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The effect of the atomic core on the nuclear quadrupole coupling has been evaluated for several atomic
ground states and excited states. It has been shown that for the excited states of the alkalis, as the principal
quantum number # is increased, the ratio R of the induced effect to the direct interaction with the valence
electron tends toward a constant asymptotic value which is of the same order as for the first excited state
(~~—0.1 to —0.3). The sensitivity of R to inaccuracies in the zero-order core wave functions and valence
wave functions has been investigated. Equations have been derived for the exchange terms in the quadrupole
coupling due to the perturbation of the valence wave function by the nuclear quadrupole moment. The
present calculations indicate that the exchange terms do not affect significantly the net antishielding

obtained for the excited states of the alkalis.

I. INTRODUCTION

HE effect of the atomic core on the nuclear
quadrupole coupling in atoms and molecules has
been previously discussed and evaluated in several
papers.l'? The purpose of the present work is to extend
the calculations to several atomic states not considered
previously, and to examine in detail the exchange terms
due to the perturbation of the valence wave function
by the nuclear quadrupole moment Q. The results of
this investigation show that the exchange terms have
only a minor influence on the correction factor for Q
for the excited states of the alkalis.

The main new result of the present calculations
concerns the behavior of the core correction for the
excited p states of the alkalis as the principal quantum
number # is increased. For the Na 3p, Rb 5p, and Cs 6p
first excited states, it was shown in III that the net
effect of the core is antishielding, i.e., the ratio R which
determines the core correction C=1/(1—R) is negative.
Here R is defined as minus the interaction energy due
to the core divided by the direct interaction of Q with
the valence electron. In the present work, R has also
been obtained for Rb 6p, Rb 7p, and Cs 7p. It was
found that the values of R for the higher excited states
are approximately the same as for the corresponding
first excited states, and probably approach a constant
value as n—c. Thus the values of R for all of the
excited states covered in the present work are of order
—0.1 to —0.3.

In Sec. I, we give the results of calculations of R
for 11 atomic ground states and excited states. The
behavior of R as 7 is increased will be discussed in

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

t A preliminary account of this work was presented at the
1956 Washington Meeting of the American Physical Society
[Bull. Am. Phys. Soc. Ser. II, 1, 193 (1956)].

LI R. M. Sternheimer, Phys. Rev. 84, 244 (1951); 86, 316 (1952);
95, 736 (1954). These papers will be referred to as I, IT, and III,
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2 Foley, Sternheimer, and Tycko, Phys. Rev. 93, 734 (1954);
R. M. Sternheimer and H. M. Foley, Phys. Rev. 102, 731 (1956).
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detail. We have also obtained results concerning the
sensitivity of R to the core and valence wave functions
used in the calculations.

In Sec. III, we present a derivation of the exchange
terms due to the perturbation of the valence wave
function by the potential due to the nuclear Q. It will
be shown that the same terms also occur in the expres-
sion for the hfs interval a due to the nuclear magnetic
moment, as a result of the exchange electrostatic inter-
action between the valence electron and the core.
Hence these terms will cancel approximately in the
ratio b/a from which the experimental values of Q are
generally determined; here b is the hfs interval due to
the quadrupole moment. Section III also gives the
results of calculations of the other type of exchange
terms, previously discussed in I, II, and III, which
arise from the perturbation of the core wave functions
by the nuclear (). Similarly to the conclusions obtained
in III, it is found that, although important for the
atomic ground states, these terms are in general
appreciably smaller than the direct Coulomb terms for
the excited states and hence do not affect significantly
the values of R for these states.

II. CORE CORRECTION FOR ATOMIC GROUND
STATES AND EXCITED STATES

The calculations of the core correction R were carried
out in the same manner as in III. R is given by

R={yr=3)/(r ), (1)
where
<71’_3> = <'Y am;r_3> + <’Ymdr_3> . 2

The notation { ) represents an average over the
valence wave function, whose radial part times » will
be denoted by vy’. The normalization of vy is: fo<ve%dr
=1. v/7 gives the radial dependence of the potential
due to the induced quadrupole moment. ya.ng(r) and
vraa(r) are the parts of y(r) due to the angular (I'5%£1)
and radial (’=1) modes of excitation of the core,
respectively ; here I is the azimuthal quantum number
of the perturbation, while / is the corresponding quan-
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tum number of the unperturbed closed shell. We have

(Yangr )= f Yanglo 7 dr, 3
0

<’Yradr~3> = f 'Yradvo’zr_sdry (4)
0

)= f ao'L'o’21'—3d1'. ©)

Yang(r) and yr.a(r) are determined by the density of
induced moment Q; ang(r) and Qi r.a(r) due to the
nuclear Q. Thus

Yang(r)= <1/Q)[ f O analr' 70 Il 0. ~d] (©)

and a similar equation gives yr.q(r) in terms of Q;, raa.
As shown in III, Q; ang and Q;, raa are given by

8 72
Qi. ang (7’) = Qf2l EZ (%0'1/1, o-.z) ns+£z (%o'ull, 1-.3) np
8 144
=2 (uo'u', m)nd+—35—2 (uo't', 2-»4)nd:|7 (7)
dn n

48
Qi, rad (7') = Qr{;S-Z (11«0'%'1, 1-»1) np

16
—!—72 (uo’ul 1, 2—»2) n d] ’ (8)

n

where the sums extend over the occupied s, p, and d
shells of the core. In Egs. (7) and (8), #o’ is  times the
radial unperturbed core wave function, normalized
according to: Jo*uo?dr=1; 'y, is the radial part
of the perturbed wave function and is determined by

a I'ir+1)
[ ——t—+V— EO]MII, N7
dar?

7”2
’[1 < 1 > ] ©)
=u|—=—) duw|
r /o

where V), is the spherical potential, E, is the unper-
turbed energy, and (1/7%),; is the average of 1/7* over
the core wave function #,’. For I'=1, that solution of
(9) must be chosen which is orthogonal to #,’. The
potential Vg is obtained from the requirement that it
should reproduce the tabulated Hartree or Hartree-
Fock function [see Eq. (9) or IIT]. Thus Vg is given by

1 dud  10+1)
0= __";2_'+E0

(%a)

uy dr*

The results of the calculations are given in Table I.
For B, the wave functions of Brown, Bartlett, and
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TABLE 1. Values of the core correction terms for several atomic
ground states and excited states. The values of (v/7%) and R do
not include the exchange terms. (v/7%) and (1/r3) are in units ag™2.
The results for K, Rb, and Cs were obtained with two different
choices of the valence (np) wave function, as indicated by the
superscript @ or b. The wave functions ¢ and b are described in
the text.

Element State (yung/73) (yrad/¥3) {v/r3) 1/ R 1/(1 —=R)
B 2p 0.0767 0 0.0767 0.535 0.143 1.17
Na 3p 0.0151 —0.0504 —0.0353 0.145 —0.243 0.805
Cl1 3ps 0.344 0.30 0.644 5.73 0.112 1.13
K 4pa 0.0271 —0.1135 —0.0864 0.460 —0.188 0.842
K Spe 0.0085 —0.0301 —0.0216 0.152 —0.142 0.876
K 4pb 0.0347 —0.0406 —0.0059 0.669 —0.009 0.991
K Spb 0.0120 —0.0128 —0.0008 0.234 —0.003 0.997
Cu 3d%4s?  2.02 —0.12 1.90 7.52 0.253 1.34
Rb  5pa 0.0443 —0.264 —0.220 0.813 —0.27t  0.787
Rb  6pe 0.0155 —0.0772 —0.0617 0.295 —0.209 0.827
Rb  5pb 0.051 —0.189 —0.138 0.976 —0.141 0.876
Rb  6p? 0.0173 —0.0580 —0.0407 0.340 —0.120 0.893
Rb  7pb 0.0080 —0.0254 —0.0174 0.158 —0.110 0.901
Cs 6pe 0.0306 —0.366 —0.335 1.01 —0.332 0.751
Cs 7pa 0.0106 —0.111 —0.100 0.364 —0.275 0.784
Cs 6p? 0.036 —0.294 —0.258 1.26 —0.204 0.831
Cs 7pb 0.0127 —0.0946 —0.0819 0.459 —0.178 0.849

Dunn?® were used. The B results are essentially the same
as obtained previously (Table I of IIT). The core
excitations are 1s—d and 2s—d, and were determined
from (9).

For Na, the core (1s,2s,2p) and the 3p valence
function of Fock and Petrashen® were employed.
Equation (9) was used to obtain all of the excitations.
The value of {yang/7*) is the same as obtained previously
in IIT. It should be noted that for some of the cases,
instead of calculating (y/7*) from 'y ., we have
obtained the terms of (y/r*) from the perturbation
%'y, 11 of the core wave functions by the asymmetric
part of the potential due to the valence electron. As
has been shown previously,® we have

0 T
[T [fwttararss f
0 0

=f wo' @ 1 ispr3dr,  (10)
0

o0
o't 1,15’ ]vo'?dr

where @'y, 151 is the radial part of the perturbation of
1y due to the P, term of the potential of the valence
electron (P;=Legendre polynomial); 'y 1, is deter-
mined by

e U{l+1)
[———‘+——‘+ Vo—‘Eo]'IZ'l, v =1 (n—m)duwr), (11)

dr? 72
where
n(r)=r-3 f vo'%r"%dr’ +1* f v %' 3dr’, (12)
0 T
(m= f nuo'?dr, (13)
0

3 Brown, Bartlett, and Dunn, Phys. Rev. 44, 296 (1933).

4V. Fock and M. Petrashen, Physik. Z. Sowjetunion 6, 368
(1934).

5R. M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460
(1953).
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and for /=1, we must choose that solution of (11)
which is orthogonal to #,’. Thus {(y/7®) is given by

o0
(v/r)= le:,chzf( f wo' ', z_,z'r‘adf) ,
n
0

nl

(14)

where the ¢, are the coefficients in (7) and (8), and
the sum extends over the occupied (nl) shells of the
core and over the possible excitations //=/+2 (angular)
and I'=1 (radial).

For Na, the present value of (y:.a/7%) Is appreciably
larger than the result given in III. This difference is
due to the fact that in the present calculation we used
the perturbed wave function #'y 1,1 for 2p—p which
was obtained in V. In this connection, we note that in
V, the perturbed wave functions %'y, ;. for the radial
modes of excitation for Na*, Cl—, Cu*, Rb*, and Cs*
have been recalculated. These new functions are more
accurate than those previously obtained by Foley,
Sternheimer, and Tycko in IV, and were used through-
out the present work in the calculation of (yr.a/7%).

For Cl 3p° we used the Hartree-Fock wave functions
obtained by Hartree.® While the present value of
(yang/7%) 1s essentially the same as that given in III, the
result for (yr.a/7*) 1s appreciably larger than that previ-
ously obtained (0.30an™® as compared to 0.104ay~®).
We note that (yr.a/7®) for Cl is the result of a partial
cancellation of the shielding produced by 3p—p and
the antishielding due to 2p—p, as has been pointed out
in I. Thus the 3p—p term is +0.59ax~?, while the
2p—p term is —0.29a¢n~*. The change from 0.104 to
0.30ax~? is due mainly to an increase of the 3p—p term
(from ~0.4 to 0.59ax™?), while the 2p—p contribution
has been essentially unchanged.

Values of R for K 4p and 5p have not been given
previously in ITI. In Table I, two results are given for
these states, which correspond to two types of valence
wave functions denoted by 4p® and 4p°, 5p¢, and 5p°.
The choice of these wave functions will be described
below. In the calculations, we used the Hartree-Fock
functions for K+ obtained by Hartree.” In order to
obtain (yane/7*), the angular modes of excitation of the
core (1s—d, 2s—d, 2p— f, 3s—d, and 3p— f) were deter-
mined by means of Eq. (9). The radial modes (2p—p
and 3p—p) were also obtained from (9), using the
techniques of numerical integration described in V.
The valence wave functions @ and b were obtained as
follows. (1) In order to obtain the 4p (or 5p) wave
function a, the Schridinger equation was integrated
using for V, the effective potential which reproduces
the Hartree-Fock 3p function o' (3p) [see Eq. (9a)].
This potential V% is given by

1 Pu’3 2
TR 2 | ko)
u (3p)  dr* 7
6 D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A156, 45 (1936).

7D R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1938).

Iloa,:

(15)
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where Eo(3p) is the energy for 3p. The motivation for
using Vo® is that it gives valence functions v’ for 4p
and 5p which are orthogonal to uo'(3p). Actually in
the calculations, the function vy’ obtained with V¢®
was also made orthogonal to the 2p wave function
1o’ (2p) by adding a suitable (small) multiple of 2" (2p).
An important reason for using an orthogonal wave
function for K is that the core wave functions” have
been obtained from the Hartree-Fock equations, so
that they are orthogonal on one another. Hence it
seems reasonable to use a valence wave function which
is also orthogonal to the core wave functions. (2) The
wave functions of type b were obtained from the
Schrédinger equation using the potential Vo? due to the
charge distribution of the K* ion, i.e., the function
27 ,/r tabulated by Hartree.” It may be noted that the
resulting wave function 2,°(4p) is not orthogonal to
uo' (3p), contrary to v,*(4p). The function v,°(4p) is
appreciably more internal than v,°(4p), and corre-
spondingly gives a smaller antishielding. Thus vraa(r)
for K becomes negative only for >1.5au. Hence the
value of Jfi®vraar—*vs’dr depends sensitively on the
radial distribution of »,’. The negative value of the
integral increases if the wave function is made more
external. The extent to which v,%(4p) is more external
than »y®(4p) is indicated by the values of (r—) for these
wave functions which are 0.460 and 0.669ax~%, respec-
tively. As shown by Table I, %(4p) and v,°(5p) give
a negative R (net antishielding) of the same order as
for the excited states of the other alkalis, whereas for
20°(4p) and v°(5p), | (yraa/7*)| barely exceeds (vang/7*),
so that R is close to zero. It is, of course, difficult to
make a choice between the results given by wave
functions a and b. We believe, however, that e gives
the more reliable result, both because this function is
more consistent with the Hartree-Fock wave functions
of the core as regards the orthogonality, and because
the value of R falls more closely in line with the results
for the other alkalis, in contrast to the wave function b.
Nevertheless, these arguments are not completely
conclusive, and it appears, therefore, that there is an
uncertainty of the order of 0.15 in R because of our
inaccurate knowledge of the valence wave functions.
The same conclusion is obtained below from the
calculations for Rb and Cs.

The value of (yang/7*) for Cu of Table I is essentially
the same as that previously given in III. These values
were obtained by using the Thomas-Fermi expression
for the distribution of induced moment due to the
angular modes.® Thus Q;, ang Was determined from

Qi, ang= (3/10)Q(xx)§(x/r),

where x and x are the Thomas-Fermi function and
variable, respectively. At large 7, Eq. (16) was replaced
by an exponential so adjusted as to give the correct
total induced moment Q;r, 1ng=22.0Q. This modification

(16)

8 R. M. Sternheimer, Phys. Rev. 80, 102 (1950).
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of the Thomas-Fermi expression is the same as was
used in IIT and IV.

The value of (yraa/r*)=—0.12ax3 of Table I was
obtained by means of the perturbed wave functions
%'y, 151 for 2p—p, 3p—p, and 3d—d which were previ-
ously determined in V. In these calculations, the
Hartree-Fock functions® for Cut were used. We note
that {yraqa/7’) is the result of an almost complete
cancellation of the terms due to the three radial modes.
These terms have the following values: —1.99ayx2 for
2p—p, +1.18ax73 for 3p—p, and 4-0.69ax~2 for 3d—d.
Each of the three terms was obtained by the two
independent methods discussed above, i.e., both from
the perturbation %'y, 15; and from @'y, 1, [see Eq. (14)7].
The maximum difference between the two results was
6%.

The values of R obtained for Rb and Cs will now be
discussed. In these cases, we have also used two types
of valence wave functions, defined in the same manner
as for K. (1) Valence function ¢ was obtained from the
potential V¢* which reproduces the wave function for
the highest occupied p shell of the core (Rb 4p or Cs 5p).
The resulting wave function 9%(5p) for Rb is orthogonal
to the core wave function #0(4p), and similarly v,2(6p)
for Cs is orthogonal to the corresponding #,(5p). (2)
The valence functions & were determined from the
Schrédinger equation using the potential Vo (=2Z,/7)
due to the Rb* or Cs* core. For Rb* and Cs*, Hartree-
Fock wave functions (including exchange) are not
available. For the calculations of the radial modes of
excitation? which enter into (yr.a/7®), we used the
Hartree functions obtained by Hartree.l!* Since these
wave functions are not exactly orthogonal to one
another (for states of the same /), it is not clear whether
a valence wave function such as 99* which is approxi-
mately orthogonal to the core wave functions will give
a better value for R than ve> which is not orthogonal.
Fortunately the difference between the values of R
obtained with 2,® and v¢® is not as pronounced as for
the K wave functions. Thus both types of wave func-
tions give a definite antishielding (R <0), although vy®
is again more external than %, as for K, and gives an
appreciably larger | R|. The difference of ~0.13 between
the values of R from v,* and v, for Rb 5p and Cs 6p is
probably a good measure of the uncertainty in R due
to our incomplete knowledge of the valence wave
function. We note that this difference is somewhat
smaller (~0.10) for the second excited states Rb 6p
and Cs 7p.

In obtaining (yang/7®) for Rb and Cs, we used the
same procedure as for Cu. Q; ang(r) was calculated
from the Thomas-Fermi expression® [Eq. (16)], modi-
fied at large 7 so as to agree with the total induced
moment,? Qir, ang= 2.2Q for Rb* and 2.9Q for Cs*.

¢ D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A157, 490 (1936).

10 D, R. Hartree, Proc. Roy. Soc. (London) A151, 96 (1935).

11D, R. Hartree, Proc. Roy. Soc. (London) A143, 506 (1934).
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Table I shows that the values of R for a given atom
change very slowly as the principal quantum number »
is increased.”? As an example, for Rb from the wave
functions &, one finds R=—0.141, —0.120, —0.110 for
Sp, 6p, and 7p, respectively. Contrary to this result,
it might have been anticipated that |R| would increase
very rapidly with # and give a progressively larger
antishielding, for the following reason. It has been
previously shown by Foley, Sternheimer, and Tycko?
that for a completely external charge, the effect of the
core is to produce a large antishielding, since the total
induced quadrupole moment of the core, Q;r, is added
to the nuclear moment Q. The ratio Q.7/Q has been
denoted by v.,; revised values of v, have been given
in V. These values® are very large; they range from
—4.0 for Nat to — 71 for Rb* and — 144 for Cs*, where
the minus sign indicates a net antishielding. For a
highly excited state for which the wave function v 1s
concentrated at large distances from the nucleus, it
might be expected that R would be of the same order
as Y., and thus [R|>1. In order to explain the small
values of R of Table I, we will take the case of Rb as
an example. It is convenient to use 5p, 6p, and 7p radial
wave functions which have the same values near »=0
(i.e., the same power expansions). These functions will,
of course, have very different normalization constants
N= Ji*v°dr. The parts of R due to the radial and
angular modes of excitation, to be denoted by R:aq
and Ran,, are given by

Rradzf ('Ytadr_a)'v()?dr/f 7)027—3df, (17)

0 (1]

Ranng ('Yangr—s)'vo?df/f Vo2 3dr. (18)
0 0

Figure 1 shows v2(5p), #2(6p), and v¢*(7p), together
with the functions v;aq7—2 and yaner for the Rb* ion.
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Fr1c. 1. Radial probability density ¢* for Rb 5p, 6p, and 7p, and
the functions vang/7% and yraa/7® for the Rb* ion.
12T would like to thank Professor H. M. Foley for suggesting
to me this investigation of the values of R for excited states.
13 See also T. P. Das and R. Bersohn, Phys. Rev. 102, 733 (1956).
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TaBie II. Contribution of various regions of 7 to /o™ (vraave®/
r3)dr for the 5p, 6p, and 7p states of Rb. The radial functions
v(np) have the same values near »=0. The values of /3 (ve*/r3)dr
and Ryaqa={(vaar3)/(r=3) are listed below f4*(yraave?/r*)dr. The
normalization constant Jf3*v¢dr (not needed to evaluate Ryaq)
and the values of (v;.a77®) and (#73) (in units eg™3) are given in
the last three rows of the table.

r/ay 5p 6p 7p
0-0.3 6.91 6.91 6.91
0.3-0.8 4.06 4.05 4.05
0.8-1.6 3.06 2.98 2.95
1.4 —17.67 —20.32 —21.43
4-10 —126.77 —91.33 —82.81
10-20 —8.89 —2091 —16.56
20~ ~0 —4.11 —8.60
Jo° (Vradave®/rd)dr —139.30 —122.73 —115.49
S (wo/r¥)dr 719.55 719.19 719.04
(Yraar™3)/(r=3) —0.194 —0.171 —0.161
Jo*vedr 737.55 2114.8 4550.0
(Yradr™) —0.189 —0.0580 —0.0254
(r3) 0.976 0.340 0.158

With the present normalization, the denominator
Joever—3dr of (17) and (18) is practically the same for
5p, 6p, and 7p, since the values of this integral depend
only on the region close to the nucleus, where vy is
essentially independent of 7. Thus the values of
Jo*vlrdr are 719.55, 719.19, and 719.04 for S5p,
6p, and T7p, respectively. More than 949, of these
integrals is due to the region from =0 to 0.14ay. It is
evident from Fig. 1 that the values of v0*(5p), v0*(6p),
and v*(7p) differ appreciably only for 72 San.

We will now consider the behavior of the integral
Jo° (Yraar*)v?dr with increasing #. In the following,
this integral will be denoted by I';.q. In Table II, we
have listed the contributions to I';.q from the different
regions of r, for 5p, 6p, and 7p. These results were
obtained from the wave functions of type &, calculated
by means of the potential 2Z,/r of Hartree. Table II
shows that the region of r between 4 and 10eu gives
the largest contribution to I'..a. Hence the dependence
of I'taq on 7 will be governed mainly by the values of
22 in this region. As is shown by Fig. 1, the maximum
of 1?(6p) at r==6an is appreciably smaller than that of
20*(5p). This accounts for the decrease of the corre-
sponding term in I'y.4, which is —126.8 for 5p and
—91.3 for 6p (see Table II). The terms due to the
region of > 10ay are somewhat larger for 6p than for
5p, because of the contribution of the principal maxi-
mum of 6p at r=17ax. However, the complete integral
T'raq 1s smaller for 6p than the 5p, showing that the
behavior of the term due to 4 <7 <10an predominates.
Similarly, the integral for 7p is somewhat smaller than
that for 6p, but the difference is less than half as large
as the corresponding 5p— 6p difference. It thus appears
from the present calculations that R will attain a
constant value for very large #, of the order of —0.15.

A crude estimate can be made which shows why R;.q
is considerably smaller than the value vy .a() which
would be expected for a completely external charge.
We consider the Rb 5p state and assume that all of
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the charge of the valence electron is concentrated at
the position of the principal maximum of v at r="7.3ay.
From Table I of V, it is seen that y,sa(®)=—72.9;
vYraa() is the sum of the v, (ni—!) for all of the radial
modes. With the present assumption, one obtains

f Yeaaroidr=—72.9/ (1.3} = —0.18Tax%.  (19)
0

Since (%) for Rb 5p is 0.976an2, one finds R:aa
=—0.187/0.976=—0.192. The close agreement of this
result with the actual calculated value of —0.194 (see
Table II) is probably fortuitous to some extent. In any
case, this estimate shows that the smallness of R,
arises essentially because fi®yr.avo~3dr is compared
with oo —3dr, which is quite large since the valence
p electron can come relatively close to the nucleus.

The behavior of R.ng is quite similar to that of Rruq.
Thus Ran. is almost constant with increasing n. The
values for Rb 5p, 6p, and 7p are 0.0523, 0.0509, and
0.0306, respectively. In comparison with R;.q, the main
contributions to Jfi*yangvo’r3dr [Eq. (18)] come from
regions of smaller radius than for I'raq. Thus for Rb 6p,
479, of the integral is due to the region from r=0
to 0.30an. The values of 7 up to 4an contribute 909.
Similarly to the dependence of R:.qa on #, the slight
decrease of the above values of R,,, is due to the
behavior of v(np) for large r. However, since this
region is not important for the integral, R, approaches
rapidly an asymptotic value with increasing »#. Thus
the small decrease with »n of the total R is essentially
due to the decrease of R;.q.

In connection with the values of (Yang/7*), (Yrua/7),
and R given in Table I, it seemed of interest to investi-
gate whether these results are sensitive to the zero-
order core wave functions used in the calculations. For
Cl-, both Hartree-Fock wave functions® and Hartree
functions®* (without exchange) are available. Since
these two types of wave functions are considerably
different [especially for #,(3p)], it appeared that a
good test could be made by calculating R from the
Hartree wave functions and comparing the result with
that obtained previously from the Hartree-Fock func-
tions. Table IIT gives a comparison of the terms of
(Yang/7) and {yraa/r*) due to the various modes of
excitation. These terms are denoted by I'(ni—1’). It is
seen that for the angular modes, the individual I'’s as
well as the complete {y.n./7*) are not very different for
the Hartree and Hartree-Fock wave functions. The
discrepancy of the I' values is very small for the 1s—d
excitation and is relatively largest for 3s—d and 3p— /.
The resulting values of (y..,/7*) differ by only 119.
By contrast, for the radial modes, the values of I' differ
appreciably for the two types of wave functions, par-
ticularly for 3p—p. These discrepancies tend to be
magnified in the values of the total (y,.a/7%), as a result
of the partial cancellation of the 2p—p and 3p—p terms.

14 D, R. Hartree, Proc. Roy. Soc. (London) A141, 281 (1933).
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The resulting R from the Hartree functions is 0.191,
as compared to the Hartree-Fock value of 0.112.

A similar comparison was made for R..qa of K 4p.
Similarly to the Cl calculations, we used the Hartree
functions" for the K* core. The 2p—p and 3p—p
perturbations were calculated for these functions. The
resulting values of R..q are as follows: (1) for the 4p
valence function a (4p®) the Hartree functions give R,aq
=—0.362, as compared to: —0.1135/0.460= —0.247
(see Table I) from the Hartree-Fock functions; (2) for
the 4p® function, the Hartree result is: —0.075, as
compared to the Hartree-Fock value —0.061. These
discrepancies for the radial modes are of the same order
as those obtained for Cl. It may be noted that a rough
calculation of some of the angular terms T (nl—l')
showed that the differences for these terms are quite
small, in agreement with the corresponding result for Cl.

It can be concluded that the inaccuracy of the zero-
order core wave functions introduces only a small
uncertainty in the values of {y..,/7*) (~109%), but

W1, 0+, D (1)

V= (n!)"*

| (1//1. o+, 1) (") (W2, 0+ 1) (n)

where Y10, Y20, - - ¥n_10 are the unperturbed wave
functions of the core, ¥, o is the unperturbed valence
wave function; y1,1,¥2 1, - - - ¥a 1 are the perturbations
of these wave functions due to the nuclear Q. The
parentheses (1), (2), - - - () label the different electrons.
In the following, it will be assumed that the valence
electron is in a p state. The zero-order wave functions
¥ 0 are normalized in the usual manner:

21rf f |, 0|27%dr sinfdf=1,
0 0

where 6 is the polar angle of the electron with respect

(21)

TaBLE III. Values of (yang/7®) and (y;aa/r®) for the ground
state of Cl, as calculated from the Hartree and Hartree-Fock
wave functions. The term of (v/7%) due to the nl—!’ excitation is
denoted by I'(nl—!’). The I'’s, (v/r%), and (1/r%) are in units ag™3.

Excitation Hartree Hartree-Fock
I'(1s—d) 0.126 0.130
I'(2s—d) 0.045 0.050
T(2p—/) 0.078 0.086
I'(3s—d) 0.027 0.036
r(3p—f) 0.032 0.042
(vang/7%) 0.308 0.344
T(2p—p) —0.22 —0.29
T'(3p—p) 0.96 0.59
(Yrad/7%) 0.74 0.30
v/ r) 1.048 0.644
1/r%) 5.50 5.73
R 0.191 0.112

W2, 0t¥2, ) (1)
1o, (2)  Wa0+¥21)(2)
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may result in an appreciable error of the radial term
(yraa/7*). For the 4p* function of K, the difference
between the Hartree and Hartree-Fock results for R;aq
is 0.12, which is of the same order as the uncertainty
in R due to the choice of the valence wave function.
It is evident that whenever the Hartree-Fock wave
functions are used, we avoid the errors considered in
this discussion. However, it is possible that the actual
atomic wave functions taking into account configuration
interaction differ from the Hartree-Fock functions by
an amount comparable to the difference between
Hartree and Hartree-Fock functions. In this case, the
Hartree-Fock results would still be subject to an
uncertainty of the same order as that determined above.

III. EXCHANGE TERMS

In order to discuss the exchange terms due to the
induced quadrupole moment, we consider the total
wave function ¥ for the electrons of spin parallel to the
spin of the valence electron. ¥ is given by

(‘pn. 0+'¢n, 1) (1)
(Wm0 H¥n1)(2)

, (20)

(Wm0t 1) ()

to the axis of Q. It is assumed that the different ¥, ¢
are orthogonal to each other.

Before proceeding to a discussion of the exchange
terms, we will show that the complete perturbed
functions ¥; o+y: 1 are also orthogonal, to terms of
order Q%. We have

f(‘//i, oF i 1) (W, 0¥ 1)dr
=6i;+ f Wi, Y5, 0+, o™Y51)dr,  (22)

where a second-order term involving ¥ 1*¢;, 1 has been
omitted. For i= j, the integral on the right-hand side
is automatically zero, since the perturbed wave function
¥i1 is orthogonal to y; .. We now consider the case
17 7. From perturbation theory, ¥, 1 is given by

f Yk, o H s, odr

wi, = Z '—_"—"pk. 0,
' k=i E,'—Ek

(23)

where H; is the perturbation due to the nuclear Q:
H,=—0Q(3 cos0—1)/(2r%). (24)

E; and E, are the unperturbed energies pertaining to
¥i 0 and ¥y, 0. It is assumed that the different functions
¥ o0 are the solutions of a single Schrédinger equation
with the same potential V. The sum in (23) extends
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over all of the bound states (except #= ) and over the
continuum states. Similarly to (23), ¢, 1 is given by

flﬁk, o Hu;, odr
=2 ————¥ko (25)
k= Ej— Ey
From (23) and (25), one obtains
z//i, o*H 1\1/ 7 odr
flﬁi. Y5, 0dr=— f‘/’i. oYidr=—-——— (26)
E,—E;

J

so that the integral in (22) is zero for 75 7. This result
is, of course, very reasonable, since it states that the
nl—n'l! excitation just cancels the »'l'—nl term, as
was expected because the n/ and »l’ shells are already
filled in the unperturbed state. We note that the
orthogonality and normalization of the (¥, +yi1)
implies that the perturbed ¥ [Eq. (20)] is normalized
to 1, to terms of order Q>

In Sec. II, we have considered the direct Coulomb
terms due to the induced moment. The complete
quadrupole coupling including these terms is obtained
by replacing (%) by (r*)(1—R) in the expression for
the quadrupole hfs splitting. Thus for the valence
electron in the m=0 state, the total energy of inter-
action with the nuclear Q is given by

Eq=—(2/5)Q(r*)(1—R), (27)
where Eq is in Rydberg units and lengths are in units
au. Hence if Qo is the value of the nuclear moment
obtained from the observed FEq by disregarding the
core effects, the actual Q is given by

0=0[1/(1=R)]. (28)

We will now discuss the exchange terms due to the
induced moment. These exchange terms are of two
types: (A) those due to the perturbation of the core
wave functions; (B) those due to the perturbation of
the (p) valence wave function's by the nuclear Q. The
terms (A) have been evaluated in I-IIT for some typical
cases. The terms (B) have not been previously con-
sidered. It will be shown below that they make only a
very small contribution to the quadrupole correction
factor for excited states.

The correction to R due to the terms (A) has been
previously denoted by 8R, and is given by [see Eq. (14)
of TIT7:

1
6R,= —E{Z[@/s)K(mﬁd, P1) Jns

S [AK (np—p, Po)+ (4/25)K (np—p, Ps)
+(36/23)K (np—f, P2) 1.}, (29)

157 am very much indebted to Professor H. M. Foley for
calling my attention to the terms due to the perturbation of the
valence wave function.
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where the sums extend over the occupied s and p shells
of the core. K is defined by

K(ni—l, PL) Ef %olvoldery (30)
0

where #¢’ is the unperturbed core wave function and
[ is given by

.
fo(r)=r-t-1 f 'y, o'y Bdr’
0

0
+rl'f uw'y, vy, (31)

r

in which #’y, ;1 is the core perturbation.

As has been discussed in III, the term —{(r—*)!
X 2w 4K (np—p, Po) in (29) (denoted by 4R, o) plays
a somewhat different role than the remaining terms of
0R.. In the experimental determination of Q, the value
of (=) [Eq. (27)] is generally deduced from the ratio
a/p of the magnetic hfs splitting ¢ to the nuclear
magnetic moment u as obtained from nuclear induction
experiments. Thus a is given by

a= 2114 DpoF (7)) (1—0R.)/[1j(j+Dh], (32)

where po=Bohr magneton, I is the nuclear spin, / and
j are the orbital and total angular momentum of the
atomic state, F(j) is a relativistic correction, and 8R,,
is a core correction for the magnetic hfs! which is
similar to 8R, for the quadrupole coupling. It has been
shown previously that éR, contains a term equal to
8R., o, besides other terms which will be discussed below.
If (r—*) is obtained from a/u, then it is easily seen from
(28) and (32) that Q is proportional to

1 u(1—6R,,)

Qe o - (33)
(1—=R—3R)(r* a(1—R—6R,)
Thus the effective correction factor is given by
C=(1—-6R,)/(1—R—6R.). (34)

In taking this ratio, the common term in éR, and R,
cancels out to a large extent. This can be shown by
writing for R, and 6R,,:

3R.=8R, «+oR.,
3Rn=08R, o+O6R.,

(33)
(35a)

where 8R./, 6R,. are the remaining terms of éR, and
8R ., respectively. Thus C becomes

6Rm/
c:[1— ]/[1
1—6R.0

Hence the effect of 6R, ¢ is merely to multiply the
corrections 6R,, and R-+6R,” by a common factor
(1—6R,, o). Numerical values of 6R. o and 8R, will
be given below.

R+6R,’
] (36)

1—6R, ol
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We will now discuss the exchange terms (B) which
arise from the excitation of the valence electron. The
valence electron is in a p state, so that there will be two
types of perturbation involving excitation to higher p
states and to f states. The perturbed functions are
obtained by the same procedure as in Egs. (15) to (20)
of I. One thus finds for the p and f wave parts of the
perturbation v;:

v1,,=2(3)}Q"1, 141 cosb), (37)
11, =% (£)Qv"1, 153[ 3 cos’0— (9/5) cosh], (38)
where the radial functions vy ;i are determined by

a& ri'+1)
[ S
dar? 7’

+Vo— Eo]vll, 1>l

1 1
] o
73 73
where (1/7%) is the average of 1/7* over the unperturbed
valence function v. For /’=1I, we must choose that
solution of (39) which is orthogonal to vy'.

We will first consider the exchange terms due to s
states of the core. The p wave vy, gives rise to the
following overlap density with the s-wave function
wo=2"uy":

o= — 21001, = — (2V3/5)Quo’v'1, 151 cosf.  (40)

Here the minus sign arises from the exchange, and the
factor of 2 is due to the presence of two equivalent
terms in V2 The potential due to p, is

Vo= —(8/5V3)Qg: cosb, (41)
where V, is in Rydberg units, and g;(r) is defined by

r
gr(r) E"—L_lf 'y, 1t Ldr’
0
0

+1’Lf Mo"v’l, 1_.1'1’,_[’_1(.'11’,. (42)

r

The exchange energy is given by

AE,= f f V sttovodr sinfdo
0 0

=—(8/15)QM (ns,P1), (43)

where M is obtained from

M(nl,Pr)= f wo'voe’ gLdr. (44)
0

Finally, the term in R is defined as —AE, divided by
the direct interaction of Q with the valence electron
[Eq. (27)]. Thus the correction to R is given by

0R,(ns)=— (4/3)M (ns,P1)/{r3). (45)

It may be noted that the f wave v, does not con-
tribute any exchange term with #s, since the corre-
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sponding p, and V, have the angular dependence 6
which is orthogonal to w0y ( = 6:°).

We now obtain the exchange of v;,, with a closed p
shell of the core. The electron of parallel spin with
magnetic quantum number m,=0 will be considered

first. Its wave function is

o= (3/2)}uq cose. (46)
The exchange density p, is given by
po=—2uo01, p=— (2/5)Qu0’v'1, 151 (3 cos?9—1)4-17, (47)

in which the square bracket is the sum of a P; and a
P, function. The potential due to the Py part is

Vi, o=— (8/5>ng, (48)

where gy is obtained from (42). The corresponding
exchange energy is given by

AE,,, 0= f f Vv, ()Ho'L‘od?’ sinfdf
0 0
=—(8/5)QM (np,P0),

where M is defined by Eq. (44). There is no similar Py
term in the interaction with the m,=-1 electrons.
Hence the correction to R due to M (np,Po) is

(49)

OR.(1p,Po)= —4M (np,P0)/(r).  (50)
The potential due to the P, part of (47) is
Vv, 9= = (16/25>Qg2P2, (51)

with g, obtained from (42). The resulting exchange
energy is given by

AE, ;= f f V., sttgvodr sinfdf
0 0

= —(32/125)QM (np,P3). (52)

For the two #np electrons with m,=-1, one obtains
the following energy term:

AE, (&= — (48/125)QM (np,Ps). (53)

Hence the complete P, contribution of the np shell is
AE, o= — (16/25)QM (np,Ps), (54)

giving

R, (np,Po)=— (8/5)M (np,P2)/(r%).  (55)
For the f-wave perturbation of the valence function,
11,7, one finds that the contribution of the m,=0
electron [AE,=—(216/875)QM] is exactly canceled
by the term due to m,=-1. Hence the net term due

to vy,s is zero. Thus the complete correction éR, is
given by

1
SR,= _ﬁ{z[(z;/s)M(m,Pl)]m

+2[4M (np,Po)+ (8/S)M (np,P3) Jnp},  (56)
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where the sums extend over the occupied s and p
shells of the core.

It will now be shown that a term equal to éR, also
occurs in the complete core correction 8R, for the
magnetic hfs and in the fine structure. We will consider
first the exchange of the valence p electron with the p
shells of the core. The procedure of the derivation is
similar to that given in II for the terms due to the
perturbation of the core wave functions. We assume
for definiteness that the valence electron is in the 3p
state with m=1 and spin up, and consider the inter-
action with the closed 2p shell. The unperturbed wave
function is given by

V= 6‘%[\021), 1(1)\&%—1_‘/’21». U(D"Pu, 0+‘l’2p, —1(1)¢u. 1]
X¢ap,1(T)La (Db () —b(Va(w)Ja(7), (57)

where y2p,mi1(1) is the 2p function with magnetic
quantum number m, for electron 1, ¥, » is the combined
wave function of the other 5 electrons in the 2p shell
with total magnetic quantum number 7 ; ¥3p.ms is the
3p function with magnetic quantum number #2; a and
b are eigenfunctions for spin up and spin down, respec-
tively ; in particular, a(u«) and b(«) are the spin functions
for the five 2p electrons labeled 2, - - - 6.

We are interested in the perturbation of ¥ due to
the excitation of the valence wave function ¥s3, 1 by
the exchange with 2p. The space part of the pertur-
bation, to be denoted by xa (M =total magnetic
quantum number of system) is obtained from the
Schrodinger equation:

2
Z_[—Vf—{— Volrd) Ixosr— Eoxar=—2., —o+Enps, (58)

> g5

where ¥ is the space part of the unperturbed function,
Vo(r;) is the central potential acting on the ¢th electron
(with radial coordinate r;), 7;; is the distance between
electrons 7 and j, E; is the perturbation of the energy
due to exchange. In the term — Y5 ;(2/7:;)%0 of (58)
we must include only the exchange part of the inter-
action, since the direct Coulomb term does not produce
a net magnetic field at the nucleus.

Upon using the same procedure as in II, one finds
that the perturbation of the term yep.mi(1)¥3p,me(7) of
¥ is given by

XM (mimg) = Z Amm’ (0)¢2p, m(7)¢p, m’ © (1)

+ Z,Amnz’(2)‘l/2p,m(7)¢p, m’ (2)(1)7 (59)

where ¥, @ and ¥, . are perturbed p-wave func-
tions, and the coefficients 4 ,.,(¥ are obtained from

A mm’ L) = — Zf Glml*PLm’_mlelml Sin01d01

0

Xf elm*PLml—m’61m2 sinf;df;. (60)
0

STERNHEIMER

Here the spherical harmonics 6;" are normalized
according to

f |6,™|2 sinbdf=1. (60a)
0

For L=0, A m'® is zero unless m'=m,, m=ms, so that
the sum of (59) reduces to a single term with A, @
— 2.

The perturbed one-electron functions ¥, (% are
given by

’g[/p' m/(L)= (wl, L/r)@{”', (L=0,2) (61)
where w; 1, is that solution of
a2
( ——+——+ Vo—Eo)‘wL L= IZL’MOI, (62)
ar*

which is orthogonal to the 3p function v,". In (62), uo
denotes the radial 2p function, and /% (r) is defined by

hL(r)Er_L—lf uo'vo'r' Ldy' 1" f ug'vo'r’ "Iy’ (63)
0

T

Upon using (59) for each term y2p.mpfsp 1 of the
space part of ¥ [Eq. (57)] one obtains the perturbation
X1:
x1=— (2/V3)[¥p, 1%, 1= ¥ 5, 0%, 0 F ¥ 5,1 O%a 1 W2p 1

- (2/’25\6){\1/u,~1‘//2p, l‘l’p, 1(2)_'¢’u. 0[3’10211, 030?, 1(2)
- 2¢2p, 1‘[’?- 0(2)]+¢u, 1[6¢2p,—1¢:ﬂ. 1(2)
- 3¢2p, O‘I’p, 0(2)+‘/’2p, 1¢’p. ~1(2)]} ) (64)
in which the coordinates of ¥, (¥ are r;, while those
of Yo, m are 1.

In the same manner, one finds for the perturbation
of the wave function with M =0:

xo=—(2/V3)[¥p 1%, 1= ¥ 5, 0%, 0t ¥p, 1O, 1 25,0
+(2/25V3) (Yo, [ 22, W5, 1P — 25, W, 0]
— Y, [3W2p, Wp 1@ — Woop, p, 0D+ 32y, —¥p1? ]
i, 1[2‘1’2p. 0‘pp,~1(2)‘— 3302?,—1‘»01), 0(2)]} . (65)

The magnetic field at the nucleus H(0), which deter-
mines the hfs splitting, is given by

li'j 3(si'13) (l’z]) Si'i
R
1’,‘3

2D

where j is the total angular momentum of the atom,
I; and s; are the orbital angular momentum and the
spin of the ith electron. For the magnetic field Ho(0)
in the unperturbed case, one finds

Ho(0) 3= —4uolr)sy, (67)

both for the 2Py and 2P; states. In order to obtain the
additional magnetic field H;(0) due to the perturbation
X, one must combine the x and the spin functions,

H(0) j= —2no<;[
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using the appropriate coefficients for 2P; or *P;. H1(0) -]
can then be obtained from (66). The resulting expres-
sions contain the integrals fi®vyw; 17—dr. In the same
manner as in IT [Egs. (14) to (14c)7], it can be shown
that

f vo'wy, r 3 dr=M (2p,P1), (68)
0

where M (2p,P;) is the integral over v’y 15 as defined
by Egs. (42) and (44). One thus obtains

H,(0)-j= —16u0M (2p,Po)— (32/5)uoM (2p,P5).

Equation (69) holds both for ?P; and 2P;.

The exchange of 3p with the 2p shell also produces
an excitation of 3p to f states. The resulting pertur-
bation of ¥ is a sum of terms of the form y¥2p, w0, m s, m7,
where ¥, .- is the perturbation of 3p. However, it is
found (both for 2P; and 2P;) that the 3p— f excitation
does not give rise to a net magnetic field at the nucleus.
This result is similar to that obtained for the pertur-
bation v’y 1,3 due to Q which also does not contribute
to the hfs.

The exchange of 3p with the 1s shell of the core will
now be discussed. The exchange of 3p with the 1s
electron of parallel spin produces an additional exci-
tation of 3p into higher p states. Thus for the unper-
turbed function ¥1,(1)¢¥3p.ms(2), the exchange pertur-
bation is given by

X'”ZIZ Zm’ By, M’(l)Kbls (2), (70)

where ¢, . is the perturbed p function and the coefh-
cient B, is obtained from

(69)

Bm’ = _2f elml*leleoo Sin01d01
0
Xf GoO*Pl_’"'el’"z sinﬁgdﬁg. (71)
0

It is seen that B, is zero, unless m'=m,. Hence the
sum of (70) reduces to a single term with Bmg=—2.
¢p,m 1S given by

Co.mr= (w2/7)O1™, (72)

where w, is the solution (orthogonal to w’) of the
equation

az 2
[——+—+ Vo—Eo]'w2=h1“01) (73)

art r?

in which %y’ is » times the radial 1s function and 4, is
given by Eq. (63) with L=1 and uy =u,'(1s).

The magnetic field H2(0) due to the exchange of 3p
with 1s involves the integral Jfo*vy'wsr—3dr. In the same
manner as in I, it can be shown that

f vo'war?dr= M (1s,P). (74)
0
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One thus obtains both for 2Py and 2P;,
H2(0)-j=— (16/3)uoM (1s,Py). (75)

From Egs. (69) and (75), the extra magnetic field
due to the perturbation of the valence wave function
by the closed s and p shells of the core is given by

AH(0) 3= —po{ ZL(16/3) M (15,P1) Jns
+2[16M (np,Po)+ (32/S)M (np,P2) Jup}.  (76)

The resulting correction to 8R,, is
8R o= —AH(0)-3/Ho(0)-j. (77)

In view of Egs. (67) and (77), 6R,.,=6R,, where éR,
is the correction for the quadrupole coupling, given by
(56). Thus the term SR, is similar to 8R, , since it
appears both in the magnetic hfs and in the quadrupole
coupling. Upon inclusion of 6R,, Eq. (36) for C becomes

0R m’

CzP‘TiQQ;SEﬂ/TI

It may be noted that the same term 8R, also enters
into the fine structure. Thus from (64) and (65), one
finds that the extra spin density due to the perturbation
of 3p by 2p is given by

Ap1= 41//3p,m2*’,1/p.m2(0)+ (8/5)¢3p.m2*1//p,m2(2).

From (61), one obtains

R+-6R.

———]. (78)
1—6R, o—5R,

(79)

f Ap1 sin0d0= [47)9"2,01, o+ (8/5)1)0"101, 2]/1’25 El, 2p- (80)
0

The expression (80) will be called &, 2,. For the pertur-
bation of 3p by 1s, the spin density is

Apy= (4/3)Y3p,ms*{ p,ms, (81)

which gives

f Aps sinfdf= (4/3)ve'we/r*= &, 1s. (82)
0

For an atom with several closed s and p shells, we
denote by & the sum of the £ ,, for the occupied p
shells and by £, the sum of the £ ,, for the s shells.
The correction for the fine structure due to the pertur-
bation of the valence function is given by

a&s—ftm+wmww/«ﬁ (83)

which is equal to 6R, by virtue of (68) and (74).
From the present result and from Eq. (62) of II, one
finds that the observed fine structure splitting » is
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proportional to

v (r9!1—6R, o—0R,
2[K(np—p, P2)up

+(8/5)— (84)

)

The term involving K (np—p, Ps) is very small for the
excited states of the alkalis. For Na 3p and K 4p, the
values of (8/5)2 LK (np—p, P2)]np/{r? were found
to be —0.006 and 0.0025, respectively, from the calcu-
lations reported below. Thus the correction factor for
the fine structure contains essentially just those terms,
6R.,¢and éR,, which are common to both the quadrupole
coupling and the magnetic hfs.

The exchange terms due to the induced moment have
been evaluated for B 2p, Na 3p, and K 4p, using the
perturbed wave functions #; ;. discussed in Sec. II.
For the term 8R,’ [Eq. (35)], we found the following
values: R.,/=—0.095 for B 2p, —0.0294 for Na 3p,
and —0.0194 for K 4p. For B, the exchange of 2p with
1s—d and with 2s—d contribute approximately equal
amounts. The 1s—d and 2s—d terms [Eq. (29)] are
—0.046 and —0.049, respectively. Both for Na 3p and
K 4p, the largest term of 6R,” is due to the 1s—d
perturbation. The values of this term are —0.0204 and
—0.0125, respectively.

The present results for 6R,” will be compared to the
corresponding values of R. For B, 6R,’ is comparable
with R (=0.143) so that the inclusion of the exchange
terms considerably modifies the value of the correction
factor C [Eq. (78)]. On the other hand, for Na and K,
8R,’ is only of the order of 7 of R. From these results
and from the value 6R,/=—0.009 for Cs 6p obtained
in III, it can be concluded that the effect of 6R, is
very small compared to the antishielding given by the
direct term R for the excited states of the alkalis.

Besides 8R,’, we have also calculated the terms 6R,, ¢
and §R, which appear both in the quadrupole and the
magnetic hfs. For B, 6R, ( is zero since there are no
closed p shells. For Na 3p and K 4p, éR,, ¢ is —0.249
and —0.287, respectively. The value for Na is somewhat
larger than that obtained in ITIT (—0.180). This small
difference is due to the use of the more accurate values
of %1151 for 2p—p in the present work. For K, the
exchange of 4p with 3p—p gives the largest contribu-
tion, —0.210, while the 2p—p term is —0.077.

In order to obtain éR,, it is necessary to determine
the p wave perturbation of the valence wave function
v'1, 151 from Eq. (39). For K, we used the 4p function
9*(4p) which is orthogonal to the core 2p and 3p wave
functions. After 7'y 1,1 is calculated, 6R, is obtained
from Egs. (42), (44), and (56). The resulting values are:
0R,= —0.463 for B 2p, +0.170 for Na 3p, and —0.051
for K 4p. It should be pointed out that only a limited
significance can be attached to these numerical values
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for éR,, since the results are very sensitive to the
detailed behavior of the radial wave functions. We note
that for Na, 6R, is positive and cancels a large part of
6R. 0 (=—0.249).

From the preceding results for 6R,’, 6R, y, and 8R,,
and from the values of R given in Table I, we can calcu-
late the effective R which enters into the denominator
of Eq. (78) for C:

.ReffE (R+5Rel)/(1 —6Re, 0—5Ru). (85)

One obtains: Re=+40.033 for'® B 2p, —0.252 for
Na 3p, —0.155 for K 4p, which can be compared to
R=0.143, —0.243, and —0.188, respectively. As was
anticipated from the discussion of the values of §R.’,
R is considerably different from R for B, whereas for
Na and K, the two values are very similar. Thus the
additional exchange terms dR.,o and 6R, have only a
minor influence on C for these excited states.

We will now discuss the magnetic hfs correction term
6R,' of Eq. (78). An attempt to obtain 6R,, from the
Hartree-Fock equations was made in IT and III. The
calculated values of 8R,’(*P;) and 6R,’(*P;) were,
however, too large to give agreement with the small
observed deviation of Sa(*P;)/a(*P;) from 1 for the
light atoms. From Egs. (32), (35a), and (77), one
obtains

SF(1/2)a(Py) 1—8R,/(*P;)—6R, o—R,
F(3/2)a(Py) 1—8R,/(*P})—0R, o—0oR,
1—6R,/ (2P;)

=, (80)
1—8R.,'(CPy)
where 61’ (2P;) is defined by
3R,/ (P;)=6R.' (*P;)/(1—6R, o—5R,).  (87)

From the calculations of II and III, it was found
that the largest term of 6R,’ [which is given by Eqs.
(56) and (56a) of II] is that due to the excitation of s
electrons of the core into unoccupied s states as a result
of the exchange with the valence electron. This conclu-
sion Is in agreement with Schwartz’s treatment!? of the
hfs anomaly in Ga. Unfortunately, it seems that the
value of the perturbed ns—s wave functions at r=0
cannot be obtained reliably from the present treatment
of the Hartree-Fock equations. A similar disagreement
of the ns—s terms given by the Hartree-Fock equations
has been obtained recently by Abragam, Horowitz, and
Pryce.’® It may be noted that we have carried out
additional calculations of the ns—s effect for B 2p and
Na 3p. For B, the value of the complete ns—s term
was considerably too large and was found to be very

16 For B 2p, the large value of 8R, indicates that a more com-
plete investigation of the core effects would be necessary to
obtain the actual value of C.

17.C. Schwartz, Phys. Rev. 99, 1035 (1955).

18 Abragam, Horowitz, and Pryce, Proc. Phys. Soc. (London)
A230, 169 (1955).
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sensitive to the 1s and 2s functions used in the calcu-
lation. For Na, the total ns—s term was quite small
(4-0.009 for 2P;, —0.002 for 2P;), but this appears to
be due to a fortuitous cancellation of the perturbed
wave functions for 1s—s and 2s—s. In view of the
inadequacy of the calculations, it seems appropriate to
obtain §R,’ from the experimental values of a(*P;)/
a(*P;). Schwartz!” has shown that the major part of
8R,’ (2P;) is due to ns—ss excitation. With this assump-
tion, one finds

6R,' (2Py)=~—36R, (2Py). (88)
Upon inserting (88) into (86), one obtains
8R! Py = (p—1)/(o+5), (89)

where p is the ratio SF(1/2)a(*P;)/F(3/2)a(*Py).

The values of p are very close to 1 for the light atoms.
For B 2p and Cl 3p°, p=1.0034 and 1.011, respectively.
For these cases, we can safely neglect §R,’ in the
expression for C. On the other hand, for the ground
states of heavy atoms, the difference p—1 is quite large.
If this is also found for the excited states, there may be
an appreciable 6R,,’ term in the equation for C for the
states of Rb and Cs discussed above.

IV. CONCLUSIONS

Values of the core correction for the nuclear quadru-
pole coupling have been obtained for 11 atomic ground
states and excited states. For the excited p states of
the alkalis, the direct Coulomb terms give a net anti-
shielding. The corresponding values of R are of order
—0.1 to —0.3. For the ground states of B, Cl, and Cu,
we have obtained positive values of R, indicating a net
shielding. However, there are appreciable exchange
terms for B, and probably also for the ground states of
some of the other light atoms. Hence the values of R
for the ground states cannot be used without making
the corrections for the exchange terms. By contrast,
the exchange terms are very small for the excited states,
so that the correction factor C for the quadrupole
moment is approximately 1/(1—R) for these states.

The dependence of the calculated values of R on the
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core wave functions has been investigated for Cl 3p°
and K 4p. The angular term (yang/7®) is quite insensi-
tive; for Cl, it decreases by only 119, if the Hartree-
Fock wave functions are replaced by Hartree functions
in the calculations. On the other hand, (yr.a/7) depends
strongly on the core wave functions. Thus for K, R;.q
changes from —0.247 for Hartree-Fock functions to
—0.362 if Hartree functions for the K+ core are used
to obtain y:.a(r). We have also compared the core
correction terms for two different choices of the valence
wave function for the K, Rb, and Cs excited states.
The resulting values of R differ by ~0.10 to 0.15. This
difference is due mainly to the strong dependence of
(vraa/7) on the radial distribution of the valence wave
function. It can be concluded that there is an uncer-
tainty of the order of 0.15 in the values of R for excited
states because of possible inaccuracies in the core and
valence wave functions used in the calculations.

In connection with the radial modes of excitation
#'1,15. which enter into (y..a/7®), we note that the
existence of these modes has received strong support
from the values of the quadrupolar relaxation time T
in magnetic resonance experiments.!® 7 is proportional
to 1/Qion?, where Qion is the total quadrupole moment
of the ion. As was shown in IV and V, the total induced
moment Q;r is very large, especially for heavy ions
where the ratio |Q.r|/Q is of the order of 100. This
result is in agreement with the fact that T is smaller
by a factor 10°-10* than would be expected from the
nuclear Q alone. Since Q;r is almost entirely due to the
radial modes, this provides a good confirmation for the
calculation of these terms. As pointed out in IV, there
is also evidence for this effect from the quadrupole
coupling in polar molecules.
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