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spectrum. The assigned systematic uncertainties in this
case would then be

(1) uncertainty in stopping rate, =159%;
(2) uncertainty in neutron rate from source, 109, ;
(3) uncertainty due to energy spectrum, =+109.

The final multiplicity values become 1.04-0.4 for Na
and 0.6+0.2 for Mg.

At the present time, it is possible to compare only
the Pb multiplicity with other independent deter-
minations. Since the primary interest of this experiment
is not in Pb and not in the absolute values of the
multiplicity, we merely quote such a comparison in
Table VII.

We reiterate here the principal conclusions of the
experiment, aside from the numerical values already

JONES

quoted. They are that the neutron multiplicities due
to u mesons’ stopping in Mg and Na are clearly nonzero
and the Na value is very probably less than that for
Pb but greater than that for Mg. The indicated relative
multiplicity values for Na and Mg are consistent with
the particular hypothesis that influenced the choice of
absorber, namely, the view that the meson-nucleus
interaction process favors a relatively large angular
momentum change. Further experimental work is
desirable to improve our understanding of this inter-
action.

The author wishes to express his sincere thanks to
Professor R. D. Sard for his continued help and en-
couragement, to Dr. M. Annis for his valued assistance
and suggestions, and to Mr. J. D. Miller for his work
with the electronics.
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Pion Production in Electron-Proton Collisions*
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The close relationship between photopion and electropion production from protons allows an unambiguous
first estimate (the standard value) for the ratio of these cross sections, based on assumptions very close to
those of the Weizsiicker-Williams method. Deviations of the ratio from this estimate arise from pion pro-
duction by the longitudinal components of the field of the scattered electron and from the variation of the
off-diagonal transverse excitations from their diagonal photoproduction values. The dependence of these
deviations on the physical processes contributing to the electromagnetic excitation of pions is discussed in
terms of matrix elements specified in the pion-nucleon center-of-mass system, both for various phenomeno-
logical contributions and for specific meson theories. The experimental values reported are interpreted as an
indication of the smallness of longitudinal production, in qualitative accord with the fixed source theory.
These features may also be investigated by study of the energy spectrum of inelastically scattered electrons
and of the azimuthal variation of pion production relative to the scattering plane, which are also discussed

here.

1. INTRODUCTION

EASUREMENTS on direct pion production by
electrons incident on hydrogen have recently
been made by Panofsky, Woodward, and Yodh.! Since
this pion production is induced by the action of the
virtual electromagnetic field of the scattered electron,
it is closely related to the photoproduction of pions from

* The research reported here was supported in part by the
U. S. Air Force through the Air Force Office of Scientific Research,
Air Research and Development Command, and was also sponsored
by the joint program of the Office of Naval Research and the
U. S. Atomic Energy Commission.

1 This research was begun at Stanford University under the
joint program of the Office of Naval Research and the U. S.
Atomic Energy Commission and was continued under the same
program at Cornell University. This author enjoyed support,
also, as a member of the Institute for Advanced Study and as a
Visiting Associate Physicist at Brookhaven National Laboratory
during the progress of this work.

1 Panofsky, Woodward, and Yodh, Phys. Rev. 102, 1392 (1956).

hydrogen. However, in contrast to photoproduction,
the energy ko transferred by this virtual field is not
necessarily equal to the momentum transfer k. Further-
more, while the electromagnetic field in the photopro-
duction process is transverse, the virtual electromagnetic
field in the electron-production process contains both
transverse and longitudinal components. For these
reasons, it is expected that the experimental results will
contain new information on the electromagnetic prop-
erties of the pion-nucleon system.

The close relation between the interactions produced
by a moving charged particle and those due to incident
electromagnetic waves was first pointed out in 1924 by
Fermi,® who related stopping power for a particles to
the electromagnetic properties of the material. Weiz-

2 E. Fermi, Z. Physik 29, 315 (1924).
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sicker and Williams® later considered particularly the
case of relativistic electrons. By making a Fourier
analysis of the field produced at a given point by a
passing electron of energy ¢ and momentum p>>m, they
showed that this field contained predominantly trans-
verse components and concluded that an incident
electron would produce the same effects as a beam of
photons with spectrum N.(p,ks) given by

N o(psks) (dRs/ky)
a dky
=— —{2[K:2(3) — K¢*(2) ]—22Ko(2) K1(2)}.

™ Ky

(1.1)

Here k; is the photon energy, z= (mbminks/€), bmin is
the least impact parameter for which the electron is
effective in the given process, and Ko, K; are the usual
Bessel functions. This discussion assumes that the elec-
tron motion is not appreciably affected by the process
induced, in particular that the scattering angle of the
electron is small. The contribution from field com-
ponents parallel to the incident direction is omitted in
this approximation. A convenient approximation to
Eq. (1.1), valid for 2K<1, is

N.(p,ks)= (2a/7)[In(e/ks)—In(mbmin) —0.39].

Nordheim e? al.* have made a more detailed classical
analysis of the virtual field of the uniformly-moving
electron by Fourier analyzing the field considered as a
function of space and time. This analysis shows clearly
that the least impact parameter du;, is to be taken as
1/Emax, where km,y is the greatest transverse momentum
transfer strongly effective in the process.® This mo-
mentum transfer may be as large as km.x=p; but if R
is the radius of the region over which the electromag-
netic interaction with the system is strong, then
kmaxRS 1. Generally the appropriate i, is given in
order of magnitude by the larger of R and 1/p. For very
high electron energies, experimental results on the
relative effectiveness of electron and photon in a given
process will give direct information on this radius R of
strong interaction, according to Eq. (1.2).

In the Stanford experiments, the electron energy
(600 Mev) is not large compared with the energy
transfer to the pion-nucleon system. Also the pion-
production process is quite complex, a number of dif-
ferent transitions being effective. Thus, while Eq. (1.2)
is adequate for an order-of-magnitude estimate, a more
precise treatment is needed for the interpretation of the
experiments. Such a treatment may be based on the
Mgller potential for the scattered electron. For energy
and momentum transfer ko, k, this potential has

(1.2)

3 K. F. Weizsicker, Z. Physik 88, 612 (1934); E. J. Williams,
Phys. Rev. 45, 729 (1934); Kgl. Danske Videnskab. Selskab,
Mat.-fys. Medd. 13, 4 (1935).

4 Nordheim, Nordheim, Oppenheimer, and Serber, Phys. Rev.
51, 1037 (1937).

§ We use units such that Z=c=1.
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components
#(p—Kk)v,u(p)

Au(ko,k)=e , (1.3)
ER—E?

where ko= e(p)— e(p—k). The interaction of this poten-
tial with the pion-nucleon system may be denoted by

H' (k)= J u(ko,k) 4 (ko k), (1.4)

where J,(ko,k) is the matrix element of the current
operator for the system between initial nucleon and
final pion-nucleon states.

First consider the case of an infinitely heavy nucleon.
For a given pion energy the energy of the scattered
electron [¢'=e(p—k)] is definite. The ratio of the total
cross section for the electron process to that for the
corresponding photon process may then be calculated
by using Egs. (1.3) and (1.4) to give®

NB(P)kf):Net(Prkf)_{_lVﬂl(p)kf)y (1~5)
where
a o kAR
Nepry== [T
T (ppy? (R —E%)?
X‘[(Hp’)?—kz]lik?— (r—p7] B—he
4k Y
(J &%)
T2k
o (et b PAE) (k)
V)=~ [
T (ot AkdP
( + 2 ]2 k?
X‘ p+7") 1i< &( )>‘ (1.5b)
K (J&(k)

In this equation, k=p—p’ and k2= p2+ p'2— 2pp’ cosf,
6 being the electron scattering angle. Neglecting the
electron’s mass, the momentum of the real photon is
equal to that of the virtual photon for forward electron
scattering: ky=p—p,’. In Eq. (1.5), (J2) denotes the
square of the part of J(ko,k) transverse to k, averaged
over initial and final nucleon spins, over meson direc-
tions and over the two photon polarizations; (J;2)
denotes the square of the longitudinal part of J(kk),
similarly averaged. The last term in each of the curly
brackets of Eq. (1.5) is due to the electron magnetic
moment. The invariant quantity

ko?— k?=2(m?— e’ + pp’ cosh) (1.6)

has the small value =~—m?(p—p)*/pp’ for forward
scattering (§=0). The main (logarithmic) contribution
to N.(p,ks) therefore comes from the region k%= k?,
owing to the denominator (k¢®— &%) of the first integral.
This corresponds to small-angle electron scattering and
transverse production only and can be predicted without
further knowledge of the pion process. Knowledge of

¢ See the remarks following Eq. (2.14).
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off-the-energy-shell matrix elements (#*> k¢?) for inter-
action with the transverse and longitudinal fields is
necessary for the complete evaluation of N.(p,ks). The
additional contribution clearly corresponds to relatively
large electron scattering angles. Because of this addi-
tional contribution, ¥ .(p,k;) will depend on the model
considered as well as on the energies involved. It is
these differences which interest us here.

The simplest estimate of N.(p,ks) is obtained by (i)
giving (J2(k?)) the value it has on the energy shell,
i.e., the value (J2(ks*)) effective in photoproduction;
(ii) omitting the longitudinal matrix elements J;. This
estimate will be referred to as the ‘“standard value”
of N.(p,ks) and is explicitly

af €4 €2 '+ pp’+m?
A‘;\ve“(p)kf):_ lnee or
P m(e—¢)
+ N2 + ’ ’
—(e €llnp P_{ (1.7)
2p? =t P

The contributions to Eq. (1.7) come very predomi-
nantly from small scattering angles; e.g., for p=600
Mev/c, ky=200 Mev, 959, of the integral comes from
scattering angles less than 6°. The physical situation
for this case therefore corresponds closely to the
approximations of Weizsicker and Williams”; and this
expression (1.7), which is based on the use of the
Mgller potential, may be regarded as a more quantita-
tive generalization of Eq. (1.2).

The function N.(p,ks) of Eq. (1.5) has frequently
been calculated for special cases in the past, although
not presented in this form. Electrodisintegration of the
deuteron was considered by Bethe and Peierls,? assum-
ing only an electric dipole transition; this is equivalent
to the assumptions that the longitudinal and transverse
matrix elements (J;*) and (J;?) are equal and are inde-
pendent of 2. Such relations between longitudinal and
transverse matrix elements are typical only of physical
situations such that #R<K1. For situations where the
momentum transfer is such that 2R>1, the transverse
and longitudinal matrix elements may have quite
different magnitudes and % dependences. This is, for
example, the case for pion production where £ neces-
sarily exceeds u, and may be illustrated by the explicit
calculations of Sec. 3. Higher multipoles have been

7 For an ‘“‘equivalent-photon” energy k;<p, Eq. (1.7) reduces
to N2t(p,ks) = (2a/7)[In(p/m)—0.5]. This agrees with Eq. (1.2)
for the choice bmin=1/ks. For bmin=1/p, however, Eq. (1.2) gives
N, rather larger than the standard value. This increase is due to
the fact that the Weizsicker-Williams calculation comprises the
contributions of the matrix elements transverse to the incident
direction. Since the momentum transfers actually make some
angle with this direction in general, some contributions corre-
sponding to matrix elements longitudinal to the momentum trans-
fer are consequently included in the semiclassical calculation, but
are omitted in the calculation of the standard value N ¢ (p,ky).

8 H. A. Bethe and R. E. Peierls, Proc. Roy. Soc. (London)
A148, 146 (1935).
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discussed by Wick,® without specification of the par-
ticular nuclear process involved; these expressions are
again valid only for electron energies such that kR<K1.
For the magnetic dipole or transverse electric quadru-
pole transitions, N .(p,ks) has the value

A N (1.8)
T P

m(e—¢)
corresponding to (J 2y« k% A longitudinal £2 transition
may also be effective and will add

2 p”

-
T (e—¢)

: (1.9)

to the transverse contribution (1.8), where #* is the
ratio (J2(ks?))/(J&(k) of the effectiveness of longi-
tudinal £2 to transverse E2 transitions at k=k;. The
value of 7#* is 4/3 for any system such that A, R<K1.
This expression is in fact valid only as long as k...« R<K1
and may be very large if (e— €')<p. This is particularly
the case for the excitation of low-lying quadrupole
transitions in nuclei by electrons of moderate energy
(<30 Mev) where n*> will be equal to 4/3. From Eq.
(1.5) it is clear that large contributions then come from
large values of £2) i.e., from large-angle electron scatter-
ing. Formulas for the case of an octupole transition
have been given by Thie et al.**

In the process e4p—n-+nt-+e, the electron loses a
large proportion of its energy and therefore delivers
considerable momentum to the pion-nucleon system.
In the experiments of Panofsky et al., observations are
made of pions with definite directions and energy; in a
photoproduction process these observations on the pion
suffice to determine the kinematics completely, but this
is not so for the electron process where there are three
particles in the final state. However, the final electron
energy is a definite function of its direction. For forward
scattering its energy loss is very closely equal to &,
the photon energy necessary to produce a pion of this
momentum and direction from a proton which is
initially at rest. Since small-angle scattering contributes
so strongly in Eq. (1.5), a reasonable second approxima-
tion N, (p,k;) is simply obtained by neglecting the
variation of " with scattering angle in Eq. (1.5), re-
placing p’ everywhere by the value p'(6=0)=p—k,
which it has for forward scattering. The values then
obtained are significantly less than those obtained in
the approximation p’=p—w, corresponding to the
assumption of an infinitely heavy nucleon (see Table I).

However, as the electron scattering angle becomes
large, the neutron recoil necessarily increases so that
the final electron energy falls appreciably. For large
angles the momentum transfers % are therefore smaller

® G. C. Wick, Ricerca sci. 11, 49 (1940). See also B. Peters and
C. Richman, Phys. Rev. 59, 804 (1941), and J. S. Blair, Phys.
Rev. 75, 907 (1949).

10 Thie, Mullen, and Guth, Phys. Rev. 87, 962 (1952).
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and the energy transfers larger than with the assump-
tion of constant energy loss k;; further, the phase space
for the final electron is now diminished for large-angle
scattering and the value of N, is further decreased.
For the standard value, small-angle scattering con-
tributes so predominantly that the decrease due to the
variation of neutron recoil with scattering angle 6 is
quite small, being between 29, and 39, for all physical
situations of interest at present.

It will now be clear that the new information on the
pion-nucleon interaction contained in experimental
values of N, depends only on its deviation from the
standard value N.**. This deviation may depend on
(i) the variation of the transverse matrix element with
increasing momentum transfer k> ko, for given energy
transfer ko; (ii) the effectiveness of longitudinal pro-
duction. Contributions to N, from these causes neces-
sarily correspond to values %% considerably greater than
k?, and therefore to large-angle scattering. These
deviations are consequently affected greatly by the
variation of neutron recoil with electron scattering
angle and will be very much less than the values sug-
gested by the above formulas, Eqgs. (1.8) and (1.7),
for example, in which a constant p’= p—k; is assumed.
This reduction follows both from the reduction in the
momentum transfers effective for large-angle scattering
and from the decrease in the phase space available to
the final electron. This is particularly marked for the
longitudinal E2 production, Eq. (1.9), whose large
value depended so strongly on large-angle scattering.
The remarks are illustrated quantitatively in Table I
by consideration of some typical cases of interest here.

The values of N, do not have a simple relation to the
new pion-nucleon matrix elements of interest but de-
pend on integrals over these off-the-energy-shell matrix
elements. Complementary information on these matrix
elements would be given by experiments in which the
spectrum of inelastically-scattered electrons at a given
angle is observed. This latter situation will be discussed
briefly in Sec. 4; experiments of this type are in
progress at Stanford. In the interpretation of the elec-
tron-pion results, it is necessary to take account of the
on-the-energy-shell transverse matrix elements deduced
from the more complete data on pion photoproduction.
The guidance of successful meson theories is also needed,
although these experiments depend on situations for
which the validity of these theories may be in doubt.
In these experiments at 600 Mev, momentum transfers
effective in electroproduction may be as large as =M¢
(M is the nucleon mass). The matrix elements may be
expected to fall rapidly for & such that 2R>1, where R
is the radius of the region of strong electromagnetic
interaction for the pion-nucleon system. At present
we have very little knowledge of the appropriate radius
R for the various transitions, and it is just in this
region that our theories may be least valid. However,
preliminary estimates of off-diagonal electromagnetic
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TasLE I. Values of N,.(p,ks) calculated for P=600 Mev and
ky=228.2 Mev (appropriate to 60-Mev pions observed at 75° to
the beam) with various kinematical assumptions. The matrix
elements used are the simple forms appropriate for kR<1. The
various assumptions relating the longitudinal and transverse
matrix elements are labeled (lab), (c.m.), and (c.m.)* and are
defined in Sec. 2.

Correct kinematics
and a matrix ele-
ment (Yukawa

shape) with
Nucleon Variation With rms radius

assumed of nucleon correct R=1.0 R=2.0
infinitely  recoil kine- X107138 X101

Ne(p.kys) heavy neglected matics cm cm
Standard value 0.0216 0.0207 0.0200 0.0192 0.0181
Electric (lab) 0.0253 0.0237 0.0214 0.0201 0.0187
dipole (c.m.) s (X 0.0254 0.0218 0.0193
(c.m.)* 0.0226  0.0209 0.0190
Magnetic  (lab) 0.0284 0.0265 0.0238 0.0212 0.0191
dipole (c.m.) o oo 0.0238 0.0212 0.0191
Electric (lab) 0.0536 0.0430 0.0283 0.0238 0.0202
quadrupole (c.m.) .. o 0.0506 0.0323 0.0226
(c.m.)* 0.0337 0.0264 0.0212

matrix elements will be made is Sec. 3 on the basis of
simple treatments of pseudoscalar meson theory.

Previous calculations of electroproduction of pions
on the basis of meson theory are rather incomplete. It
has generally been assumed that the nucleon is in-
finitely heavy, the corresponding kinematics being used ;
this leads to a quite considerable error in the interesting
part of N.. The total cross section for all meson pro-
duction has been considered by Feshbach and Lax!
using the Weizsidcker-Williams approximation, and by
Strick and ter Haar,'? who give the threshold behavior
otot(€) < (e—€g)}. For the fixed-source pseudoscalar
theory, Sneddon and Touschek'® have given expressions
(calculated in Born approximation) for the meson
spectrum, integrated over angles, neglecting all nucleon
recoil effects. Further, these authors have explicitly
omitted the longitudinal terms in the matrix elements.
Kaplon'* has given more complete expressions for the
differential cross section, but again with neglect of
longitudinal production and recoil effects. The recoil
will of course have its greatest effect through the
kinematics of the process and the resulting phase-space
factors.

2. GENERAL FORMULATION

In this section we shall derive some general expres-
sions for the electron production of pions, and apply
them to a simplified treatment of the process. In Eq.
(1.4), the matrix element for pion production by an
electromagnetic field has been expressed in terms of the

11 H. Feshbach and M. Lax, Phys. Rev. 76, 134 (1949).

12 B, Strick and D. ter Haar, Phys. Rev. 78, 68 (1950).

131. N. Sneddon and B. Touschek, Proc. Roy. Soc. (London)
A199, 352 (1949).

4 M. F. Kaplon, Ph.D. thesis, University of Rochester, 1951
(unpublished). See also R. E. Marshak, Meson Physics (McGraw-
Hill Book Company, Inc., New York, 1952), p. 40.
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current j, associated with the transition from nucleon
to final pion-nucleon state. Using charge conservation

kojo—k-j=0, (2.1)

the fourth component of j, can be expressed in terms
of the space components; here ko, k are the energy and
momentum transfer in the transition. Similarly the
Mgller potential, Eq. (1.3), satisfies the Lorentz
condition

kgA()—k'A=0

Using these two relations, the matrix element for the
transition may be written

H'=j-A—ki%k-jk-A.

(2.2)

(2.3)

It is now convenient to separate the current into a
longitudinal component

ji=kk-j/F, (24)
and transverse component j;, so that
1=t (2.5)
Then H’ can be written in the compact form
H'=m-A, (2.6)

where m,=j, and m;=j;(1—k%/k?).
In terms of m, the differential cross section for the
production of a pion of momentum q is

(+w,+E—e—M)

am? 1 M d&p’ dqg
xS g
(B2 — ko?)? 647t E pe w,

(2.7)

where the sum is to be taken over initial and final spin
states for the electron and the nucleon. Here E is the
energy of the recoil neutron

E=[M+(p—p'—q)*]"

The appearance of the factor (M/E) in (2.7) is a conse-
quence of assuming that the nucleon wave functions are
normalized relativistically in calculating the matrix
elements j. Since we do not have an adequate rela-
tivistic theory for m, there is some question whether it
is appropriate to include this factor; it is convenient
to include it since the phase space expression for the
final particles then has simple transformation properties.
Since only the meson is observed in the present ex-
periments, Eq. (2.7) is to be integrated over all possible
final electron states. For each electron scattering angle,
the electron’s energy is fixed by the conservation laws
[see Eq. (2.14)] below, so that the integration is over
electron directions only. The result is to be compared
with the corresponding expression for photoproduction
by a bremsstrahlung spectrum ¢(K)dK/K, which is

¢(K)dK
K 64r°K

(2.8)

a3

M d¥q
Zm)P——, (29)
E

We

$(wg+E—K—M)
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the sum being over the two photon polarizations and
the nucleon spin states. For given q, the appropriate
value of K is k;=e—¢;', where ¢, is the energy of the
final electron for forward scattering (§=0).

Let T,; denote the sum over electron spins in Eq.

2.7):
Tij=m* 2. [a(p)yau(p—k) J[a(p—k)vu(p)]
=2pipj— pikj— pikit3 (B —ko®)dj.
Then the remaining sum may be written
®,= (X Timi*m;)(k*— ko) =Tr{2|p-m,|?
+3 (¥ —k¢’) [m.[*+2 Re(p-mk-m) (p2—p") /&*
+3[ =14 (p+)*/F](ke’/ k) | k-m|?}
X (B2=kH) (2.11)

The trace here is with respect to the nucleon spin. The
corresponding expression for photoproduction is

(2.10)

®,,=Tr(m*-m,);. (2.12)

The subscript f denotes that the current is evaluated
for K=kf

The ratio of the meson intensity produced by elec-

tron bombardment to that produced by bremsstrahlung

will be denoted by N./¢(K) where, from Eqs. (2.7)
and (2.9),

adkp pd, PP dQ

Ne(pk)=—— | —————,

T ppsY Pon (B—k?) 4r

where p,/ is the momentum of the recoil electron for
forward scattering. Specifying the electron scattering
angle by 6, the angle between p and p’, and ¢, the angle
between the planes (p,q) and (p,p’), the final electron
momentum is given by

e M(p—wo)+p(q cosa—wy)+3u?
M+ p—w,— p cosb-+q(cosa cosf+sina sind cose)
(2.14)

(2.13)

This expression is correct to order (m?/p’?); the angle
of pion emission relative to the incident direction is a.
Typical curves of p’ have been given in reference 1.
The expression (1.5) for total cross sections may be
obtained from Eq. (2.13) by replacing p’ by the con-
stant value p,” everywhere and integrating numerator
and denominator over all meson directions; the cross
term between transverse and longitudinal production
averages to zero in the total cross section.

In the calculation of N, for some models it is some-
times more convenient to proceed without separation
of the transverse and longitudinal parts of the inter-
action current. For these cases it may be convenient to
use the covariant form

o=3 Trl Jujut | Pujul "B =k ], (2.15)

where  7uju=|j1[*+ [ 72"+ js|*= 7o|% and  pu=p,
+p,/. This form may be obtained directly from Egs.
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(1.3) and (1.4) by using covariant projection operators
in the usual way for evaluation of the sum over elec-
tron spin states. An equivalent form is

®.=3 Tr{ Jujut (4/ke?) (b-3%) (b-3) (B — ke*) 7],

where b=¢'p— ep’. To a close approximation, this vector
b is perpendicular to the bisector of the angle between
p and p’ and lies in the plane of p and p’ (see Fig. 1,
reference 1). In each of these expressions (2.15) and
(2.16) the virtual photons may be regarded as con-
sisting of an unpolarized part giving rise to the first
term and a polarized part responsible for the second
term.

The expression (2.15) for ®, is explicitly a relativistic
invariant. Hence, despite their noncovariant appear-
ance, the equivalent expressions (2.11) and (2.16) must
each have the same value in every Lorentz frame pro-
vided the value j appropriate to that frame is used.
Now, even in a relativistic theory, the discussion of the
final pion-nucleon state is most conveniently carried
through in a particular Lorentz system, the pion-
nucleon center-of-mass (c.m.) system, and by con-
sideration of scattering states which have definite
angular momentum and parity in this system. The
matrix elements calculated for a nonrelativistic fixed-
source theory, which neglects the motion of thenucleon,
are best used in this c.m. system where neglect of the
nucleon motion is most justified. The corresponding
matrix element for calculation of ®, in some other
Lorentz frame must then be obtained by a Lorentz
transformation; if the fixed-source matrix element is
used directly in another Lorentz frame, a different
approximation is being made and a different value will
be obtained for ®,. It is clearly desirable therefore to
evaluate ®, in a Lorentz frame which varies with the
electron scattering angle, namely, the c.m. system of
the virtual photon and target nucleon (which is of
course identical with the final pion-nucleon c.m. sys-
tem). In this Lorentz frame we shall denote the various
momenta by capital letters corresponding to the lower-
case letters used in the laboratory system; thus Q and
K will denote the pion momentum and the momentum
transfer of the virtual photon as seen in the pion-
nucleon c.m. system.

However it is most convenient to carry out calcula-
tions using the variables defined directly in the labora-
tory frame. Since the c.m. system has velocity
k/(M+ko) relative to the laboratory, the energy and
momentum transfers Ko, K seen in the c.m. system
may be expressed in terms of the laboratory quantities
ko,k:

(2.16)

. Bo(M~+ko)— k2
U LMt R — Ty

K=k @17
{L(M+ko)*— R}
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These expressions necessarily satisfy the relation Ko
— K?=k,*— k2. Similarly, it is clear that the transverse
components of current in the two systems are equal,

(2.18a)

while the relation between the longitudinal com-
ponents is

jf:Jh

Jo/ko=TJo/K,, (2.18b)

taking account of Eq. (2.1). With these relations (2.18),
direct computation of (2.11) yields the same value in
either of these Lorentz frames, confirming the remarks
of the previous paragraph.

The first case of interest is transverse electric-dipole
excitation. The assumption of a point dipole corre-
sponds to a constant matrix element J,, with J,=0;
with Eqs. (2.18), the current in the laboratory system
also has constant j,, and j;=0. The value N, then ob-
tained is just the standard value; the result for a
typical case is given in Table I. Results are also given
on the same line of the table for a transverse dipole of
finite interaction volume (or corresponding form factor)
specified in the c.m. system.

For longitudinal excitation, a point electric-dipole
(E.D.) interaction giving a constant matrix element
J1=J, in the c.m. system corresponds to a matrix ele-
ment j;= j,ko/Ko in the laboratory system, following
Eq. (2.18). The c.m. assumption ‘“‘equal transverse and
longitudinal matrix elements.”

ED. (cm.): J(K)=J(K;), J(K)=J(K;),

therefore leads to a quite different result from the corre-
sponding assumption,

E.D. (lab.): ju(k)=j.(ks), ji(k)=7.(ks), (2.19b)

in the laboratory frame, as shown also in Table I. In
fact for the case considered, the longitudinal contribu-
tion with (2.19a) is about four times that obtained for
(2.19b). This large difference can be traced to the fact
that k>>K, at the larger angles. From Eq. (2.1), it is
clear that the assumption J,=constant, necessarily
requires Jo to be very large when K, is small. For
sufficiently high electron energy and a sufficiently large
scattering angle it is possible for K, to pass through
zero and become negative; clearly both Jo and J should
remain finite for all K, K, so that we can conclude that
J1—0 as K¢—0. Thus the more appropriate assumption
for J, is that it has the form K, times a slowly varying
function of K and K,. For electric-dipole excitation, the
simplest such assumption is then

E.D. (cm)*: J,(K)=J.(K;),
Ji(K)=J.(K)Ko/Ky, (2.190)

for which the N, obtained is intermediate between those
for the original assumptions (2.19a) and (2.19b).
Higher multipole moments correspond to the use of
form factors vanishing for K=0 in the present approxi-
mation where the multipole moments are assumed to

(2.19a)
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have no dependence on the pion momentum. For mag-
netic dipole (M.D.) excitation, a point dipole corre-
sponds to form factors

M.D. (c.m.): J(K)=J(K)K/K,, Ji(K)=0.

As shown by Table I, essentially the same result for N,
is obtained for a k/k; dependence, corresponding to a
point magnetic dipole in the laboratory system. For
electric-quadrupole (E.Q.) excitation, the transverse
part is identical with the magnetic-dipole case, but
there is also the longitudinal excitation; with “equal
transverse and longitudinal matrix elements,”

(2.20)

E.Q. (cm.): J.(K)=J«(K,)K/K;,
JUK)=J(K)K/K;, (2.21a)

E.Q. (cm)*: J(K)=JJ(K,)K/K,,
T(K)=J(K)KKoy/Kz (2.21b)

Following the discussion of the last paragraph, the
latter expression gives the simplest reasonable assump-
tion. For this case there is an especially large difference
between this expression, the expression (2.21a) and
the assumption

E.Q. (lab.):  j(k)=ji(k)=7j.(k,)k/ky,

in the laboratory frame. Owing to the heavy weighting
of the contributions from the large-angle scattering, the
longitudinal contributions are completely different for
each of these cases. For each situation listed in Table I,
it is the value labeled with asterisk which corresponds
to the most reasonable treatment of the longitudinal
contributions.

Except for electric dipole excitation near threshold,
these models are all too crude to explain pion produc-
tion by electrons. However, they serve to illustrate the
pitfalls associated with the improper treatment of
nucleon recoil. Except for the relativistic weak coupling
theory'® and the relativistic Tamm-Dancoff theory,®
there are at present no treatments of the electro-
magnetic production of pions which do properly take
nucleon recoil into account. Since the nucleon recoil
will not be unimportant in the c.m. system for large-
angle scattering, this introduces an additional uncer-
tainty in the discussion of the matrix elements in this
region.

(2.21¢)

3. CALCULATION OF N,
A. Phenomenological Treatment

We first describe the process phenomenologically,
following the method of Brueckner and Watson,!” and
Gell-Mann and Watson.!® The separation of the inter-

15 See, for example, Marshak,™ p. 4.

16 Dyson, Ross, Salpeter, Schweber, Sandaresen, Visscher, and
Bethe, Phys. Rev. 95? 1644 (1954); Marc Ross, Phys. Rev. 94,
455 (1954); 103, 760 (1956).

17 K. A. Brueckner and K. M. Watson, Phys. Rev. 86, 923
(1952).

18 M. Gell-Mann and K. M. Watson, Annual Review of Nuclear
Science (Annual Reviews, Inc., Stanford, 1952), Vol. 4, p. 219,
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action into terms corresponding to states of definite
angular momentum and parity is rigorous and well
defined in the c.m. system; however the dependence of
the strengths of the various terms on the energy and
momentum of the virtual photon are, of course, not
known in advance.

In the cases of present interest, the pion-nucleon
relative energy is sufficiently low for consideration of .S
and P waves alone to suffice. For S-wave pion produc-
tion, both transverse and longitudinal electric dipole
transitions may be effective. The corresponding matrix
elements may be written

iD,(c— Ko -K/K?)+iD,Ke-K/K2, (3.1

where the coefficients D, D; are independent functions
of K? and Q? (or K? and K,). In photoproduction, only
the transverse term D, is effective, and also there is a
definite relation between K? and Q% For production of
mesons in the Pj state, a monopole transition is possible
in addition to the magnetic dipole transition effective
in photoproduction, giving terms

(M/KQ)(— QX K—iQe¢-K+ieQ-K)
+i(0:,/KQ)Ke- Q.

Finally there are the transitions to the P; state, the
magnetic dipole M; and transverse electric quadrupole
E, terms effective in photoproduction and also a longi-
tudinal electric quadrupole term E;

(M3/KQ)(—20Q0XK+iQe-K—isQ-K)

+i(E,/KQ)(Qe- K+0K-Q—2Ke-KK- Q/K?)
+i(E/KQ)(2¢-KK-Q/K2—2¢-Q/3)K.

(3.2)

(3.3

We are concerned here specifically with the production
of positive pions, so that these matrix elements do not
refer to definite isotopic spin states. In terms of matrix
elements to final states Ty and T3, each of the terms
above, X, has the form!8

‘Xva = [X,,3 exp (i5a3)+\/2Xa1 exp (1.5,,1) ],//V’g, (34)

where 6., denotes the pion-nucleon scattering phase
shift for isotopic spin 7/2 in the final orbital state to
which X, leads and the amplitudes X,, are real. For
neutral pion production, the corresponding matrix
elements X, are given by

Xo®=[V2X o3 exp(ibas) — X a1 €xp(i8a1) J/V3.  (3.5)

The phenomenological analysis of charged and neu-
tral pion photoproduction given by Watson and col-
laborators has led to considerable knowledge of the
transverse matrix elements on the energy shell K2= K.
The dominant matrix elements are the S-wave excita-
tion D, and the enhanced matrix elements M ;3 and E,;3
leading to the resonant (33) state; the most complete
information on the magnitudes of E;, M33, and D, has
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been given recently by Watson et al.!® The other trans-
verse matrix elements are relatively small and are
important mainly through their interference with the
terms above. These results will be used as a guide in
discussion of electroproduction of pions; the interpreta-
tion will depend on the form of these dominant matrix
elements for K*> K?, and on the effectiveness of the
longitudinal terms.

Even though it has not been expressed in a covariant
form, this description of the electromagnetic production
of pions in terms of multipole moments is quite rigorous.
It is assumed that the four-component Dirac spinor
has been reduced to two-component form by expressing
the two “small” components in terms of the two “large”
ones. All the terms arising from this reduction, as well
as the relativistic normalization factors, are included
in the definition of the X,.’s; the remaining two-com-
ponent spinors are normalized to unity. Of course we
do not actually have available the covariant form of
J, for carrying out this reduction, but we know from
angular momentum and parity considerations in the
c.m. frame that the result must be in the form of Egs.
(3.1) through (3.3) for the lowest few states. In a more
general Lorentz frame, such a simple expansion as this
would no longer hold because the total momentum of
the system gives an additional vector which would
appear in the various angular factors of the expansion.
It happens that an expansion of this form does hold in
the laboratory frame since the total momentum is
parallel to k; however, in passing between the labora-
tory frame and the c.m. frame the multipole moments
become mixed together. [According to Eqs. (2.19) and
(2.20), the separation into longitudinal and transverse
parts would remain invariant in passing between these
two frames. ] From these considerations, we believe the
c.m. frame is the preferred one for a phenomenological
calculation. Some of the kinematical relations and
formulas required for such a calculation are given in
the Appendix.

A difference from the situation considered in the
Introduction is that the direction q of the pion is ob-
served. Even for a particular multipole transition and a
definite momentum transfer k, the angular distribution
of the pion relative to k differs from that for photo-
production owing to the p dependence of T'; [see Eq.
(2.11)]. This distribution has next to be averaged over
all momentum transfers effective, with appropriate
weighting, so that the pion angular distribution in
electroproduction will differ somewhat from the photo-
production distribution. In addition, the longitudinal
transitions effective in electroproduction will have
different angular distributions.

9 Watson, Keck, Tollestrup, and Walker, Phys. Rev. 101, 1159
(1956). {Evidence on =° photoproduction presented by D. R.
Corson at the Rochester Conference [Proceedings of the Sixth
Annual Rochester Conference on High-Energy Physics (Interscience
Publishers, Inc., New York, 1956)] indicates that E, is much
smaller than given by the analysis of Watson ef al.}
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Because of the large number of unknown functions
occurring in Egs. (3.1) through (3.4), it seems imprac-
tical at the present time to use the phenomenological
treatment for making anything better than very crude
estimates of N,. This will be carried out by direct
numerical calculation of (2.13) using the complete ex-
pression for ®, (given in terms of c.m. quantities in the
appendix) corresponding to the sum of the matrix
elements (3.1), (3.2), and (3.3). For purposes of illustra-
tion we present here the result obtained for the transi-
tions M3, E,, and E; leading to the resonant state, when
recoil is neglected.

®,”=p{[ (243 sin’a) | M5|*+2 Re(M$*E,) (1—3 cos’a)
+ | E¢|2(14-cos?a) X+ (4/9) | E1|2(14-3 cos’a) Y
+LB cos’a—1)/2]LQ3| Ms|*— | E[)V
+8 Re(M*E)W —4 Re(M*E,\+3EXE)Z
— (4/3)| E;|?Y sin’%¢ ]}, (3.6)
where

X = (2p*)'+sin%e/ (k*— k),
V=[(p+ 92— ] (B— k) /202257,
Z = (e+¢€) cosa sin’o/kkop,

V =sins/24?%,

W=2X sin?s—V/2,

and o is the angle between the momentum transfer k
and the beam direction. This angle is related to the
momentum transfer by

sinto=[ (p+p)*— Ik~ (p—p)?1/ 48" (3.7)

In Eq. (3.6) the integration over ¢ has already been
carried out; this integration corresponds roughly to the
averaging over polarizations in the photoproduction
process. The square-bracket coefficient of X in (3.6) is
in fact the photoproduction distribution function &,y
It will be noticed that the pion angular distributions for
the pure excitations differ from those for photoproduc-
tion. The functions X and ¥V appear also as factors in
the integrals (1.5); this is natural since, on integration
over a, the cross terms of Eq. (3.6) vanish and the
expressions (1.5) are regained. Each of the functions Z,
V, and W vanishes in the forward direction ¢=0,
k=k;>k,, so that the additional terms in the pion
angular distribution arise from relatively large-angle
electron scattering.
For S-wave excitation, the corresponding expression
is
®,5=2|D,|2X+|D,|*Y.
This is essentially the same as Eq. (2.18) if we place
N\e=|D./D.;| and \;=|D;/Dys|. The result is exactly
as discussed in Sec. 2 and tabulated in Table I for some
simple assumptions about D, and D,. The transverse
Py excitation will be neglected. Although it leads to a
state of weak scattering, the interesting longitudinal P,
excitation O; may be comparable with D; (see Fig. 1)
for pion energies considered here and it is therefore

(3.8)
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included since it will contribute a positive addition to
N,; it should be added here that O; has no interference
Wlth M33.

The function ®,, equals the sum of the coefficients of
X in (3.6) and (3.8), the matrix elements being taken
on the energy shell for forward scattering, k*=#k.%
Deviation of N.(p,ks) from the standard value will
then arise from the variation of M3, E;3, and D; with
momentum transfer k%, from the interference terms of
Eq. (3.6), and from the longitudinal production terms
of Egs. (3.6) and (3.8). On the energy shell, D, and
M 33 are dominant matrix elements: it is possible that
E;; is also “enhanced,” and that E,3/M3; is roughly
0.5 over a large energy range across the resonance.!®
In the numerical calculation the following momentum
dependences were assumed for the various multipole
moments: D, const; Dyx Ko; Mix KQ; Oy« KQKy;
M;xKQ; E;«x KQ; and E;«< KQK,. This is necessarily
their behavior for small K, Q, and K, (see Sec. 2) and
would continue for large values if the interaction
volume were sufficiently small. Since there is a finite
interaction volume, there will be “form factors” and
there will also be the phase factors of Eqgs. (3.4) and
(3.5) which depend on the energy of the meson in the
cm. frame and vary slightly from angle to angle. At
the present stage only two experimental numbers are
available, so that it is clearly not possible to provide
a unique interpretation of the result without theoretical
guidance, even following the “enhancement model.”
Simple meson theoretical considerations will be dis-
cussed in the following subsections, and the interpreta-
tion will be discussed in Sec. 5.

B. Fixed-Source Pion Theory of Chew

In this subsection, the current J associated with the
pion production will be considered according to the
linear fixed-source theory of pseudoscalar pions. On the
basis of this theory, Chew and collaborators?® have
given a rather successful account of the data available
on pion-nucleon scattering and pion photoproduction.
Here it is the ratio of production of pions of definite
energy and direction by electrons and by photons which
is of interest. This ratio will depend on rather broad
features of J: the relative magnitude of its longitudinal
part and the momentum dependence of its transverse
part.

For reasons which have been discussed by Kroll and
Ruderman,? the Born approximation for J is adequate
near the pion-production threshold. This is given by

Ve o (0—K
Jz—g-[o— 20— K)—(Q%)] (3.9)
2M v (Q—K)?

for =+ production. As the pion energy increases, modi-
fications to this become important especially because
2 The results are summarized by G. F. Chew, Phys. Rev. 95,

1669 (1954).
2 N. M. Kroll and M. A. Ruderman, Phys. Rev. 93, 233 (1954).
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of the resonant interaction in the (33) state. However,
since S-state scattering is weak, it seems reasonable to
use the S-wave part of Eq. (3.9) up to quite high en-
ergies; for photoproduction, Watson ef al.!? have shown
that this provides an adequate account of the data.
Equation (3.9) contains two terms of distinct physical
origin. The first refers to the production of pions which
have interacted with virtual nucleon pairs and are
therefore produced at a radius of order 1/M. The
second term describes photoejection from the meson
cloud of the proton; these pions are produced at rela-
tively larger radii®? up to 1/u. The second term therefore
has considerable & dependence.

The S-wave current may be obtained from Eq. (3.9)
by averaging over the direction of Q, leading to the
form (3.1) where

=1—(Q/2K)[Io(A)—I.(A)], (3.10a)
Di=1—(K/2Q)[1s(A)—3(Q/K)I.(A)
+2(Q/K)¥,(A)], (3.10b)

and A= (we*+K?)/2QK. The functions I, are given by
the recurrence relation

L) =AL,_;(A)—[1—(=1)"]/2n,  (3.11)

with To(A)=4% In[(A+1)/(A—1)]. At threshold (0=0),
D, is unity and D,=u?/ (u>4K?); on the energy shell
(K=u), Di/D, equals one-half and with increasing K2,
D, falls rapidly while D, remains constant. Thus at
threshold the transverse contribution to N.(p,ks) is
just the standard value; the total N.(p,k,) is slightly
greater than the standard value because of the longi-
tudinal contribution. Above threshold both D, and D,
depend on the momentum transfer K ; typical curves of
these and the other multipole moments are shown in
Fig. 1. Generally, the second term of D, is quite small
as only pions at relatively large radii can be ejected
effectively by the transverse field ; however, D, increases
with K? and this causes the transverse contribution to
N, to exceed the standard value slightly. On the other
hand, the two terms of D; tend to cancel for large K,
the second term being large (of order one) because
pions at rather small radii in the cloud have a strong
interaction with the longitudinal field. Generally, D, is
appreciably smaller than D, on the energy shell (K=wg)
and falls rapidly with increasing momentum transfer K2.

The fixed-source theory is, of course, not relativisti-
cally invariant. Following the discussion of Secs. 2 and
3A it is most reasonable to use the matrix elements of
such a theory in the c.m. frame, rather than the labora-
tory frame. At our present energies, the energy transfer
K, in this c.m. frame becomes rather small over a cer-
tain region of electron-scattering angles; the longitudi-
nal current should vanish with K,, whereas the fixed-
source matrix element is independent of K. To include

22 In pseudoscalar theory the pion cloud is somewhat singular,
with dependence e7#7/7? so that radii <#/uc do play an important
role.
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the dominant K, dependence, whose importance has
been emphasized in Sec. 2, the longitudinal part of the
current (3.9) is multiplied by the factor (Ko/K;), the
transverse current being unmodified: this factor is
unity for forward scattering. For the case of the Born-
approximation matrix element (3.9), this procedure
will be justified by examination of the relativistic
Born approximation in the next subsection: the re-
maining relativistic corrections to both transverse and
longitudinal parts of J should be quite small under
present experimental conditions.

The Chew-Low matrix element is obtained from a
treatment of photoproduction based on field-theoretic
methods developed recently by Low.? This method has
the great advantage that it deals only with physically
observable quantities, but it has been developed for
photoproduction only as far as the ‘“one-meson”
approximation. Chew and Low?* have pointed out the
dominant modification to Eq. (3.9) which arises from
this approximation; this is the addition of a magnetic-
moment term

V2eg
" Dy(2iQX K+¢-KQ—0Q-K)
6”33 Sinass
X——F(K?);
Q*/u
where

Do="%(u/4M) (47/ ) (§p—82) =0.7£0.1.

The factor F(K?) is the form factor for the nucleon
magnetic moment, as given by Chew and Low. Since
rather little is known of this form factor, we shall take
F=1 for the present situation.?® Chew and Low then
show that the sum of Egs. (3.9) and (3.12) is able to
account directly for certain outstanding and well-
known features of pion photoproduction. However, this
matrix element does not include a modification to the
E2 matrix element for final-state scattering. The E2
term included in Eq. (3.9) has phase zero instead of
833 and will not interfere with (3.12) near resonance.

Calculation of N.(p,k;) may now be made by sub-
stituting this expression for J into Eq. (2.11) and in-
tegrating Eq. (2.13). Complete expressions for &, are
given in the appendix and the results will be discussed
in Sec. 5.

The fixed-source theory may also be considered in
the Tamm-Dancoff approximation.!® In this form the
theory of pion processes has less elegance than in the
Chew-Low approximation; the problem of renormaliza-
tion involves considerable complication in practice, and
calculations have not been carried through to include
as much as is included in the one-meson approximation

23 F. E. Low, Phys. Rev. 97, 1392 (1955).

20 G. F. Chew and F. E. Low, Phys. Rev. 101, 1597 (1956).

25 Electron scattering experiments at Stanford indicate that the
rms radius of the magnetic-moment distribution in the proton
is about 0.7 X 107 cm. This work is reported in R. W. McAllister

and R. Hofstadter, Phys. Rev. 102, 851 (1956), and E. E. Cham-
bers and R. Hofstadter, Phys. Rev. 103, 1454 (1956).
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of Chew and Low. However, the features of interest in
our problem may be illustrated in a familiar physical
way by use of the Tamm-Dancoff theory in its simplest
form. The desired matrix element is that of the current
operator of the pion-nucleon system between initial
nucleon and final state of interacting pion and nucleon.
In the simplest Tamm-Dancoff theory, no more than
one pion is allowed in the nucleon’s pion cloud and the
final state is represented by the Tamm-Dancoff wave
function of the pion-nucleon system. After taking into
account the isotopic spin dependence of the pion-
nucleon interaction, this results in the following ex-
pression for the amplitude for production of positive
pions,

: *(S ! J+(S,K)+Vv2J°(§,K
S per® e R

1

+¥o 3% (8)——[2J*(8,K)—2J°(§,K) ]

(ws)?
X (wQ)idsS.  (3.13)

In this expression, J*(S,K) and J°(S,K) denote the
current amplitude for production of positive and neu-
tral pion of momentum S, respectively, and yq,7(S) is
the final-state wave function for the ¢.m. motion of a
pion-nucleon system of isotopic spin T, my=+3%, and
of pion momentum Q. The foregoing expression (3.9)
gives the dominant term of J*. The neutral amplitude
Jo arises mainly from higher order corrections which
describe the interaction of the electromagnetic field
with the nucleon magnetic moment. This term is pro-
portional to (u,—mu») and is naturally appreciable only
for magnetic transitions. However J° contributes
strongly to the 7+ production only when the final-state
scattering is strong: for states of weak interaction,
¥3=y; and the terms J° cancel in Eq. (3.13). The mag-
netic moment interaction is therefore important only
for the M1 excitation of the resonant (33) state: it is
indeed just this effect which is estimated by the addi-
tional term (3.12) of Chew and Low. The contribution
of the magnetic moments to J* will be neglected here
since it is proportional to the small quantity (u,+u»).

The amplitude (3.12) may now be expressed as a
sum of the amplitudes (3.1), (3.2), and (3.3) for various
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multipole excitations. The contribution of the (33)
state to the final-state wave function ¥q,3(S) is, for
example,

€33 cosd33(0- QX S—21Q-S)po(S), (3.14)
where ¢¢(S) has the form
FQ(S) tanégg(Q)
$e(S)=8(Q—S)+P——— . (3.15)

wE—ws

In Eq. (3.15), P denotes principal value integration
over the singularity and Fq(S) is the function obtained
from the Tamm-Dancoff calculation of pion-nucleon
scattering.?® The contribution of (3.14) to (3.13) may
now be separated into the three multipole terms of
(3.3), each of the coefficients having the form

e[ B(K,Q) cosdss+ T (K,Q) sindss ],

where B(K,Q) is the Born approximation matrix ele-
ment for this particular multipole and T'(K,Q) is the
corresponding final-state integral over Fgo(S). The im-
portance of this form (3.16) for the photoproduction
matrix elements has been discussed particularly by
Ross.16
The E2 excitations of the resonant state may now

be considered. These estimates are of particular interest
since the E2 excitations have not yet been calculated
in the Chew-Low approximation. The Born approxima-
tion amplitudes may be obtained from (3.9), and are
given explicitly by

egV2
B (E,) = _ﬁ

M

(3.16)

SFTo(A)—1o(A 3QIA IA} (3.17
x[z[ N—LWI- LW -LW]f, 617)

egV2 3K
B(E)=—1B(E)————
2M 4Q

x[zl(A)—3(%)212(A)+2(§)213(A)]. (3.18)

For these E2 excitations, 7'(K,Q) has been calculated
numerically using Tamm-Dancoff wave functions ob-
tained by Salzman and Snyder.?® A typical curve of
B(K,Q) and T(K,Q) as a function of the momentum
transfer K for pion energy near the resonance is shown
in Fig. 2 for both E; and E;. In Born approximation,
the pions tend to be produced in outer regions of the
nucleon cloud, so that B(K,Q) tends to fall off as the
momentum transfer increases beyond the energy shell,
and inner regions of the cloud are explored. This de-
crease of B(K,Q) is especially marked for the longi-
tudinal transition £;. Now the pion-nucleon interaction
in pseudoscalar theory becomes increasingly stronger

26 J. L. Gammel, Phys. Rev. 95, 209 (1954); F. Salzman and

J. Snyder, Phys. Rev. 95, 286 (1955); M. Kalos and R. H. Dalitz,
Phys. Rev. 100, 1515 (1955).
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for closer and closer approach, so that contributions
from the inner regions of the cloud are more strongly
enhanced above Born approximation than are the outer
contributions. Consequently the matrix element T'(K,Q)
will continue to rise for larger momentum transfers K
than B(K,Q), owing to this singular attraction between
pion and nucleon in the final state.

Finally, the Pj; excitations are to be considered.
Since the pion-nucleon scattering is weak in the P;
states, the final-state effects will be neglected here.
For the M1 excitation, the matrix element is given by

B(M,)= _%%[10(1\)—12@)]. (3.19)

There is also the monopole excitation

egV2 Q0 K
B(0)= [%IO(A)HZ(A)—(—+~)11<A>]. (3.20)
oM K 20

These matrix elements are plotted as a function of K
in Fig. 1 for a pion-nucleon relative energy of 55 Mev.
It is of interest to note that, at this energy, O; and D,
are comparable on the energy shell, and that, in general,
O, decreases much less rapidly than D, with increasing
K. At this energy then, since E; is small and falls rapidly
with increase of K, it follows that the greater part of
the longitudinal production of pions may be expected
to arise from the monopole excitation. At higher
energies, near resonance, the quadrupole excitation
may be expected to contribute to the longitudinal
production and to interfere with the dominant reso-
nance excitation.

C. Relativistic Born Approximation

Owing to the uncertainties arising from the non-
relativistic character of fixed-source pion theory, as
discussed in Secs. 2 and 3b, it is of some interest to
examine briefly the matrix element of the relativistic
weak-coupling theory, the relativistic counterpart to
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expression (3.8). This takes the form
Ju=egV2¥(s)vs

[ 1 2qu—ky
X Y
r—k—iM (Q)\—k)‘)2+ﬂ2

]sl/(r), 3.21)

where ¥(r) denotes the four-spinor for momentum r
and Y =y!y, is its adjoint.

In the c.m frame, the initial and final nucleons have
momenta — K and — Q, respectively. For comparison
with the phenomenological and fixed-source theories, it
is convenient to express the current J in this frame in
terms of Pauli spin functions by the replacement

Y(P)=Vr(1+iyse-Rp)u, (3.22)

where Rp=P/(Ep+M) and Vpe=[(Ep+M)/2M .
With this replacement, the current matrix element
becomes

o o-Rgoo- Rx
E+M E—-M
(2Q—K)e- (Rg—Rg)
4
(Eq—Eg)*—we*— K

]VKVQ, (3.23)

the energy relation being Ko+ Ex=Eq+wqe=E. It may
readily be verified that expression (3.23) reduces to
the previous fixed-source expression (3.9) when the
nonrelativistic limit Q, K<M is taken for the nucleon.

Consider in particular the longitudinal part of J,
which may be written

K,
J-K=1iegV2—
ph
E4+M( (E—M)(wet+Ex—Eq)
X (0‘ RQ { 1— ’
2F wo-x*— (Eq— Exk)*
E—M (wot+Ex—Eq)(E*—M?
+0.RK{— % ‘) (3.24)
2E  2F[we x*— (Eq—Ex)?]

where Kn= (E*—M?)/2E is the photon energy neces-
sary to produce this final pion-nucleon state in the
center-of-mass system. For the energies of interest at
present, the fixed-source limit K, Q<&M provides a
quite good approximation for the terms within the
curly brackets of Eq. (3.24); however the factor
(Ko/Kpn) outside can change very greatly (and even
change sign) from its fixed-source value of unity for
quite moderate Q, K such that the fixed-source limit is
elsewhere quite adequate. It should be added here that
a corresponding examination of the transverse current
shows that no significant error is made (at present
energies) in going to the fixed-source limit.

For direct calculation of N, with the covariant matrix
element (3.21), any convenient Lorentz frame may be
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used for evaluation of ®,, using expressions (2.15) or
(2.16). It is in fact most direct to carry calculation
through in the laboratory frame: expressions are given
in the appendix for the quantities occurring in ®,, and
the results of numerical calculations for the cases of
interest will be discussed in Sec. 5.

4. INELASTIC ELECTRON-PROTON SCATTERING

Complementary information bearing directly on the
off-diagonal behavior of the current matrix element J
may be obtained from the measurement of the spec-
trum of electrons inelastically scattered into a par-
ticular direction after pion production from protons.
Since the energy transfer %o from the electron to the
struck system is related to the momentum transfer k by

ko=[(Eqtwe)+- 1 —M, (4.1)

it is clear that, for given electron direction, each final
electron energy corresponds to a final pion-nucleon state
of unique relative energy (Eqg+wgq). The differential
cross section for inelastic scattering (without observa-
tion of the resultant pion) therefore has a particularly
direct relationship with the desired matrix elements J.
In this situation, it is, of course, the total cross section
for production of both positive and neutral pions of
given wq which is effective.

To discuss this, we return to the differential cross
section (2.7),

8(M+ko—w,— E,)6(k—q—s)
1 aM ng d;;q d;;P’

X—P———— — —
64rt  (BP—k?) Es w, pé

, (£2)

where ko=¢—¢, k=p—p’, and &, is the expression
(2.11). It is naturally convenient to transform the
nucleon and pion variables to their c.m. system.
Consider

d3$ dg(]
S(M+ko—w,—E)5(k— q—s)f —

s Wq

(+.3)

This quantity has simple transformation properties
for change of Lorentz frame for s and q; in the pion-
nucleon c.m. system it takes the form

dsS d;Q
S{[(M+ko)*— k]t —we— Es}6(Q+S)— —.

s wgq

(4.4)

By integration over S and Q, this expression (4.4) is
reduced to
4rQ

Eqtwq

a9,

(4.5)

where dQ denotes an average over all directions of Q,
and Q is given by

Eqtwe=[(M+ko)*— k]
in accord with Eq. (4.1).

(4.6)
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F1G. 3. Spectrum of electrons scattered inelastically off protons.
The laboratory angle of scattering is 30° and the incident electron
energy is 600 Mev. The curves plotted are (a) Longitudinal pro-
duction (calculated in Born approximation for the fixed-source
theory); (b) Total Born approximation result; (c) Result for
Chew-Low matrix element (form factor unity); (d) Result for
Chew-Low matrix element (empirical magnetic moment form
factor). The dashed curve shows the longitudinal contribution
for the assumption D;=D,.

For the final integration it is naturally convenient to
express &, in terms of c.m. variables: &, is expressed in
terms of the laboratory current matrix element j by
Eq. (2.11), and the components of j are related to the
components of the c.m. current J by

Je=Jy, Ji=koJ /K. 4.7

After averaging over directions of Q, the interference
between longitudinal and transverse matrix elements
vanishes, with the final result

(Pon= f ®,d0

T:; 1 kik;
> —[—(51'1— )(J,« Jow
i (B2—ko?)L2 k?

Rl B\ ko
(1—*) —(Jl-mm], (4.8)
ATy &

where the angular braces ( )» denote an average over
directions of Q and over initial nucleon spin orienta-
tions, and a sum over final spin orientations. This
expression reduces at once to

=2

+

ko\ 2
2 t*Jt/Av —_— 'Jl Av |y .
ZP[X(J J>+Y(K)<Jl >] (49)

0

where X and ¥ are defined by Eq. (3.6). Further,
different partial waves no longer interfere: for example,
with the matrix elements (3.1), (3.2), and (3.3)

<Jz‘Jt)Av=2‘Dt|2+2|M1‘2+41M3|2+ (4/3)|Eli2;
<Jl'Jl>Av= |Dz|2+ |Ol[2+ (8/9)]El|2~

The total #* and #° production is obtained, following
Egs. (3.4) and (3.5), by replacement of each X,2 in
(4.10) by (Xa12+Xa32).

For the Chew-Low matrix element, expressions for

(4.10)
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F16. 4. Results for the same cases as Fig. 3 for a laboratory scat-
tering angle of 90° and incident electron energy of 600 Mev.

(Je-Jym and (J;- J)a are given in Egs. (A.18) and
(A.19); the term |D|? given is to be multiplied by a
factor 3 to take account of neutral pion production
which has amplitude V2 times the expression (3.12).
For calculation of the inelastic energy spectrum for
this case, an additional factor (K,/K,») will be in-
cluded in J; for the reasons discussed in Secs. 3b and
3c; here K, denotes the photon energy necessary in
the c.m. system for photoproduction of this final state

Q, given by
Kpn=[Eqtwe—M?*/(Eq+wq)]/2.

The electron energy spectrum is finally

« cp) Qp’ M
1678 p(B—ked) [(MA-hko)— B

In Figs. 3 and 4 typical electron spectra for incident
energy 600 Mev are plotted for scattering angles §=30°
and 90° based on the Chew-Low matrix element. In
these diagrams it is shown how the final curve is made
up of contributions from longitudinal excitations,
resonance excitations and other transverse excitations.
Roughly speaking, such a curve depicts (apart from
some slowly-varying factors) the total electromagnetic
pion-production cross section for a given momentum
transfer as a function of the pion-nucleon relative
energy.

From the curves of Figs. 3 and 4, it is apparent that,
according to the matrix element of Chew and Low, the
longitudinal contributions to pion production form only
a small part of the total inelastic scattering, especially
near the pion threshold. The shape of the longitudinal
curve obtained derives from the fact that DD, for
large momentum transfers K, so that S-wave pion
production is negligible compared with the P-wave
production through the monopole transitions O;, which
falls only slowly with large K2 and is therefore dominant
here; however, even the contribution predicted for O,
is never more than 259, of the total inelastic scattering.

(4.11)

dp'dY.
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The dashed curve depicts the contribution obtained
from a longitudinal matrix element D, equal to the
transverse D, (which is a constant for these large
momentum transfers). Observations on the inelastic
intensity for final energies corresponding to definite wq
near the pion threshold would provide a direct check
on the smallness predicted for the longitudinal pro-
duction and on the validity of the Born approximation
for S-wave excitations, as a function of K.

For larger energy losses, it is the excitation of the
pion-nucleon resonant state through the enhanced
matrix elements which is expected to be dominant.
The Chew-Low matrix element does not include any
enhanced E2 transitions which would add to the con-
tribution of the well-known M1 resonance excitation.
The importance of this M1 excitation for large scatter-
ing angles will depend on the magnetic-moment struc-
ture function F(K?), which is generally taken as unity
in the Chew-Low expression—the present indications
from the analysis of elastic electron-proton scattering,?
which gives an rms radius of about 0.7X107® cm for
the magnetic-moment structure (Gaussian shape as-
sumed), would suggest that the magnetic excitation for
90° electron scattering would be reduced to about 259,
of its value for a point magnetic moment (see Figs. 3
and 4). It seems reasonable to say that observations on
inelastic scattering in the resonance region would pri-
marily give information on this magnetic-moment
structure function F(K?). Some uncertainty in F(K?)
would arise from the fact that these observations cannot
distinguish between M1 excitations and E2 resonance
excitations which would add to them; however other
evidence suggests that the E2 excitations are relatively
weak in this process so that this uncertainty is probably
not of importance.

Thus, information on inelastic electron-proton scat-
tering will be of the greatest interest since it will pro-
vide a stringent test, for large momentum transfer, of
any theory of the structure of the pion-nucleon system.
However, it is also apparent that its analysis and
unambiguous separation into the various excitations
occurring will be very difficult in the absence of knowl-
edge concerning the angular correlations between pion
and virtual photon, and that the guidance of theoretical
models will be desirable for its interpretation.

5. RESULTS AND DISCUSSION

Calculations have been carried out for several dif-
ferent combinations of the experimental parameters—
incident electron energy and pion angle and energy—
and for various models of the process. These combina-
tions of parameters are tabulated in Table II, together
with the published experimental results! for two of the
cases. A summary of the results for the more important
theoretical models is presented in Table III. These
results were obtained by numerical integration of Eq.
(2.13) using Gauss’ method; in all cases ®, and @,
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TABLE II. The experimental parameters for which N, has been
computed. The experimental values are from reference 1.

kr Py’ Experimental
(Mev) (Mev) Ne

P T
Case (Mev) (Mev) @

I 600 60 75° 228 372 0.0193+0.0010
1T 600 147 75° 361 239

II1 600 170 75° 400 200 0.015540.0020
v 800 170 75° 400 400
VvV 1000 170 75° 400 600
VI 600 36 135° 225 375
VII 600 70 135° 301 299

VIII 600 93  135° 362 238
IX 600 30 45° 178 422

were evaluated in the pion-nucleon c.m. system. To
illustrate how the contributions to N, depend on the
scattering angle of the electron, we have tabulated the
integrand of Eq. (2.13) for various models in Table IV.
In the phenomenological treatment the simple mo-
mentum dependence expected for the X,’s was assumed
without any additional “form factor.” In Table III,
the terms “pure D2, etc., refer to N, values calculated
as though only that particular contribution appeared
in ®, and ®,,;,; this is true also for the quantities appear-
ing in Table IV. In combining these “pure” terms to
obtain the “transverse mixture,” the values of E;3, M3,
and D, given by Watson et al.'® were used; the inter-
ference between D, and the enhanced contributions is
included in this mixture. The additional longitudinal
and interference contributions were calculated assuming
that D;=D,, O,= D, or E,;= E; results for other values
of Dy, Oy, and E; may be obtained simply by scaling
those given in the tables.

The theoretical results obtained follow the general
pattern expected from the discussion in the introduc-
tion. The influence of the recoil of the nucleon and the
appropriateness of the use of the matrix elements in the
pion-nucleon c.m. system have been repeatedly empha-
sized and are illustrated by the results of Table I As
shown in Table III, the values of N, for the magnetic
dipole and transverse electric quadrupole excitations
are somewhat larger than for the transverse electric
dipole matrix element; this results of course from the
fact that the former matrix elements increase in pro-
portion to K while the latter is independent of the
momentum of the virtual photon However, in contrast
to the “simplified phenomenological model” of Sec. 2,
the magnetic dipole and transverse electric quadrupole
matrix elements, as well as their interference contribu-
tion, lead to slightly different values of N,; this was
already indicated in the fixed-nucleon approximation
(3.6). In principle this allows the possibility of deter-
mining the relative magnitudes of these phenomeno-
logical coefficients by carrying out experiments at
appropriate values of p, w,, and «, especially as their
relative weight in the net pion production depends
strongly on cosa. Several runs carried out at the same
photon energy k;, but various meson angles (with the
energy at each angle fixed by the photon energy),
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TaABLE III. Summary of N, values for some of the more important theoretical models. The terms “pure D2, etc., refer to N, values
calculated for the assumption that all other phenomenological constants vanish; “transverse mixture’” refers to N, values obtained by
using the parameters of reference 19. The additional longitudinal and interference contributions are given for the assumption D;=D,,
O1=D,, or E;=E,. In the meson theory results, the two different “Born approx’’ headings refer to the two ways of treating the longi-

tudinal contribution, as explained in the text.

I I 111 v v VI VII VIII X
Phenomenological
Pure D¢ 0.0200 0.0161 0.0152 0.0184 0.0209 0.0199 0.0173 0.0156 0.0219
Pure M;? 0.0238 0.0178 0.0165 0.0206 0.0238 0.0248 0.0201 0.0175 0.0270
Pure E2 0.0247 0.0180 0.0166 0.0210 0.0245 0.0256 0.0206 0.0177 0.0265
Pure E;,—M; 0.0205 0.0170 0.0160 0.0191  0.0212 0.0261 0.0207 0.0178 0.0404
Transverse mixture 0.0207 0.0167 0.0155 0.0190 0.0219 0.0204 0.0178 0.0159 0.0220
Dy 0.0021  0.0006 0.0005 0.0012 0.0018 0.0021 0.0010 0.0005 0.0037
0,—D, —0.0001  0.0003 0.0004 0.0005 0.0005 0.0017 0.0008 0.0004 —0.0041
02 0.0064 0.0010 0.0007 0.0022 0.0050 0.0082 0.0023 0.0010 0.0145
(Ms+3E)—E, 0.0002 0.0001 0.0000 0.0001 0.0001 —0.0001 —0.0001 —0.0001 0.0000
E? 0.0001  0.0000 0.0000 0.0001 0.0001 0.0002 0.0002 0.0001 0.0000
Meson theory

Chew-Low 0.0217 0.0175 0.0162 0.0203 0.0236 0.0211 0.0177 0.0156 0.0227

Transverse 0.0209 0.0169 0.0157 0.0194 0.0223 0.0206 0.0178 0.0156 0.0226

Longitudinal 0.0005 0.0002 0.0002 0.0004 0.0006 0.0003 0.0001 0.0001 0.0011

Interference 0.0003 0.0004 0.0003 0.0005 0.0007 0.0002 —0.0002 —0.0001 —0.0010
Born approx* 0.0212 0.0170 0.0158 0.0196 0.0224 0.0205 0.0177 0.0159 0.0225
Born approx 0.0218 0.0172 0.0160 0.0201 0.0238 0.0206 0.0178 0.0159 ‘e
Relativistic weak coupling 0.0213 0.0168 0.0157 0.0195 0.0224 0.0204 0.0176 0.0157 0.0225

would in effect determine slightly different combinations
of these coefficients. However, the difference between
the various enhanced contributions is much smaller
than the difference between the enhanced and un-
enhanced contributions, and it would require very great
experimental accuracy to separate out all the effects.
Most important of all, no form factors have been in-
cluded in these phenomenological calculations of Table
III; the presence of a form factor for each multipole
introduces a greater uncertainty in the theory than the
difference between some of the ideal point interaction
values for N,. In fact it would seem best to use meas-
ured values of N, together with information obtained
from photoproduction to infer information about the
longitudinal contributions and form factors. Such in-
formation will always be somewhat ambiguous because
a form factor would be expected to decrease the value
of N, while the longitudinal contributions would in-
crease it.

In contrast, a specific meson theory will generally
make a quite definite prediction for NV, so that these
experiments can then be considered as a check on this
theory. For example, assuming the correctness of our
treatment of the longitudinal components in the fixed-
source theory, the experimental value of N, provides a
test of the Chew-Low matrix element in a region in-
accessible to photoproduction experiments. In Secs. 2
and 3, it has been argued that it is appropriate to
modify the longitudinal part of the Born approximation
matrix element by a factor (Ko/K;). Values of N, for
this case have been calculated with and without this
factor (the former is labeled “Born approx*’ in
Table III). Whenever the difference is significant, the
former gives the closer agreement with the calculation

for relativistic Born approximation, thus providing a
check on the discussion of Sec. 3c. Next, it is of interest
to compare the Chew-Low and Born-approximation
values for case I with the phenomenological treatment,
using the Born-approximation values for the coefficients.
These have been plotted (for a slightly different energy)
in Fig. 1. The principal transverse contribution comes
from D,. Since this increases slightly with K, the trans-
verse part of N, should be slightly greater than the
standard value; it turns out to be 0.0203. The principal
longitudinal contributions come from O; and D;; these
are about one-half of D, on the energy shell and drop
considerably below the energy dependence assumed for
the phenomenological treatment (D, const, O;x K).
The resulting longitudinal contribution is 0.0006. The
remaining Born-approximation contribution of 0.0003
arises from the interference between transverse and
longitudinal production; it cannot be attributed to
D;— D, interference (which always vanishes), or O;— D,
interference which is small at this energy and angle
(the c.m. angle is 91° for forward scattering), but arises
from the interference of O; with the transverse P-wave
excitations. The Chew-Low value®” is further increased
above this value (0.0212) to 0.0217 owing to the con-

27 R, B. Curtis [Phys. Rev. 104, 211 (1956) ] has also calculated
values of N, for cases I and III, based on the Chew-Low matrix
element. (We thank Dr. Curtis for sending us a copy of his paper
before publication.) His results are, respectively, 0.0220 and
0.0157. The difference between his results and ours arises partly
from his use of the Chew-Low matrix directly in the laboratory
frame rather than the pion-nucleon c.m. frame, and partly from
the comparison of the calculated electropion production (in ex-
cess of the standard value) with the empirical photoproduction
data rather than with that given by the Chew-Low matrix ele-
ment (which means that the off-diagonal matrix elements used

do not necessarily join smoothly with the photoproduction matrix
element).
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TasLE IV. The integrand of Eq. (2.13) for Case I for the various theoretical models of Table III. The headings (i), (ii),
and (iii) refer, respectively, to the azimuthal angles 30°, 90°, and 150°.

(M3+3E:) Born Chew-
Dq2 M2 E2 Mjz—E: Mixture D2 01—D; (02] —E E2 approx* Low
(i) 4289 343.3 702.1 676.5 425.1 9.3 —101.0 10.4 1.1 0.1 348.9 393.7
6=4.0° (i)  450.7 710.4 50.7 50.0 476.0 9.9 -3.5 11.0 0.0 0.1 5154 470.8
(i) 4742 333.5 636.1 623.3 458.0 10.6 102.9 11.6 0.8 0.1 521.7 514.7
(1) 10.74 15.59 34.64 20.21 11.96 4.74 —13.90 9.65 0.71 0.12 7.14 10.96
6=18.9° (ii) 12.54 29.83 415 3.20 14.91 5.64 —1.97 9.08 0.02  0.08 15.27 15.90
(i) 14.86 13.61 21.99 14.42 14.71 7.16 14.20 8.10 045 0.09 29.76 25.72
(1) 1.16 3.74 8.47 1.85 1.53 1.38 —-3.28 6.50 0.35 0.10 0.83 1.71
6=39.1° (i) 1.37 6.20 213 0.93 2.13 1.83 —0.61 6.25 0.03 0.06 1.73 240
(iii) 1.64 2.92 3.81 2.68 1.89 2.50 3.40 4.94 0.12  0.05 3.74 3.30
(1) 0.37 1.87 4.11 0.34 0.63 0.56 —-1.35 441 0.19  0.07 0.29 0.73
6=55.5° (ii) 0.43 2.74 1.54 0.47 0.80 0.74 —0.24 4.01 0.02 0.05 0.54 0.94
(1ii) 0.50 1.41 1.69 1.59 0.68 1.01 1.49 3.10 0.03 0.03 1.03 1.03
(1) 0.14 1.04 2.15 0.01 0.29 0.21 —0.56 2.17 0.09 0.04 0.12 0.35
6=74.6° (ii) 0.16 1.33 1.11 0.25 0.37 0.27 —0.08 2.15 0.01 0.03 0.20 0.42
(iii) 0.18 0.81 0.95 0.94 0.31 0.37 0.67 1.74 -0.01 0.01 0.34 0.38
(1) 0.03 0.39 0.70 0.01 0.09 0.02 —0.09 0.27 0.02 0.00 0.03 0.11
6=126.9° (i1) 0.04 0.41 0.56 0.09 0.10 0.04 —0.01 0.27 0.00 0.00 0.04 0.12
(iii) 0.04 0.36 0.48 0.23 0.10 0.02 0.10 0.25 —0.01 0.00 0.05 0.07

tribution of the M1 resonance excitation (3.12) and its
interference with other transverse terms (this excitation
does not interfere with O; and the D;— M ; interference
is small at this angle and energy). The separation of the
Chew-Low value into transverse, longitudinal, and
interference contributions is given for all cases in
Table TIT.

The experimental results of reference 1 may now be
compared with these various estimates; only a brief dis-
cussion is given since these experiments are being re-
peated with better statistics and for other experimental
parameters. The result for case I lies below the standard
value of N, and significantly below the electric dipole
estimate with D;= D,. Tt should be noted that moderate
form factors in the transverse excitations are rather in-
effective in reducing N, much below the standard
value; this follows from the fact that the large mo-
mentum transfers whose effect is to be diminished by
the form factor already contribute rather weakly in the
standard value. Thus, the assumption of an rms radius
as large as 107" c¢m involves only a 49, decrease in N,
for transverse electric dipole. It may be concluded that
longitudinal production contributes relatively little to
the observed N,. The known presence of P-wave excita-
tion in the corresponding photoproduction strengthens
this conclusion since these excitations increase the
transverse N, above the standard value. In the Chew-
Low theory the resonance excitation increases the
transverse N, to 0.0207; the presence of longitudinal
production in this theory increases N, only by 0.0009.
Hence this experimental result appears to provide an
indication that the longitudinal matrix elements are
small relative to the transverse, and this indication is in
qualitative accord with the prediction of pseudoscalar

plon theory. An experiment at lower pion energy or
more forward angle (essentially, for lower k,) would be
of particular interest to strengthen the conclusion that
this specific feature of the theory, the weakness of
longitudinal relative to transverse electric-dipole matrix
elements, is reflected by the data. For lower k;, the
P-wave monopole excitation will be correspondingly
weaker while the value of N, becomes more sensitive to
a given longitudinal matrix element. The result for
case IIT has a considerable statistical error, and the
difference between theoretical models is so small that
almost any model is compatible with experiment; the
experiment could put an upper bound on E; through its
interference with M3 and E,.

The effect of varying the incident electron energy for
fixed-pion angle and energy (and hence fixed-photon
energy) is illustrated by cases ITI, IV, and V. At the
lowest electron energy (600 Mev) the difference be-
tween the various models is quite small and they would
be hard to distinguish experimentally. At higher in-
cident energies the difference between models becomes
pronounced, but a new experimental uncertainty is
introduced because of the double-pion correction dis-
cussed in reference 1. If the double-pion correction can
be made with confidence, it would be best to carry out
experiments at the highest available electron energy.
This dependence of N, on the incident energy may be
understood qualitatively as follows: When the energy
of the scattered electron is small, the longitudinal con-
tributions tend to be decreased relative to the trans-
verse ones; this may be seen by comparing the behavior
of X and 7, introduced in Eq. (3.6). In addition, the
range of variation of K is reduced so that the transverse
matrix elements deviate less from their real photon
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values. These two effects tend to make different models
less distinguishable for smaller incident energies.

The dependence of the various contributions on
electron-scattering angle, given in Table IV, shows
some interesting features. The first of these is the general
forward peaking of the transverse contributions and the
more spread-out nature of the longitudinal contribu-
tions as was expected from previous discussions. More
striking perhaps is the marked azimuthal asymmetry
which occurs for several of the models. This asymmetry
is associated with the fact that the virtual photons may
be considered to be partially polarized, as mentioned in
connection with Eq. (2.16). The asymmetry in the
magnetic dipole production indicates that the meson
tends to be emitted in the direction of the H vector,
while in the electric quadrupole production the pre-
ferred direction of emission is along the £ vector.
Except for slight deviations arising from recoil effects,
both of these distributions are symmetrical about
¢=90°. In contrast the O;— D, interference shows a
different type of asymmetry which is roughly propor-
tional to (—cos¢). The asymmetry occurring in the
Born approximation results primarily from the presence
of the O, contribution. A coincidence experiment which
would give the correlation in direction between the
meson and the inelastically scattered electron would
provide valuable information about the strength of the
monopole production. Such an experiment would be
very difficult using counter techniques; however, a
cloud-chamber experiment which would lead to some
information about this angular correlation is now under
consideration at Stanford.

6. ACKNOWLEDGMENTS

We wish to thank Professor Wolfgang K. H. Panofsky
and Dr. G. B. Yodh for several interesting conversa-
tions relating to this work and for informing us of their
experimental results before publication. Help with the
numerical calculations was provided by Mr. H. M.
Fried and Mrs. B. Levine.

APPENDIX
A. Kinematical Relations

We shall discuss here the derivation of the kine-
matical relations which are necessary for calculating
pion production by electrons. The following notation
will be employed: Small letters refer to quantities
evaluated in the laboratory reference frame and capital
letters refer to quantities evaluated in the center-of-
mass frame of the virtual photon and the proton (which
is of course the same as that of the pion and the neu-
tron). For example, a, is the uth component of a four-
vector, a is the magnitude of its space part a, and ao is
its time component, all evaluated in the laboratory
frame. The invariant inner product is defined a,b,
=a-b—aeby. The four-momenta of the various par-
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ticles are as follows: incident electron, p,; final electron,
p.'; pion, g.; proton, 7,; and neutron, s,. The four-
momentum of the virtual photon is k,=p,—p.'. The
four-momentum vector for each particle satisfies the
usual relation between energy and momentum. The
difference in mass between the proton and neutron will
be neglected; this introduces a slight error which is
negligible in comparison with the other uncertainties in
the calculation. Wherever possible the mass of the
electron will be neglected in comparison with its energy ;
This requires some care because of the singular nature
of the integrand of Eq. (2.13) in the forward direction.

First we consider the derivation of Eq. (2.14). From
energy and momentum conservation we have

Pu+’u=Pn'+‘1u+5u- (A1)
Expressing the invariant s,s,=—M? in terms of this
equation and evaluating the resulting invariants in
terms of the laboratory quantities, we easily find Eq.
(2.14). For each electron-scattering angle, this fixes all
momenta with which we shall be concerned. We can
accordingly evaluate all invariant inner products in
terms of laboratory quantities.

In order to evaluate matrix elements in the c.m.
frame, we shall frequently need quantities of the form
A-B. Such a quantity may be expressed in terms of the
invariant a,b,

A-B=a,b,+ 4B (A.2)

Now in the c.m. system, the four-vector D,=K,+R,
by definition has no space components (D=0). Ac-
cordingly we can write

Ao= —'A#D#/(—DnDp)%

= andu/ (— dﬂd#) 5 (&.3)

In this way, all the quantities we need can be simply
evaluated ; we need give no special examples.

B. Phenomenological Calculations

In this section of the Appendix we tabulate the
various quantities occurring in Eq. (2.11) which arise
from the phenomenological expressions Egs. (3.1),
(3.2), and (3.3). It will be convenient to introduce the
following abbreviations for some of the frequently
occurring quantities:

C,=0Q-K/QK; C.:=P-K/PK; C;=Q-P/QP;
Vi=[P-(OQXK)J¥/(QK)*; V.= (PXK)*/K?;
Vi=[QX (KXP)J/(0K)*;
V= (PXK)- (QXK)/(K*Q).

(A4)

Then
LTr(J* J)=2| D242 | M, |24 (5—3C2) | M3 2
+ (1+C12) 'Ei ‘2+4C1 Re[Dt*(Ml_M3+Et)]
+2(1—3C2) Re[M*(Ms— E)+E#M;]). (A.5)
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1 Te(P-J*P-J)
=V21Dz\2+V2!M1|\2+(3V1+V2)1M3‘2+V31E:‘2
+2CV. Re[DF(M1— M3+ E) ]
+23V1i— V) Re(M*M3)+2(V3—2V )

XRe[EF*(M,—M3)].

1Tr(P-J.K-J4+c.c)=KV,
XRe{—D*(M,—M;—E)+0*(D+2C\E,)
—2E#3DACi(M—M—3E,) ]},
3+ Tr(K-JK- J)=K¥{ | D;|*+|0,|?
+(4/9) (3C24-1) | Eo|242C1 Re[ D* (O (4/3)ED) ]
+(4/3)(3C:*—1) Re(0*Ep)}. (A8)

(A.6)

(A.7)

C. Meson-Theory Calculations

Omitting multiplicative factors (which divide out in
the expression for N.), the current density for positive
pion production in the Chew-Low theory may be
written

- _o-(Q—K><2Q~K>]
_[o -

+D2iQxK+Qo-K—0Q-K)/QK, (A9)
where
D= (Ku/(Q?ei sindz3D,, (A.10)
and
2= (Q—K)*+u2. (A.11)

Using this expression, the various terms occurring in
Eq. (2.11) are
3 Tr(J* J)=2—4(Q%¥/ ) (1—-Cp)

+4 ReD[—C1+ (QK/9*)(1—C¥) ]

+1D[2(5—3C?); (A.12)
1 Tr(K- J*K- D) =[K(Q*+u2) /Q¥]—u2d g*;  (A13)
L Tr(P-J*K- J4+c.c)=1Tr(P- J*K- J+c.c.)
—1C; Tr(K-J*K-J); (A 14)
LTr(P-J*P-J)=3[Tr(P-J*P-J)
—Cy Tr(P-J*K- J4-c.c.)
+C2 Tr(K-J*K-J)], (A.15)
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where
L Tr(P-J*K- J+c.c)=P-K+1K24 p+3iP- KAk
— 124 pA g+ ReD KV (Q*H-12)/92;
1 Tr(P-J*P-J)= P+ P-K4 p—p24 p?
+2ReD[— (PX Q) (PXK)/KQ+KVAdp]

(A.16)

+ | D|2Q@BV+Vy), (A7)
and
Ap=[P-(2Q—K) /0, (A.18)

Ax=[K- 20— K) /2.

The average of expressions (A.12) and (A.13) over
directions Q in the c.m. frame gives the following
results:

fdf_loé Tr(J,- Jo)=2[1— (/K I.(A)]
+ReD [Io(A)—T2(A)]+4| D2,
fd—QQ% Tr(J;- 1)
= (142u2/ K?) (wg?/20K) [o(A) — (u2/K?)
— (/4K 'Q*(A*—1)),

where the 7, (A) are defined in Eq. (3.11).

We consider finally the production of pions according
to the relativistic weak-coupling theory. Since now
there is no question about which is the best Lorentz
frame for the evaluation of ®, we may evaluate it
directly in the laboratory frame. The current density
has been given in Eq. (3.21), and the quantities occur-
ring in Eq. (2.16) are given by

i Tr(b-jb-j)=[(—4M/D»)b*(quD1+ kou?)
+ (- SM/DlDz)l' b((]ok -b— koq b)
+ (2/D22) (3"' b)z(q;t—ku)zj/‘lMQ-
1 Tr(5u7u)={(—8M/D:?) (qoD1+ kop>— Mp?)
+ (8M/D1Ds)[ o (2> 4k — ko*) — ko (3u*+2,k,) ]

(A.19)

(A.20)

(A.21)

+ ©2/D2N (ku—qu)?}/M?,  (A22)
where
D= —2Mko+k*— ko,
Dy= —2k,q,+F— ko, (A.23)

A= (Z‘Zu— ky).



