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Mesonic Atoms: Radiative Yields of the p-Meson K and I. Series
and the Effect of Meson Capture in Chemical Compounds*

MARY BETH STEARNS AND MARTIN STEARNS
Carnegie Institute of Technology, Pittsburgh, Pennsylvania

(Received November 16, 1956)

The radiative yields of the E and L series of p,-mesonic atoms have been measured for the elements &Li
through»K. In the low-Z region both yield curves exhibit a rapid decrease in yield with decreasing Z.
This behavior is attributed to competition between Auger and radiative transitions. However, if this is
true, the Auger transition probabilities would have to be about 300 times larger than the calculated values
for the p —E. yields, and about 30 times larger for the p —L yields.

The eA'ect of meson capture by the different elements of a compound has been measured for Al&03 and
CaS. For these compounds it is found to be proportional to Z within 10 to 20'%%, in agreement with the
prediction of Fermi and Teller.

I. INTRODUCTION

' 'HE capture process of negative mesons in con-
densed matter has been discussed by several

authors. ' The meson is first bound to a particular
nucleus in a high quantum state (rr~15) and then
proceeds to cascade inwards toward the nucleus, trans-
ferring its energy by radiative and Auger transitions.
At each intermediate level the meson can (1) be ab-
sorbed directly from the intermediate level by the
nucleus, (2) make a radiative transition to a lower state
and emit a quantum, or (3) make a radiationless
transition to a lower state, transferring the energy
difference to an atomic electron (mesonic Auger eA'ect).
If the energy difference is sufficiently large it might,
alternatively, create an electron pair or excite the
nucleus, but such events are highly unlikely in the
light mesonic atoms discussed here.

All three processes occur and have been observed for
~ mesons. "In particular, nuclear absorption is exceed-
ingly strong for pions in states of low angular momen-
tum. A m meson in any s state will almost certainly be
absorbed; absorption from the 2p state is practically
complete for Z&11; etc. Since little is known about
the pion-nucleus interaction, it necessarily complicates
the study of the cascade process in 7r-mesonic atoms.
This difficulty does not exist for p mesons. The muon-
nucleus interaction is very weak, and it is practically
certain that in the course of the cascade all p mesons
reach the 1s state from which they are ultimately
captured or in which they decay. (The cascade time is
more than a million times shorter than the muon
lifetime. ) Accordingly, 1A mesons are very useful in
studying the cascade process and, in particular, the
competition between radiative and Auger transitions.

* Supported by the U. S. Atomic Energy Commission.' E. Fermi and E. Teller, Phys. Rev. 72, 399 (1947);B.Ferretti,
Nuovo cimento 5, 325 (1948);J. A. Wheeler, Revs. Modern Phys.
21, 133 (1949).' Stearns, DeBenedetti, Stearns, and Leipuner, Phys. Rev. 93,
1123 (1954).

3 Camac, McGuire, Platt, and Schulte, Phys. Rev. 99, 897
(1944); Camac, Halbert, and Platt, Phys. Rev. 99, 905 (1955).
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FIG. 1. Plan view of experimental arrangement.

II. EXPERIMENTAL PROCEDURE

A. Experimental Setup

Figure 1 shows a plan view of the Carnegie Institute
of Technology synchrocyclotron taken in the plane of
the beam. The 440-Mev proton beam strikes an internal
beryllium target and produces pions, some of which
decay into muons in the vicinity of the target. Both
pions and muons of a given momentum are focused by
the fringing field of the cyclotron through an appro-
priate channel in the shielding wall, 12 feet thick.
Outside the shielding they enter a 45' double-focusing
sector magnet (of two-meter focal length) which serves
both to purify the beam and focus the mesons into the
counter telescope. p mesons originating from the decay
of pions during the long transit through the shielding
port and beyond are largely projected out of the beam
and lost.

The meson telescope and associated electronics are
shown schematically in Fig. 2. Counters 1, 2, and 3
defined the incident meson beam. They consisted of
stilbene crystals of square cross sections, 3 cm)&3 cm,
viewed by RCA 1P21 photomultipliers. The copper
plus beryllium absorber between counters 2 and 3 was
adjusted to make either pions or muons stop in the
target. Counter 4, which was in anticoincidence with
the first three counters, was usually a 1-cm thick plastic
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tions are: H.P.A. , Hewlett-Packard

amplifier; LIM. , imi er;M. ,
l' t ' C F. cathode follower; ATT. , attenu-

ator; NOA. , nonoverloading amplifier.

scintillator, and was viewed by an RCA 6342. It
completely covered the x-ray detector, counter . is
was a cylindrical NaI(T1) crystal, of different size

depending on e x-d th -ray energy studied, mounte on a
D t 6292 photomultiplier. Pulses were taken romumon
both the anode and the last dynode of this tube. e

ut into coincidence with the meson telescope, 1+2put into coinci
+3—4. A mesonic x-ray was indicated byd b the coinci-
dence-anticoincidence combination

' n1+2+3—4+5. This
d t d amplifier for 2 microseconds during

which time it received the slow NaI anode pulse. e
amplitude of the latter was then measured with a
24-channel pulse-height selector (p.h.s.).

The pulses from counters 1, 2, 3, and 4 were amplified

by Hewlett-Packard wide band distributed amplifiers
and then fed into a Garwin4-type multiple-coincidence

't (2&&10 ' sec). Both doubles, D(1+2), an
triples plus anticoincidence, T+A.C.( + +
were monitored with fast Hewlett-Packard scalers. A

ulse ave the quintuplet Q(1+2+3—4+5) counting
rate. The slow anode pulse from the Xa pI hotomulti-
plier was amplified by a nonoverloading amplifier of
the ase- igin oh Ch -H botham' type. The nonoverloa ing

x-ra s of 20 toc arach teristics were very critical since x-rays o to
f ulses300 kev had to be studied in the presence o pu

corresponding to ionization losses a 'g~ ~ ~

s hi h as 100 Mev
~j. A diode limiter was inserted between

the photomultiplier anode output and the succeeding
cathode follower driver and was adjusted to attenuate

R. L. Garwin, Rev. Sci. Instr. 24, 618,24 618 ,1953,.
' R. L. Chase and W. A. Higinbotham, Rev. Sci. Instr.

(1952).
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telescope counters in the beam.

all pulses due to energy losses of |3Iev or more.
Annihilation y rays (0.511 iiIev), however, were un-
aGected. Although the limiter was unquestionab y
hei ful, the capacity feedthrough was sufficient to ma e
the nonoverloading properties of the main amplifier a
necessity.

The maximum T+A.C. counting rate for pions was
500 counts/sec, but most runs were taken at one third
this beam level in order to minimize pulse pileup in
the NaI crystal. The muon beam was roughly 10%%uz that
of the pion beam. The accidental rate, determined by
inserting an appropriate delay (always equal to an
integral number of rf cycles) into the various arms of
the coincidence-anticoincidence system,

~ ~ ~ ~ ~

em was measured
to be less than 2%.

Pions and muons were cleanly separated experi-
mentally. A differential range curve is shown in Fig.
where T+A.C. is plotted against copper absorber
thickness. (In order to reduce Coulomb scattering an
the background due to star fragments, there was always
an additional 1-in. thick slab of beryllium before
counter 3.) The large peak is due to pions stopping in
the target (and counter 3),—the smaller peak to muons.
The tail at greater copper thicknesses is presumably
due for the most part, to electron contamination. By
using a copper absorber thickness appropriate to the
pion pea one au ot matically rejected all muons since
their residual energy was sufficient for them to pene-
trate the anticoincidence counter 4. Conversely there
are no pions at the muon peak. The purity of the two
beams could be checked quite accurately since the
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mesonic x-rays themselves are a sensitive indicator of
possible contamination. None was observed. LO—

ets

B. Targets

In all cases, with the exception of Li, Be, and B, the
target material was packed uniformly inside of a thin
hollow Lucite cylinder, 1 in. thick and 2~ in. in diameter.
The number of g/cm' of each sample was adjusted to
be the same and equal to that of water. For materials
of smaller density (e.g. , Li and B powder), matching
carbon targets of equal surface density were prepared.
Likewise, Be, which was a denser rectangular slab, had
its matching carbon partner.

C. NaI(T1) Detectors

The x-ray energies of the elements investigated varied
from 18 kev to about 730 kev for the p —E series and
from 25 kev to 142 kev for the Ii, Lseries. (—See Tables
I and II.) In order to minimize the background counting
rate, which increases roughly as the volume of the
crystal, we used, in each energy region, the thinnest
crystal consistent with a reasonable efficiency. For the
lowest energy x-rays, up to about 60 kev, the NaI
crystal was a cylinder, i~ in. in diameter and ~~ in.
thick, and had a 5-mil aluminum window which faced
the target. For the energy region from 50 kev to about
160 kev, the crystal was 1-,' in. in diameter, -', in. thick,
and had a 25-mil aluminum window. For energies
above 150 kev the NaI detector was a 1-',-in. diameter
cylinder, 2 in. thick, with a 32-mil aluminum window.

D. Corrections to Yield Measurements

The raw experimental yields must be corrected for
the following effects: (1) absorption and scattering of
x-rays in the target, the A.C. counter, and the alumi-
num window of the NaI detector (2) escape x-rays from
the NaI detector (3) carbon x-rays coming from the
third counter of the meson telescope (4) x-rays from
undesired elements (in the case of compounds) and
contaminants (5) the variation with energy of the NaI
detection efFiciency.

(1) For relative yield determinations the correction
for absorption and scattering of the mesonic x-ray in
the intervening materials is quite insensitive to the
direction of travel assumed for the x-ray. We have
assumed, therefore, in calculating this correction, that
the x-rays traverse the intervening material at an
average angle of 25'. The calculation was made using
absorption coefficients given in the Gladys White
Tables. ' (The absorption coefficient included photo-
electric absorption, coherent scattering, and Compton
scattering. ) It was reasonable to assume, from the
geometry, that x-rays which were scattered through an
angle greater than 70' in the A.C. counter and 90' in
the aluminum window were not detected by the NaI

6 G. R. White, National Bureau of Standards Report 1003,
1952 (unpublished).
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FIG. 4. Transmission corrections, as a function of x-ray energy,
for the meson targets and for the anticoincidence counter plus
aluminum windows of the several NaI(Tl) detectors.

crystal. The eRect of scattering in the meson target, par-
ticularly backscattering and inscattering, was too difIi-
cult to estimate theoretically, and was therefore studied
experimentally with artificial radioactive sources. To-
ward this end it was first necessary to determine the
eRective size of the source of mesonic x-rays. It was
found, by measuring the mesonic x-ray yield as a
function of target size, that essentially the region of the
target covered by the third counter was eRective.
Plane uniform radioactive sources of this size were
accordingly fabricated. Measurements were taken with
a given source placed at four diRerent distances from
the NaI detector, corresponding to the near face of the
target, the one-third depth, the two-thirds depth, and
the far face. Counting rates with bare sources in
position were compared with counting rates with the
sources surrounded by different target materials. In
this manner the eRect of absorption, inscattering, and
outscattering in the various layers of the target could
be studied. The sources used most extensively were
Tm'" (84, 51 kev), RaD (47 kev), and CePr'44 (134,
34 kev). Figure 4 shows the resultant transmissions for
the targets and for the A.C. counter plus aluminum
window of each of the NaI crystals. As can be seen,
the correction factor is a slowly varying function of the
energy, except below 40 kev where photoelectric ab-
sorption is appreciable. Note that the transmission,
for the p —E targets, is greater than unity at low
energies (low-Z targets). At these energies inscattering
(including backscattering) exceeds outscattering plus
photoelectric absorption. The eRects are about equal
at higher energies (higher-Z targets). For the p L—
targets, photoelectric absorption is dominant and the
transmission is less than unity.

(2) The escape correction is important for x-ray
energies not too much greater than the iodine E-edge
(33.2 kev). Since x-rays in this energy region are
strongly absorbed near the surface of the NaI crystal,
the fluorescent iodine E-line has a considerable escape
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7 T. B. Novey, Phys. Rev. 89, 672 (1953).' Panofsky, Aamodt, and Hadley, Phys. Rev. 81, 565 (1951).

probability and thus may not be absorbed in the
crystal. We have observed several escape peaks in both
w and p, spectra and have been able, in these cases, to
measure this correction directly. We find that the
measured corrections agree quite well with a formula
given by Novey. ' We have, therefore, used this formula
generally for our escape corrections.

(3) Because of the momentum spread of the p-meson
beam, some p, mesons stop in the third counter of the
meson telescope. These constitute a source of carbon E
x-rays (see Figs. 6 and 8). This satellite peak is well

resolved in some cases and can be subtracted off
directly. In those cases where this is not possible, the
third counter contribution can be estimated quite
accurately by interpolation.

(4) With the exception of N, 0, F, and Cl, all targets
were pure elements. The nitrogen target was hydrazine
(N2H4)„of 95% purity. A 5'~ water contamination
was easily corrected by using the measured value of the

oxygen x-ray yield. (It is well known, from the experi-
ments of Panofsky et al. ,

' that the hydrogen in such

compounds does not absorb mesons. ) For the fluorine

and chlorine measurements, targets of LiF and LiCl
were used, respectively. It appears, as discussed in Sec.
III-C, that the lithium in these compounds is not
effective in absorbing mesons, and no corrections were
made for it.

(5) The detection efficiencies of the —,', -in. and —', -in.
NaI crystals could be calculated in a straightforward
manner since edge effects, for these, were negligible
over the energy regions in which they were used.
However, in the case of the 2-in. crystal, the efficiency

variation with energy is more difficult to calculate. It
was obtained in the following three ways.

The simplest and most reliable method was to use
the results of the radiative p —E yields. XVe assume
that the p —E yield is essentially constant over the
interval 8&Z&19 since, for these Z's, the competing
processes of Auger effect and nuclear capture are
negligible. This implies that the cascade scheme does
not vary drastically over this Z interval. With these
assumptions the measured p —E radiative yield, cor-
rected for the four previously listed effects, is then a
direct measure of the relative NaI efficiency. (Addi-
tional support for this method comes from measure-
ments on x yields made with a large 3-in. diameter,
3-in. thick NaI crystal used with various sized colli-
mators. Over the energy region where this crystal had
pearly uniform efficiency the relative yields were ob-
served to be the same as those obtained with the 2-in.
crystal, corrected a.s described. ) Figure 5 shows the
efficiency curve for the 2-in. crystal (and l-in. thick
targets) obtained in this manner.

The efficiency was also measured using radioactive
sources. For these measurements plane uniform sources
were fabricated and placed at varying distances from
the XaI detector as described above in the absorption
corrections (1).The sources selected, Hg"', Hg'~, Re'",
and I"', had at least two p rays with a known ratio of
intensities, and these were used to obtain a relative
efficiency curve. Figure 5 shows points obtained in this
manner. The agreement with the first (mesonic yield)
efficiency curve is fair considering the paucity of avail-
able information on the relative intensities of the p rays.

The third method for getting the efficiency correction
was by calculation. This is difficult to do reliably
because of the poor geometry and edge effects. The
calculation was performed by assuming a point source
on the axis of the NaI detector and 2.2 cm in front of
it. This corresponds to a distance one third of the way
into the target. Other calculations, made with varying
distances of the source, showed that the results were
not very sensitive over the width of the target. The
method of the calculation is described by Rietjens
et al.' and takes care of edge effects caused by p rays
passing through the corners of the detector. The calcu-
lations give the efficiency in terms of an absorption
coefficient, 7.. In Fig. 5, the efficiency has been plotted
for two extreme values of r, 7 equal to the photoelectric
absorption coefficient and ~ equal to the total absorption
coefficient. It can be seen that the two curves bracket
the efficiency determined from the p-meson yields as
would be expected.

All of the curves in Fig. 5 include the correction for
scattering and absorption in the A.C. counter plus
aluminum window.

Rietjens, Arkenbout, Wolters, and Kluyver, Physica 21, 110
(1955).
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higher-Z targets. The complete radiative yield curve
was measured twice. Typical spectra of some p, —L series
x-rays are shown in Fig. 8, these again being composite
curves. The outstanding features are the main peak due
to the 3d~2p transition and the high-energy bump and
tail from the higher transitions. The p —E contaminant
line from the carbon of the third counter is in evidence
and is easily subtracted ofI' since it is well resolved for
some of the targets. Figure 9 shows the relative yields
of the L series. Table II lists the energies, total relative
yields, and the ratio of higher transitions to the total
yield. The detector eKciency correction for this series
is small and easily calculated since the highest energy
line is only 142 kev. The yields are observed to decrease

Element

6Li
4Be
6B

6C
7N
so

9F

12Mg

1gAl
14Si
15P

Energy of
2p —+is
(kev)

18.7
33.3
52.1

75.0
102
133

168
249
295

350
410

~470

Relative
radiative

yield'

(0.16
0.33 %0.03
0.46 %0.035

0.60 &0.04
0.82 ~0.07
0.80 &0.05

0.72 ~0.07
0.81 +0.06
0.845~0.06

0.84 &0.06
1.01 ~0.10
0.88 &0.07

Ratio of
higher

transition
to total

0.22
0.22

0.20
0.23
0.21

0.18
0.18
0.24

0.24
0.26
0.28

TABLE I. Energies and yields of the p —X series.

17CI
19K

590
730

0.86 &0.06
0.91 &0.09

0.25
0.27

0.6— ' Total absolute yield of p, —O(K) = (0.80~0.15)x-rays/stopped meson.
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FIG. 9. p —L series x-ray yield vs Z. The absolute total yield of
silicon is 0.75~0.15 x-rays per captured meson. The experimental
points have been fitted with the function, const. Z4/(C2+~4),
where the constant is 0.97 and C2=2X10' (in units of 1.34&(10"
sec '). The Auger transition probability derived from this fit is
about 30 times larger than the calculated value.

for example, in meson capture studies employing nu-
clear emulsions or bubble chambers filled with complex
liquids. Fermi and Teller (hereafter F-T), in studying
the capture of negative mesons in matter, conclude that
"in chemical compounds the probability of capture
near the various atoms is roughly proportional to their
atomic numbers. "This simple Z-dependence is derived
by assuming that the capture probability by each atom
is proportional to the meson energy loss to the various
atoms near zero energy.

Experiments, up to the present time, have either
contradicted the F-T theory or have been too ambiguous
to interpret simply. The 6rst clear-cut experiment was
that of Panofsky et al. ' in which x -mesons were
absorbed by LiH and CH2. In each case the theory
predicts that about one-fourth of the incident mesons
should be absorbed by H. No hydrogen capture was
observed. This contradiction with the F-T theory has
been explained by proposing that the initial neutral
hydrogen ~ -meson system, formed when m. mesons

with decreasing Z starting around Z 13. Again we
have fitted a curve proportional to Z'j(C2+Z') to the
experimental points. In this case the 6t is reasonably
good for a value of the Auger transition probability
which is about 30 times larger than the calculated
value. The absolute yield of silicon is 0.75&0.15 x-rays
per stopped meson. The ratio of the sum of higher
transitions to the total yield is observed to be roughly
constant, within the accuracy of the measurements.
It is about 0.25 to 0.30.

C. Capture in Chemical Compounds

It is of considerable interest to know with what
relative probabilities mesons are captured by the
various atoms of a compound. This could be useful,

TABLE II. Energies and yields of the IJt„—L series.

Element

80
9F

11Na

12Mg
13Al
14Si

16S
17Cl
19&

Energy of
3d ~2p

(kev)

25
32
47

56
66
77

88
100
113
142

Relative
radiative

yielda

0.14&0.015
0.24~0.02
0.36&0.03

0.46~0.025
0.60~0.03
0.75&0.04

0.77~0.04
0.74a0.04
0.78~0.04
0.81&0.05

Ratio of
higher

transition
to total

0.28
0.18
0.23

0.20
0.23
0.31

0.35
0.40
0.37
0.30

a Total absolute yield of p, —Si(K) = (0.75 ~0.15)x-rays/stopped meson.
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FrG. 10. X-ray spectra from 7l-—
mesons captured in CaS and a
mixture of Ca and S. The yields
are the same to within 5%, indi-
cating that meson capture in this
compound is proportional to 2
within 20%.
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are captured by hydrogen, has a sufFiciently long life-
time so that in subsequent collisions with the heavy
elements in the lattice (i.e., Li or C) the meson is
detached from its hydrogen partner and finally absorbed
by the heavier atom. Experiments on the compound
effect using photographic emulsion techniques suGer
from the fact that while the gelatin is indeed a homo-
geneous mixture of C, N, H, and 0, the AgBr crystals
have macroscopic dimensions. This complicates the
capture effect. In addition, the interpretation of a
particular atomic capture in terms of prongs and stars
and the ratio of alpha particles to protons is ambiguous,
although the results are not in contradiction with the
F-T theory. Alore recently Fafarman and Shamos"
have studied the relative yields of mesonic x-rays from
the capture of cosmic-ray p mesons in dioxane (C40$HQ).
Their observed oxygen to carbon capture ratio was 0.33,
which does not agree with the Z-dependence predicted
by F-T (0.67). This experiment suffers from the very
low intensity of cosmic-ray p mesons and the character
of the corrections involved in making absolute yield
measurements. Because of these difFiculties the results
may be considered inconclusive.

AIesonic x-rays are an excellent tool in measuring the
relative capture probabilities by the constituent atoms
in compound. In principle one need only measure the
relative radiative yields of some chosen transitions and
then correct for nuclear absorption, Auger competition,
detector efficiency, etc. In practice, however, the latter
corrections, while perfectly straightforward, are large
and the consequent errors can be large. It is, therefore,
better, if possible, to compare the radiative yield from
a compound with that of some sample which gives a
simple Z-dependence. It can be shown that in a me-
chanical mixture of elements, each having the same
weight as in the corresponding compound, the capture
of mesons by the different constituent atoms is nearly
proportional to Z. Thus for each compound under
investigation one prepares, as a Z-dependence reference

"A. Fafarman and M. H. Shamos, Phys. Rev. 100, 874 (1955).

standard, a mixture of the same constituent elements.
If, further, the geometries of the two are identical, no
corrections need be made for x-ray absorption, detector
efFiciency, etc.

Using this method we have compared the m-mesonic
x-ray yield from CaS with that from a mixture of pure
calcium and sulfur. Figure 10 shows that the yields are
identical to within about 5%. If we assume that the
yield from each element in the compound goes as Z",
then

(Vc,/Vs), .„,p (Zc,/Zs)"
l
Zc, l "—'

(I c /Vs)„„(Zc,/Zs) 0 Zs ~

)20q "—'
=1.00~0.05. (2)

&16)

Hence, n 1.0%0.2. Thus for CaS, meson capture has
a simple Z-dependence to within about 20%.

We have also compared the p,-mesonic x-ray yield
from A1203 with that from a mixture of aluminum and
water. In this case 1-mil sheets of aluminum were
uniformly stacked within a cylinder of water. (It can
be assumed that those mesons originally captured by
the hydrogen in water will subsequently be lost to and
absorbed by the oxygen. ) The results, shown in Fig. 11,
indicate that the yields are identical to within about
5%. Again assuming a Z" dependence for each element
in the compound, we get

(I'Al/I'o) o p 3(ZAi/Zo)" (ZA1)

(I'At/I'o) mi» 3 (Zpi/Zo) ( Zo )

=1.00~0.05. (3)
I 8&

Hence, n 1.0&0.1. Thus for both A120~ and CaS the
meson capture probabilities are roughly proportional
to Z, as predicted by the F-T theory.

We have not explicitly studied any other compounds.
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higher transitions was measured for both the p, —E and

p —I. series and was quite independent of the target
material. This is incompatible with an extreme distri-
bution such as (14)'. Therefore, we conclude that
high-/ states must be favored, but moderately.

Thus it appears that the observed discrepancy be-
tween experiment and the calculated Auger values
cannot be simply explained by assumptions about the
meson capture distribution and the subsequent cascade
process. A more reined examination than that described

in the foregoing produces only greater disagreement.
For example, no account was taken of the depletion
of the E and I. electrons due to previous Auger transi-
tions. Such depletion would clearly reduce Auger

competition. Of course, it is possible that the observed
decrease a.t low Z is the result of some mechanism other
than Auger competition. We cannot think of any likely
prospect. Whatever the mechanism, its Z dependence
is similar to that of the Auger effect in view of the good
fit of Eq. (1) to the experimental points.
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Nonradiative Absorytion of Positive Pions by Deuterons at 118 Mev*t

CHARLES ERWIN COHN$

The Enrico Fermi Institute for Nuclear Studies, The University of Chicago, Chicago, I/linois
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The reaction ~ +d~P+P was studied at a center-of-mass pion energy of 118&2 Mev, using scintillation
counters and a liquid deuterium target. The angular distribution was given by da/dQocA+cos28, with
A =0.216&0.033, while the total cross section was 12.09&0.93 mb. The total cross section for the inverse
pion production reaction was calculated from detailed balancing as 3.10&0.24 mb. These results are com-
pared with other work.

I. INTRODUCTION

HE pion production reaction p+p~m. ++d and
the inverse nonradiative pion absorption reaction

~++d—+p+ p have been investigated by many workers,
and data are available on total cross sections and
angular distributions at center-of-mass pion energies up
to 156.5 XIev. 3Iost of the data has been compiled by
Rosenfeld' with later work reported by Crawford and
Stevenson, ' Meshcheryakov et al'. ,

'4 and Rogers and
Lederman. ' The work on total cross sections for the
higher energies is shown on Fig. 1, while that on angular
distribution is plotted on Fig. 2. The data on Fig. 1,
both from production and absorption measurements,
are plotted in terms of the production cross section; the
absorption cross section being related to the former by
a simple detailed balancing relationship. '

This paper describes measurements of the absorption
reaction at a pion c.m. energy of 118&2Mev. These were

* Research supported by a joint program of the Once of Naval
Research and the U. S. Atomic Energy Commission.

f Based on a thesis submitted to the Faculty of the Department
of Physics, the University of Chicago, in partial fulfillment of the
requirements for the Ph. D. degree.

f. Present address: Argonne National Laboratory, P. O. Box 299,
Lemont, Illinois.

' A. H. Rosenfeld, Phys. Rev. 96, 139 (1954).
'F. S. Crawford and M. L. Stevenson, Phys. Rev. 97, 1305

(1955).
'M. G. Meshcheryakov et al'. , Doklady Akad. Nauk S.S.S.R.

100, 673 (1955).
4 M. G. Meshcheryakov et a/. , Doklady Akad. Nauk S.S.S.R.

100, 677 (1955).' K. C. Rogers and L. M. Lederman, Nevis Cyclotron Labora-
tories Report 25 (unpublished).' W, B, Cheston, Phys. Rev. 83, 1118 (1951).

done mainly to test the hypothesis of iVIeshcheryakov
that the angular distribution parameter 3 is sub-
stantially constant between 70 and 160 iAIev. However,
the results of Stadler' suggest a rise with energy in this
region. This question is of special interest because the
(-'„-', ) pion-nucleon resonance would be expected to take
effect in this region.

The present results are in substantial agreement with
Meshcheryakov. The implications are discussed in terms
of the phenomenological theory.

TABLE I. Possible processes for reaction ~++d~~p+p
with pion in S or P states.

Pion angular
momentum

state

S
P
P

Total J for
pion-deuteron

system p+p state

3P
1S
1D

Cm angular dist.
of reaction prod.
for isolated case

isotropic
isotropic
-', +cos'8

' H. L. Stadler, Phys. Rev. 96, 496 (1954).' M. Gell-Mann and K. M. Watson, Annual Review of Nuclear
Science (Annual Reviews, Inc. , Stanford, 1954), Vol. 4, p. 219.

II. THEORY

At present, the best interpretation and correlation of
these data are given by a phenomenological theory of
Gell-3Iann and Watson, ' who assume that the pion
participates in these reactions only in 5 or P angular
momentum states. With this assumption, it is possible
to enumerate the quantum states between which the
reaction may take place. The result is shown in Table I,


