2, it is suKciently ac-
curate to use for x,~ the nonrelativistic singlet wave
function, i.e., a spin wave function multiplied by the
Schrodinger momentum distribution, and to expand the
spin matrix element in powers of p. There are no cor-
rections of relative order e arising from virtual annihi-
lation because charge conjugation invariance forbids
an intermediate state containing a single photon. The
spin matrix element, as we have noted in Sec. IV is of
the form const+0(p'). "

Further contributions could, a priori, arise from the
small components of the atomic wave functions. That
is, terms in (A18) arising from the product of small and
large components in x ~, taken with the lowest order

"It should not be overlooked that what we have designated
O(p') actually contains the term v'ln(X;„/m), since selection
rules rigorously forbid the emission of three quanta from the
singlet ground state. The occurrence of this term constitutes a
defect of the present treatment which would be corrected if we
used a procedure which took into account binding effects in inter-
mediate states [see T. Fulton and R. Karplus, Phys. Rev. 93,
1109 (1954)]. Rohrlich's arguments (F. Rohrlich, Phys. Rev.
98, 181 (1955)7 do not seem to be relevant as they show merely
that In(X; /m) has a coe%cient which is small for positronium.

of 0 ~, must be considered. For an improved wave
function, valid to O(e ) times the Pauli wave function,
we can use the result given by Karplus and Klein":

tro(r) =2e'(2~) ' dpe's'm

X (p'+ —', e'mrs') 'F, (t) ps (0), (A19)

where ps(0) is the Pauli wave function for singlet
positronium evaluated at the origin and Fs(t) to the
order of accuracy with which we are concerned is

Fs(t)—s (1+n, .p/2m) (1—trs p/2m)F'(t),

where F'(t) contains no matrices and is of order unity.
The term (n, —trb) p is equivalent to (rr, —rrs) p acting
on the Pauli spin wave function of the singlet state,
which yields

~
p ~

times the spin wave function for the
triplet state. The corrections to the singlet matrix ele-
ment from the small components of the Dirac wave
function will then be of order

~ p ~

times the low-energy
plane wave matrix element of the tnp/et state which is
itself of order

~ p ~

. When integrated over the momentum
distribution, it will yield corrections of order e' times
the ones we are considering.

"Reference 3, Eqs. (A.9) and (4.4). See also E. E. Salpeter,
Phys. Rev. 89, 92 (1953).


