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the second rotational level. No previous measurements
have been made of the K/L ratio for the level in Re";
however, in P-decay the level in Re'" has been observed.
The value of K/L=4 6fo.r the heavier isotope agrees
with the previously measured value" of K/L, 5. The
values of B.„(E2) for these two nuclei have an uncer-
tainty of 50% since the target thickness was determined

by the "stopping electron" method. However, the
relative Qo values obtained have approximately the
same ratio as the spectroscopically measured quadru-
pole moments. Also, they fit into the general trend of

Qo values in this region of the odd-Z odd-2 elements.

IRIDIUM

Iridium is similar to rhenium, having two stable iso-
topes Ir'" (38.5%) and Ir"' (61.5%). The electron
spectrum from bombardment of natural Ir with 3.85-
Mev alpha particles is shown in Fig. 3. One sees the
E, L, and M lines from the first rotational level in each
isotope. The L line from Ir' ' was not resolvable from
the M line of Ir"' so that no K/L ratio could be ob-
tained for this nucleus. In addition to these lines, one
finds two conversion lines labelled A and 8 in Fig. 3.

"Hollander, Perlman, and Seaborg, Revs. Modern Phys. 25,
469 (1953).

If one assumes that these are L conversion lines, the
transition energies are 73 and 83 kev. From P-decay"
there is a knowrl level in Ir"' at 82 kev. Also, in Ir'" a
transition of 73 kev has been observed. "Hov ever, the
suggested level scheme from P-decay for Ir'" has the
73-kev transition as a cascade between two higher
energy levels. The yield ratio of both these lines from
3.50 to 3.85 Mev is consistent with that to be expected
for excitation of levels at 73 and 83 kev. Also, since one
would expect these two nuclei to have similar level
schemes, it appears almost certain that the 73-kev
transition comes from a level of that energy rather
than a cascade between higher levels.

The K/L ratio for the first rotational state (129 kev)
in Ir"' is somewhat higher than the previous P-decay
measured value" of 2.1. The B,„(E2) value could be
obtained only for the lighter isotope because of the
fact that the E and L lines from Ir'" were not completely
resolved. The target thickness was obtained by the
"stopping electron" method; however, the Q~ value
obtained seems to fit very well with those of the
neighboring nuclei.

"Gillon, Gopalakrishnan, de-Shalit, and Mihelich, Phys. Rev.
93, 124 (1954).

"Cork, Leblanc, Nester, Martin, and Brice, Phys. Rev. 90,
444 (1953).
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Way s empirical rule on the behavior of separation energies of nucleons is analyzed. It is shown that this
rule could be expected from general properties of the shell model, and the sort of information which can be
obtained from its detailed analysis is discussed.

''N a recent study, Way' has pointed out an out-
standing empirical rule concerning the separation

energies of neutrons and protons for nuclei in some re-
gions of the periodic table. If S„~»(Z, V) stands for
the energy required to separate a neutron (proton)
from a nucleus with Z protons and V neutrons, and if
Z+X is even, then Way's rule claims that:

S (Z,X)=S„(Z+1,E), (1)

S„(Z,S)—S„(Z,1V+ 1), (2)

for even 2 =Z+!V. Stated in other words, it says that
the addition of a neutron (proton) to an odd-odd or
to an even-even nucleus does not change the binding
energy of the last proton (neutron) of that nucleus.

' K. Way, A msterdam Conference, July, 1956 (Nederlande
Natuurkundige Vereniging, Amsterdam, 1956); Suclear Masses
and Their Determination, Proceedings of the Conf. held in Max
Planck Institut fur Chernie, Mainz; edited by H. Hintenberger,
July 1956 (Pergamon Press, London, 1956).

As was noted by Way, exceptions to this rule are
associated with completion of shells or with transition
into the region of high deformations. It thus seems that
this behavior should result from the shell model of the
nucleus.

By definition, the binding energy of the last nucleon,
or its separation energy, is the difference between the
binding energy of the original nucleus less the binding
energy of that nucleus after removal of the last nucleon.
To calculate this quantity, let us assume that the
nucleus can be represented by the shell model; let us
further assume that there are p protons in the st.ate
characterized by the quantum numbers ~s~, I„, and j„
[in short "the state j„"],with all lower sta, tes filled,
and let there also be rs neutrons in the state j„with all

lower states filled.
Since we are dealing with differences of binding

energies caused by the addition of one nucleon to the
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partially filled shells, we can disregard in our calcula-
tion the binding energy of the nucleons in the closed
shells and treat those in the partially filled shells only.
The binding energy of the nucleons in these shells can
be written in the following manner:

E(p,n) =PE(j,)+~E(j„)
+E'.~(j.")+E'-~(j-")+[p,~), (3)

where p and rs are the numbers of protons and neutrons
in the partially filled shells j„and j„, respectively;
E(j) is the binding energy of a single nucleon in the
state j;E; &(j ) is the interaction energy of k identical
nucleons in the state j with each other; and [P,e] is the
interaction energy of P protons in the state j„with n
neutrons in the statej„.The interaction energies E;„,(j )
and [p,e) are generally unambiguous only if we specify
the coupling scheme of the nucleons in question. How-
ever, to avoid complications we shall not specify this
scheme unless it becomes necessary.

The neutron separation energy for a nucleus (p,n)
thus becomes

S (p,~) =E(p,n) E(p, n —1)=E(j„—)
+LE (j ")—E'-~(j." '))+[P~)—[P &—» (4)

Similarly for a nucleus (p+1, n) we get

S„(p+1,m) =E(p+1, n) E(p+1, n 1)— —
=E(j-)+LE--t(j-")—E'-~(j-" ')]

+[p+1,e]—[p+1, n —1]. (5)

Finally we get, for the difference b„between these two
separation energies, the expression

8 =5 (p+1, e) —S„(p,m)

= ([P+1 &) [P+1, &—1)—)
—([p,~)-[p ~-1)) (6)

Our only restrictions in deriving Eq. (6) were e) 0 and

P(2j ~+1. We shall now assume that j „Aj „, leaving
the case (nP„j „)=, (n„l j ) to a subsequent treatment,
and we shall also assume that an even number of
equivalent nucleons couple in our case (we are treating
ground states!) to a zero total angular momentum.

It is shown in the appendix that whenever p or n is
even and the corresponding group of nucleons is coupled
to a zero total angular momentum, one has

[p,m]= pnF(j „,j„), p or e or both even. (7)

If both p and e are odd, Eq. (7) no longer holds but
one still has

Q (2J+1)[pJ,mJ„)
(2J„+1)(2J„+1)~ =p&F(i.j -) (7a)

where the explicit expression [PJ~,eJ ]~ stands for
the interaction between the group of p-equivalent
protons coupled to angular momentum J„with the

TABLE I. The difference between neutron separation energies,
s.—= {LP+&,Ij LP—+t, ~—&El —{EP,~j—rP, ~—&j&.

even
even
odd
odd

even
Qdd
even
odd

group of e equivalent neutrons coupled similarly to J„
in a state with a total angular momentum J.

Since the left-hand side of (Fa) represents an average
of the interactions of the two odd groups over all pos-
sible states, it is clear that the ground state is more
tightly bound than this average and we can therefore
put

[P,n]=PrsF(j„,j„)+e, P and n odd, (8)

where e has the same sign as F, may depend on n, p,
j„,and j„,and is of the order of magnitude of half the
width of a configuration of an odd-odd nucleus.

It is now possible to evaluate ()„by substituting into
Eqs. (6), (7), or (8) as required. One gets the results
shown in Table I. One sees immediately from this
table that if e F(j „j„),—then 8„vanishes for even-even
and odd-odd nuclei, and has the value ~2F (j ~j „) for
even-odd and odd-even nuclei. Stated in other words it
says, since 8„ is defined as the difference between two
separation energies, that the neutron separation energy
does not change when a proton is added to an even-3
nucleus, and it changes by the amount 2F(j ~j „) when
a proton is added to an odd-2 nucleus. Obviously, the
same rule holds for the proton separation energy.

Thus, provided e F(j„,j„),w—e have demonstrated
not only Way's rule but we also anticipate that the
difI'erences in neutron separation energies of pairs of
nuclei (Z,.V) and (Z+2, iV) should be constant. In
other words, the neutron separation energies for the
nuclei (Z,1V), (2+2, !7), (Z+4, !7),etc. , should lie on
a straight line with a slope F(j „,j„) Mev/proton, with
a similar rule holding for the neutrons. This behavior
seems to be reproduced by the experimental data. '

The relations between e and F(j „,j„), as well as the
dependence of e on p and e, are very much dependent
on the nature of the proton-neutron interaction inside
nuclear matter. Thus, if the interaction between neu-
trons and protons depends only on their distance apart
it is easy to shown that a=0 whenever e or p represent
exactly a half-filled shell. In another extreme of an
interaction of the type (e„cr„)V(~ r„—r„~) e does not
depend on e or p at all. The analysis of the experi-
mental data can thus yield important information on
the nature of the proton-neutron interaction inside
nuclei.

The peculiar behavior of the separation energies has
drawn previous attention, ' and attempts were made to

2A. R. Edmonds, Proc. Phys. Soc. (LondoII) A66, 793 (1953)
and references quoted there; S. N. Goshal and A. N. Saxena,
Proc. Phys. Soc. (London) A69, 293 (1956).
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explain this behavior on the basis of the mass formula
with some shell model corrections. However, since it is
not quite clear how much of the "shell model" con-
tributions go into a semiempirical mass formula it
seems that a direct shell model approach is preferable,
although, to be sure, it is valid only so long as the same
shells are being filled.

More detailed analyses of the experimental data will

be given in a subsequent treatment of this subject.
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nucleon wave function; and the sums over i and j are
taken over all p protons and» neutrons, respectively.

The expression (A4) can be evaluated by the stand-
ard Racah ajgebra. 4 One obtains

f~= (—1)"+' '(j&"J~IIZ'T~(p') ll j&"J&)
x (j„"J„II+,T,. (»,) IIj„"J.)lv(J„J.J„J.; Jk). (A5)

Since we have assumed that J„=O we find, applying
the triangular condition to the first term on the right
of (A5), that fi vanishes unless k=0. For k=0, one
then gets

I am indebted to K. Way for interesting discussions
on the experimental data and for making avails, ble to
me a graph of her data. 'To P

(2J+1 '*

APPENDIX

We want to calculate the interaction energy between
a group of p protons in the state j~ coupled to a zero
total angular momentum with a group of sz neutrons in
the state j„.' To do this we use the fact that it is always
possible to decompose an interaction between two par-
ticles V„„in the following manner:

x(j."JIIZiTo(»i)llj "j)= p»
(2J+1)'

x(j."0II To(Pi) IIj."0)(j-"JIITo(»i) IIj "j)
(j.ll ToIIj.)(j.ll To ll j-)=p» . (A(i)
L(2j +1)(2j„+1)]'

V„„=Pi, zzi, (r„,r„)Ti *(P)Ti„(»), (A1) Combining these results one gets, finally

where Ti,„(p) is the xth component of an irreducible
tensor operator of rank k operating on the proton co-
ordinates only, T&„(») has a similar meaning for the
neutrons, and u& is a function of the magnitudes only
of r„and r„. We now have

(j „z'j„g„"J„JM
I Q Vz, , I y, "J„y "J JM)

std

=P fbi, (A2)

where
(j.ll Toll j.) (j-II To ll j-)

T'(j.j-)=Fo
L(2j„+1)(2j„+1)]''

(AS)

=P»F(j.j-), (Az)

J~ and/or J„=0,

where

and
in order to prove that

~=K*(f.'J.i -"J.JM
I
LZ'Tk**(p')]

XLZ~T~*(»r)] &n"Jn1 -"J.JM) (A4)

and Fo is given by (A3).
If J~QO and J„AO, one can use the theorem

Fi )Rn„iz,'(rz)Rn„i„—'—(r„)fi(rzr„)rz,'drzr„'dr„(A3) ~ ( 1)~+J ~(2J+1)lV(j J J J Jk)
= [(2J~+1)(2J„+1)]'bi,, o

In these expressions, (j„&j„j"J„JMI stands for the
wave function of p protons in the state j„coupled to
J„and v neutrons in the state j„coupled to J„, both
groups coupled to J; E„~ is the radial part of the single-

' See also N. Zeldes, Nuclear Phys. 2, 1 (1956/1957).

P(2J+1)
(2J„+1)(2J„+1)

X(1, JI,q„j„jMp v„., lq, j,q..j.jM)=»pr,
(A9)

where F is again given by (AS).
4 G. Racah, Phys. Rev. 62, 438 (1942).


