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The energy level of the ground state of atomic helium is re-
studied in detail. The nonrelativistic part is treated by the
conventional Ritz variation technique. However, the trial func-
tions used are more general than the ordinary Hylleraas-type
functions since they contain negative power terms in addition to
the positive power terms. Linear combinations of up to 39 terms
are employed in the numerical computation. The best approxima-
tion for the ground state energy of the nonrelativistic Schrodinger
equation obtained so far is —2.9037225 atomic units. The precision
of the variation result is estimated by the evaluation of lower
bounds to the ground state energy. Our final result is about twelve
times more accurate than the best published value. On the basis of
these calculations, it is conjectured that the actual nonrelativistic
energy will be lower than our best value by not more than

0.0000012 atomic unit. The accuracy of various approximate
eigenfunctions is also estimated. It is thus found that the total
contribution to our 39-parameter function from all the excited
states will be of the order of 0.1/~. Mass polarization and rela-
tivistic corrections are evaluated with various trial functions
including our best ones. They seem to converge to certain limits
with reasonable speed. We therefore believe that the mass
polarization and relativistic corrections to the ionization potential
of the He ground state will be very close to —4.786 cm ' and
—0.570 cm ', respectively. With these corrections, and also the
Lamb-shift correction for the ground state of the He atom (—1.23
cm '), the theoretical ionization potential becomes 198310.38 cm '
which is in a very good agreement with the best observed value
198310.5&1 cm '.

1. INTRODUCTION

ECEXTLY Herzberg and Zbinden' have greatly
improved the accuracy of measurement of the

ionization potential of the He atom in its ground state.
This result, together with the latest experiments on
some other states of the He atom, has revived theo-
retical interest in the study of two-electron systems. In
the near future it will become possible to detect such
small eGects as the Lamb shift of the He atom and thus
we would be able to see whether the two-electron
systems can be satisfactorily explained by our present
knowledge of quantum electrodynamics which has been
so successful in the case of the hydrogen atom.

The necessity of improving the accuracy of theoretical
prediction for the energy of the He ground state was
pointed out a few years ago by Chandrasekhar, Elbert,
and Herzberg. ' They recalculated the energy of the He
ground state by the Ritz variation method, making use
of a trial function with ten adjustable parameters, and
showed that their ground state energy, including the
relativistic and mass polarization corrections, was about
21.5 cm ' higher than the observed value while the error
of observation was of the order of &5 cm '. Sucher and
Foley' have discovered some errors in previous treat-
ments of the relativistic correction and showed that the
discrepancy between theory and experiment would be
even larger ( 30 cm ') if all relativistic corrections of
order o.' ry are correctly taken into account. In order to
identify the source of such a large discrepancy,
Chandrasekhar and Herzberg' have extended their com-

*Supported by the joint program of the Once of Naval
Research and the U. S. Atomic Energy Commission.' See S. Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050
(1955), footnote 12.

2 Chandrasekhar, Elbert, and Herzberg, Phys. Rev. 91, 1172
(1953).

3 J. Sucher and H. M. Foley, Phys. Rev. 95, 966 (1954).
4S. Chandrasekhar and G. Herzberg, Phys. Rev. 98, 1050

(1955).

putation of the nonrelativistic energy up to 18 parame-
ters and found that the theoretical ionization potential
will be about 198310.4 cm ', which is only 0, 1 cm ' less
than the latest experimental value. ' It has thus been
made clear that the large discrepancy between the
observation and earlier calculations originates mostly
from the poor convergence of the variation calculation.

Though the measurement and theory have reached
such a high precision, it is necessary to improve the
accuracy further for a serious consideration of such
details as the Lamb shift and other smaller eR'ects. It is
the purpose of this paper to improve the precision of
theoretical calculation so that we can determine the
ionization potential with narrower limit of errors than
that of the latest measurement. We shall note here a few
points about the calculation of Chandrasekhar and
Herzberg. (1) They have used the relativistic correction
evaluated by Sucher and Foley employing a 3-parameter
function of Hylleraas type. ' It seems to be necessary,
however, to evaluate it with more accurate functions
since the relativistic correction is much more sensitive to
the details of the wave function than the energy itself.
(2) The correct value for the mass polarization correc-
tion evaluated with the 6-parameter function of
Hylleraas is —4.95 cm '.' It is of course desirable to
evaluate this with more accurate wave functions. (3) It
has been pointed out by Wilets and Cherry that the
mathematical lower bound evaluated with the 18-
parameter function of Chandrasekhar and Herzberg is
about 400 cm ' lower than the upper bound determined

~ Those trial functions which can be written in the general form
(2.7) will be said to be of Hylleraas type.

'This value was quoted incorrectly as —5.2 cm ' by H. A.
Bethe, Iiandbuch der Physi k (Verlag Julius Springer, Berlin,
1933),second edition, Vol. 24, Part 1, p. 375. This discrepancy was
noted and corrected by A. R. Edmonds and L. Wilets (unpub-
lished) and by T. Kinoshita (unpublished). Chandrasekhar and
Herzberg (reference 4) have mistakenly quoted the value of
Edmonds and Wilets as —4.1 cm ~.

7 L. Wilets and I. J. Cherry, Phys. Rev. 103, 112 (1956).
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by the ordinary variation calculation. Though it is
likely that the ionization potential predicted by them by
an extrapolation method is very close to the actual
value, such a large limit of uncertainty is rather un-
comfortable. At least, this is an indication that their
trial function is not a very accurate approximation of
the actual eigenfunction.

These considerations indicate that it is necessary to
improve the nonrelativistic part of calculation, the wave
function in particular, to a considerable extent, in order
to determine the ionization potential of the He atom
with the desired accuracy. Before attempting such a
calculation, however, it might be useful to ask whether
it is reasonable to proceed by taking more and more
terms of the Hylleraas expansion, in view of the enor-
mous number of terms already involved in the calcula-
tion of Chandrasekhar and Herzberg.

At this point, it is interesting to remark that the
Hylleraas series cannot satisfy the Schrodinger equation
in a formal sense, however many terms one may take. '
It is found, as is discussed in Sec. 2 and the Appendix,
that this is simply because the Hylleraas series does not
contain sufhciently many terms. Fortunately, when one
adds to it certain terms containing negative powers of
some of the variables, the new series is shown to satisfy
the Schrodinger equation formally.

Of course, the absence of formal solution may not be a
serious defect of the Hylleraas series since it would be
sufIicient if one can approximate the actual solution
arbitrarily well taking more and more of its terms into
account. On the other hand, when we want to approxi-
mate it with a function of finite number of terms, it
would make a large difference whether our function
belongs to an expansion which satisfies the equation or
not. At least, the new expansion allows us more flexible
selection of terms than the Hylleraas series and thus
makes it easier to approximate the actual eigenfunction
even in the close neighborhood of singularities of the
potential where the Hylleraas functions behave very
poorly. We have therefore decided to choose the new
expansion as the basis of our variation calculation of the
He ground state.

Results of preliminary calculations, carried out em-

ploying few terms of negative powers, show that the
accuracy is considerably better than that of the
Hylleraas-type calculations involving the same number
of parameters. On the other hand, it did not improve the
accuracy of calculation to any large extent. We have
therefore considered that it is better to use trial func-
tions with as many terms as possible and minimize the
energy with the help of an electronic computer. In this
way, trial functions involving up to 39 parameters have
been used. The relativistic and mass polarization cor-
rections, as well as the mathematical lower bound for
the energy of the ground state, are also evaluated with
all of these trial functions.

~ Bartlett, Gibbons, and Dunn, Phys. Rev. 47, 679 (1935).

In Sec. 2 the eigenvalue problem of the nonrelativistic
Schrodinger equation for the He atom is described

briefly. The properties of the Hylleraas expansion of the
wave function are discussed and a new expansion is
introduced which is much more general than the
Hylleraas expansion and is designed to remove a difh-

culty of the latter. In Sec. 3, a number of terms of the
new expansion are used in the variation calculation for
the He ground state. The result is summarized in
Table I. The lower bound of the energy of the ground
state is discussed in Sec. 4. The estimated lower bounds
for various trial functions are given in Table II. In
Sec. 5 the actual position of the ground state eigenvalue
is inferred by an extrapolation from available data. The
accuracy of various approximate eigenfunctions is also
discussed. In Sec. 6 the relativistic and mass corrections
are evaluated with trial functions of various accuracy
and the convergence of these quantities is discussed. The
results of our investigation is summarized in Sec. 7. In
the Appendix, some aspects of the new expansion are
discussed from a more mathematical point of view. In
particular, the existence of formal solutions of the He
Schrodinger equation is demonstrated.

2 2 1
2 Qi+~~)+&+—+—

rl r2 r12-
(2.1)

when the motion of the nucleus is neglected. r~ and r2 are
the distances of the two electrons from the nucleus and
ri2 is the distance between the electrons. Choosing

s Pl+f2 u f12 t f1+12 (2.2)

as the three independent variables after separation of
the Euler angles, Eq. (2.1) can be reduced to

u(s' —P)(P +P „+P„)+2s(u' t')f „+2t(s'—u')P-
+4sug, +2 (s' —t')f —4utg,

+Ssug (s' —P)P—+Su(s' —P)P =Q, (2.3)

for the S state. Since r~, r2, and r» are sides of a triangle,
s, I, and f satisfies. the obvious relation

s~u~ ft(. (2.4)

The singular points of the potential of (2.3) form the
following three surfaces:

1=0, s= t, s= —t. (2.5)

Equations (2.1) and (2.3) by themselves are not
sufhcient to define the eigenvalue problem since they
must be supplemented by a suitable boundary condi-

2. GENERALIZATION OF THE HYLLERAAS
EXPANSION

We shall first describe the Hylleraas method briefly
and show how the new expansion is introduced.

The helium atom in the nonrelativistic limit is
described (in atomic units) by the following Schrodinger
equation
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tion. It has been proved by Kato' that, under the
boundary conditions which may be written as

sP2d'xgd'x2 (~
s

8 2

Jt ) d XydÃ2(~s
x'

(2.6)

P(s,u, t) = e s' P c'(.„,„s'u t".
Lm, n

(2.7)

where x, represents any one of x&, y&, s&, x2, y2, s2, the
Hamiltonian corresponding to Eq. (2.1) becomes self-
adjoint in a mathematically rigorous sense and thus it
has a spectrum of eigenvalues. In particular, the lowest-
lying levels are discrete. There is therefore no question
about the existence of solutions of our eigenvalue
problem itself.

On the other hand, the nonseparability of Eq. (2.3)
makes it dificult to study the properties of its solutions
in detail. We have not learned yet how to write down the
solutions of Eq. (2.1) explicitly. We do not even have
enough information about the analytical properties of
solutions in the neighborhood of the singularities of the
potential. Under such circumstances, the most powerful
method developed so far is the Ritz variation method,
first applied successfully to the He problem by
Hylleraas. ""On a basis of some qualitative arguments,
Hylleraas assumed that the eigenfunction of (2.3) can be
expanded into positive integral powers of s, u, and t in
the form

O, oo

Coolidge and James, "however, this does not necessarily
follow from the absence of formal solutions. Coolidge
and James tried further to prove that the actual solution
can be approximated arbitrarily well by a Hylleraas
series and the energy expectation value determined by
the variation method converges to the actual eigenvalue.
Their argument was not correct, however, because of an
improper treatment of a double series which appears in
their proof. " Thus, up to this moment the question
whether the Hylleraas series (2.7) is a reasonable ex-
pansion or not has remained unanswered.

Even if it turns out that the Hylleraas series can be
used to approximate the actual solutions as closely as
we like, the absence of formal solutions might well be
responsible for the slow convergence of the lower bound
estimation. It would therefore be desirable to have an
expansion which has no such difficulties. It must be
recalled here that the expansion of form (2.7) was
written down more or less arbitrarily. At first sight,
(2.7) seems to be the most general expansion which
remains finite everywhere, or, more precisely, satisfies
the condition (2.6). It turns out, however, that the
Hylleraas series is not the most general expansion
satisfying the boundary condition (2.6), even if we
restrict ourselves to power series expansions, because of
the peculiar situation that we are treating functions of
many variables whose domains are not independent of
each other, as is obvious from (2.4).

We shall show this by constructing directly an ex-
pansion which is more general than (2.7) but still
satisfies the same boundary conditions (2.6). For this
purpose, let us introduce the new set of variables

s, p=u/s, q=t/ , u (2.8)
The remarkable accuracy of the energy value obtained
making use of the first few terms of this expansion indi-
cates that this is in fact an appropriate expansion for our
problem. On the other hand, the rather poor values for
the lower bound' obtained with Hylleraas functions
gives rise to some doubts about its adequacy in ap-
proximating the eigenfunction itself. In this connection,
it was asked a long time ago by Bartlett, Gibbons, and
Dunn' whether expansions like (2.7) could be a reason-
able starting point for the mathematical investigation
of the Schrodinger equation. They found the curious
fact that any series of the form (2.7) cannot be a formal
solution of the Schrodinger equation since the corre-
sponding recurrence relation for the coefficients c'~,

has no solution other than the trivial one: c'~ „=0 (for
all t, ns, and u). From this, one might be inclined to con-
clude that the actual eigenfunction cannot be approxi-
mated by any Hylleraas series. As was pointed out by

~T. Kato, Trans. Am. Math. Soc. 70, 195, 212 (1951). The
boundary condition (2.6) is not mathematically rigorous. The
correct definition is given by Eq. (11) of Kato's first paper.I E. A. Hylleraas, Z. Physik 54, 347 (1929).

"Recently numerical methods of different kind have been de-
veloped by J. H. Bartlett LPhys. Rev. 98, 1067 (1955))and L. H.
Thomas (private communication).

instead of s, u, and t, and construct a series of the form

O, ao

8
—$s P C Slpmqn

l, m, n
(2.9)

in analogy with the Hylleraas series. Since the domains
of these variables are (0, ~), (0, 1), (—1, 1), respect-
ively, they are now independent of each other. Indi-
vidual terms of (2.9) are finite everywhere. Further-
more, it can be easily seen that each term is subject to
the boundary condition (2.6) only if the following
condition,

c~ 0 „=0 for v&0, (2.10)

is satisfied. If one goes back to the original variables s, u,
and t, (2.9) is equivalent to the expansion

0, oo

~
—-', s P ~ Sl mum ntn- —

l, m, n
(2.11)

Obviously the Hylleraas series is a subseries of (2.11)
characterized by l~ m~ e. Thus we have an expansion

'2 A. S. Coolidge and H. M. James, Phys. Rev. 51, 855 (1937).
"See footnote 21 of the second paper of reference 9.
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3. CALCULATION OF THE GROUND STATE
ENERGY OF He ATOM

According to Hylleraas, we shall replace Eq. (2.3) by
the following variation problem:

where
( L+M)/X = X =—minimum, (3.1)

M pS hl

I.= ~ ds dt's ~ dt(gse s'+t-")g'—
o ~o ~o

M = ds du df [u(s' f') (P.'+f '+P—~')
J„(3.2)

+2s(u' f')P,P„+2f(s' —u'g 'lt'gj—
~00 ~8 pV

dx i rf„ I rffsr, (xs f)P—
o aJ o o

To accelerate the convergence of calculation, it is

'4 In particular, it has been suggested by J. H. Bartlett LPhys.
Rev. 5], 661 (1937)g that formal solutions of the He Schrodinger
equation may be expanded in powers of logarithmic terms. Re-
cently V. A. Fock t Izvest. Akad. Nauk. S.S.S.R. Ser. Fiz. 18, 161
(1954)7 has also obtained formal solutions as an expansion in a
power series of logarithmic terms. It is to be noted that the
logarithmic terms are not necessarily required by the structure of
the Schrodinger equation itself. What is needed to construct a
formal solution is a sufficient number of free parameters to
manipulate, and the logarithmic expansion happens to fulfill this
requirement because it contains more terms than the expansion
without logarithmic terms. Whether the logarithmic terms are
important in the actual numerical computation or not is, of course,
a quite different matter. See the recent work of E.A. Hylleraas and
J. Midtdal (Phys. Rev. 103, 829 (1956)j in this connection.

which is much more general than the Hylleraas ex-
pansion and yet satisfies all requirements which the
latter is supposed to satisfy. We can of course construct
even more general expansions if we do not confine
ourselves to power series or do not attempt to approxi-
mate the solution by a single expansion in the entire
domain of variables. "

Though (2.11) is a rather simple generalization of the
Hylleraas series, it is found to be general enough to
contain (infinitely many) formal solutions of the Schro-
dinger equation (2.3) as is proved in the Appendix. Of
course, the existence of formal solutions by itself is not
very significant unless it can be shown that some of
them converge to the actual solutions. For the purpose
of numerical computation, however, the new expansion
seems to have an advantage over the ordinary Hylleraas
series since the former permits us much more flexible
selection of terms than the latter, especially of the
lowest order terms which are mainly responsible for the
behavior of the wave function in the neighborhood of
singularities of the potential energy. We therefore de-

cided to carry out the variation calculation of the
ground state energy of the He atom choosing trial
functions of the form (2.11) rather than the more
conventional form (2.7).

„(s,n, f) =e &' —P c, , „s'- u —"f".
t, m, n

n =even

(3.5)

Then the integrations in (3.2) can be carried out easily
and L, M, and 0' are expressed as bilinear forms of
c~ „.Assuming that only a finite number of terms of
(3.5) do not vanish, the variation problem (3.4) is
approximated by a finite algebraic problem. This prob-
lem may be treated in two diAerent ways. One is to
vary (3.4) with respect to the c& „'s keeping the re-
maining variable k unchanged and reduce it to a secular
equation. Then the secular equation may be solved by
any of the standard methods. The calculation may be
repeated several times for various values of k until the
best result is obtained. The other approach is to mini-
mize (3.4) with respect to k first and solve the resulting
problem:

—L'/(4Milr) =)I =minimum. (3.6)

The parameter k may be determined by the relation
k=L/2M after X is minimized. A variant of the relax-
ation method has been found useful to solve the non-
linear variation problem (3.6)."It has the advantage
that it permits us to maintain a very high accuracy
throughout the numerical work and moreover the pre-
cision is practically independent of the number of
parameters involved. On the other hand, the rate of
convergence of this method is extremely slow so that it
will be necessary to use a reasonably good starting
function selected by some other methods.

Making use of either or both of these two approaches, "
'~ We have tried to solve the variation problem (3.6) in the

following way: First take an arbitrary point x, where the
parameters c~ „under consideration are regarded as components
of a vector x;. Then one can easily compute X (x;"),the height of the
energy surface at x, and (DX/8x, )&; =&;o, the direction of its
steepest gradient. By a suitable choice of the constants a;, one can
then determine a next point x =x +a;(0X/Bx ) which gives a
lower energy value than x . This procedure can be repeated as
many times as one wants. The minimum of energy is attained
when 0X/Bx, =0. If we choose a; to be independent of i, we obtain
the so-called method of steepest descent. To accelerate the con-
vergence, we have found it better to use different a s for different
i' s. In the determination of our a s, the curvature of the energy
surface is taken into account.

"Preliminary computation with a 10-parameter function was
done by the first method by using an electronic computer at the
Princeton Institute for Advanced Study. Effectiveness of the
relaxation method in our problem was tested by a CPC-IBM
machine at Cornell. The major part of the computation was
carried out mainly by the second method using the AEC-UNIVAC
at New York University.

customary to introduce a parameter k and define a
function p by

P (s,u, t) =—p (ks, kl, kt) . (3.3)

Then the variation problem for q (s,g, t) is written as

(—kL+k'M)/X= X =minimum, (3.4)

where L, 3f, and T are now functionals of p instead of
lf. In accordance with the argument of the last section,
we shall assume that the function q (s,u, t) can be ex-
pressed as

0, oo
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TABLE p. The constants of various ground state wave functions of helium containing negative-power terms. The only exception is the
18-parameter case which is obtained from the function of Chandrasekhar and Herzberg by applying our relaxation method. Expansion
coefFicients listed are 10'c~, „and co, o o is normalized to i.

No. of
parameters 10 18 34 39

(100)
(110)
(120)

(112)
(122)

{200)
(210)
(220)
(230)
(240)

(212)
(222)
(232)
(242)

(300)
(310)
(320)
(330)
(340)

(322)
(332)
(342)

(400)
(410)
(420)
{430)
(440)
(450)

(422)
(442)
{AHA)

(540)
(550)
(560)

(522)
(552)

(662)
(660)

2.9036261
3.4591498

77.5338944
11.2070737
46.1838658

—0.520987
1.212836

—0.237663

0.057465
0.074288

0.227098
—0.314547

0.118920
0.548619

2.9037150
3.8892119

70.8204634
9.1047319

47.4281727

0.061877
1.066306

0.201815
0.586598—1.034044

1.418009

—0.042460

0.818139

0.531984—2.236430

0.026402

—0.445197

0.157459
1.991624

0.099651

—0.896542

0.159351

2.9037142
3.7078208

55.4500389
7.4774433

35.4027276

—0.221064
1.266177—0.201470

0.024224
0.117951

0.328272—0.222515—0.202738—0.078207
0.114848

0.090652
0.689095—0.146695—0.107252

—0.114389
0.237343

—0.005333

0.246469

0.007215—0.014174

0.077528

2.9037223
3.7133871

55.7506367
7.5067096

35.6479843

—0.242959
1.258703—0.133887

0.087396

0.415123
0.056239—1.173334
0.557818—0.092967

1.671338—1.146609
0.286687

—0.225558
0.047030
0.560729
0.282002—0.244042

—0.421915
0.085977
0.072563

0.053802
0.010048—0.133344

—0.425197
0.302063

0.309865
0.161768
0.028853

0.170186—0.134784

—0.034092—0.140588

0.037981

2.9037225
3.7204746

56.2837996
7.5640619

36.0575857

—0.234487
1.256856—0.132299

0.003643
0.081032

0.417629
0.057689—1.159792
0.553048—0.095915

0.014641
1.636562—1.121680
0.286673

—0.226038
0.041420
0.559791
0.282496—0.247148

—0.430056
0.101488
0.070063

0.053455
0.013036—0.121417—0.005797—0.417059
0.294998

0.305348
0.165892
0.029019

—0.019751
0.185206—0 132279

—0.028227—0.149057

0.039775

2.9037225
3.7211124

56.3337661
7.5694792

36.0957835

—0.233872
1.256979—0.132234

0.003471
0.080887

0.418083
0.058346—1 ' 159635
0.553037—0.096000

0.014958
1.636927—1.121438
0.286830

—0.226212
0.041297
0.559480
0.282068—0.247617

—0.429969
0.101338
0.069747

0.053479
0.013121—0.121398—0.005826—0.417101
0.294975

0.305219
0.165445
0.028951

—0.019203
0.185827—0.131580

—0.027977—0.148548

0.039703—0.000861

the energy of the He atom in the ground state has been
evaluated with various trial functions. In Table I the
parameters c&, k, the energy expectation value X,
etc. , obtained in this way are given for 10-, 22-, 34-, 38-,
and 39-parameter trial functions of the form (3.5). Our
relaxation method is also applied to the 18-parameter
function of Chandrasekhar and Herzberg. The improved
result is included in column 3 of Table I. The 10- and
22-parameter calculations are carried out to estimate
the eGect of inclusion of negative power terms. They

may be roughly compared with calculations with 10 and
18 parameters of positive powers only. Our 38-parameter
function is chosen in such a way that all terms of the
22-parameter function as well as all 18 terms of
Chandrasekhar and Herzberg are included. The 34-
parameter function is obtained from the 38-parameter
one by dropping the four least important terms. The
34-, 38-, and 39-term functions of Table I look similar to
each other. This should not be regarded however as an
indication that our calculation is converging. Rather
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X= —2.9037225 atomic units, (3 7)

this is simply because all these functions are derived
from the same starting function and we have not
iterated our relaxation procedure sufficiently many
times to make them look diferent. "We should there-
fore consider that these three cases represent more or
less identical physical situation.

The best energy value obtained so far is

eigenvalues and eigenvectors are E; and P;, respectively.
Then the following inequality,

((H Es)P (H Et)l—g))0 (4.1)

holds for any normalized function P that can be ex-
panded as

(4.2)

Rewriting (4.1), one easily finds an inequality
which is better than the corresponding quantities in
Table III and Eq. (17) oi Chandrasekhar and Herzberg
(4)by3. 55cm 'and1. 42cm ', respectively. *Thoughthis
is a considerable improvement over previous results, the
variation method itself cannot determine how close our
value (3.7) is to the actual energy. In the following
section, we shall therefore estimate the mathematical
lower bound for the ground state energy, making use of
trial functions given in Table I.

if E~—X)0, where

and

Ep) A—

X= (P,Hit),

a= (Hf, Hf)

(4.3)

(4.4)

(4.5)

4. LOWER BOUND FOR THE GROUND
STATE ENERGY

The ordinary variation method gives only an upper
bound of the energy level considered. To estimate the
accuracy of such a calculation, it is necessary to know
some other quantities like the lower bound. For this

purpose we shall use a lower bound formula first given

by Temple. "Though this is the best formula we know

of, the distance between the upper and lower bounds

estimated by this formula turns out to be unrealistically

large when applied to the He ground state. One might

therefore say that Temple's formula is not suitable for
our purpose. It seems, however, that this is a fault of our

trial functions rather than that of the formula itself. In
any case the lower bound estimation would be useful for

the comparison of relative accuracy of various trial

functions.
First we shall give a simple derivation of Temple's

formula. Let II be any self-adjoint Hamiltonian whose

'7 In particular, the 39-parameter function is included in
Table I (and also in Tables II and III) to show the effect of an
additional term u' on the 38-parameter function after a relatively
few number of iterations. It is expected that the last parameter
c6, 6, p becomes much larger in magnitude after a su%cient number
of iterations and the energy value will be improved somewhat
accordingly.

*Note added in proof.—The value of 3.55 cm ' quoted above
refers to the energy eigenvalue obtained by S. Chandrasekhar
and G. Herzberg directly from the best of the trial wave functions
which they had computed. The better value of 1.42 cm ' refers
to their best energy value [Fq. (17l of reference 4j derived by an
interpolation method. Unfortunately, they did not obtain a wave
function corresponding to this energy since the interpolation was
done with the energy value only and not with the wave function.
J. F. Hart and G. Herzberg (to be published) have recently
extended the calculation to a trial function of 20 parameters and
obtained a wave function together with a minimized energy value

(—2.9037179 atomic units) which is about 1 cm apart from our
value (3.7). We would like to thank Professor Herzberg for his

clarifying communications and sending us their manuscript before
publication.

' G. Temple, Proc. Roy. Soc. (London) A119, 276 (1928). See
also reference 20.

Namely, the actual energy Ep cannot be smaller than
the right-hand side of (4.3). Equation (4.3) is Temple's
formula for the lower bound. It is to be noticed that it
may not be useful when the level spacing E&—Ep is too
narrow.

To evaluate the lower bound by the formula (4.3), it
is necessary to know the energy E& of the first excited
state (having the same symmetry property as the
ground state). Since Ei Xwill be muc—h larger than o

here, a rough approximation for E~ will be sufhcient. We
shall therefore use an experimental value E~=2.146
atomic units.

The quantity 0. has been evaluated by an electronic
computer. In Table II are given the values of lower
bounds for various trial functions. Some of the results
obtained by Wilets and Cherry are also included for
the convenience of comparison. As is seen immediately,
the lower bounds obtained with trial functions con-
taining negative powers (10- and 22-parameter func-
tions of Table I) are much better than those without
negative powers (10- and 18-parameter functions of
Chandrasekhar and others) though their upper bounds
are not much diGerent. The distances between the upper
and lower bounds, called 6'A, for our 34-, 38-, and 39-
parameter functions are about ten times smaller than
that of the 18-parameter function of Chandrasekhar and
Herzberg. The best estimation of hA. is about 33 cm '
which is still very large compared with the accuracy of
experiment.

As was shown by Stevenson and Crawford, " it is
possible to formulate a variation problem for o. or some
similar quantity independent of the ordinary one. By
this method one will be able to reduce 0- considerably.
Of course the accuracy of the corresponding upper
bound will be somewhat sacrificed. If one uses the two
variation methods alternatively, however, it would not
be difficult to achieve a higher accuracy than the

' A. F. Stevenson and M. F. Crawford, Phys. Rev. 54, 375
l1938l.
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TAsr E II. The upper and lower bounds for the ground state energy of helium (in atomic units) and the accuracy of various trial func-
tions. The reference numbers refer to footnotes in the text. Data without references were obtained by using functions of Table I. g1 and
q2 were obtained by using formulas (5.11) and (5.10), respectively.

Refer-
ence

a, b
c, b

d, b
d, b

No. of
parameters

6
10
10
14
18
18
22
34
38
39

2.90324
2.903603
2.903626
2.9037009
2.9037063
2.9037150
2.9037142
2.9037223
2.9037225
2.9037225

0 = (Hp, Hp) —X2

0.01690
0.007580
0.004005
0.0020500
0.0013572
0.0009222
0.0007225
0.0001223
0.0001152
0.0001146

2.92556
2.913608
2.908913
2.9064064
2.9054974
2.9049321
2.9046678
2.9038837
2.9038745
2.9038737

0.02232
0.010005
0.005287
0.0027055
0.0017912
0.0012171
0.0009536
0.0001614
0.0001521
0.0001512

hP (in cm I)

4900
2200
1160
594
393
267
209
35.4
33.4
33.2

0.169
0.114
0.083
0.060
0.049
0.040
0.035
0.015
0.014
0.014

0.022
0.011
0.010
0.0055
0.0042
0.0030
0.0031
0.0012
0.0011
0.0011

a See reference 10,
b See reference 7.
e See reference 2.
d See reference 4.

present one in the estimation of both upper and lower
bounds.

where

lt'= (1 rt') *Ps+rtP—',

9',its) =o,
(4',4') =1.

(5.1)

(5.2)

rt is a parameter to measure the deviation of lt from fo If.
one computes an expectation value of H with such a f,
one obtains

h = (P,HP) = Eo+art',

a= (P',HQ') Es—
In the same way, one finds

o = (a'+b)rt' —a'ri',

b = (W'', Hit') —(4',Hlb')'

(5 3)

(5.4)

From (5.3) and (5.4), the following relation is obtained:

'A —Es——oa(a'+b) ', (5.5)

when the rt' term of (5.4) is negligibly small compared
with the rts term. Since the coefficient of o. in (5.5) is a
functional of a quite arbitrary function P', 'A can in

general assume infinitely many values for fixed values of
0- and vice versa.

Since lt
' is orthogonal to the ground state, the quan-

tity a satisfies the inequality

a ~ Er —Es (=0.758), (5.6)

where the equality holds when and only when P'=f&.
The quantity b is always non-negative and it vanishes
only if p' is one of the eigenstates lt; of H. Thus, one
obtains

0&a(a'+b) '~a '~ (Er—Es) '=1.320. (5.7)

S. ESTIMATION OF THE GROUND-STATE
ENERGY BY EXTRAPOLATION

Let us assume that there is a function P which ap-
proximates the normalized ground-state eigenfunction
lt s. One may then write as follows:

) *=—2.9037237 atomic units. (5.8)

This is 0.0000012 atomic unit or 0.26 cm ' lower than
the value (3.7) for our 39-parameter function. If our

Actually trial functions of Hylleraas type seem to give smaller
gradients than those of the form (2.11).Thus, to be more precise,
we may have to draw at least two lines with slightly different
slopes in Fig. 2. But the essential feature of the following argument
may not be changed.

This means that the point (o,h) corresponding to any f
is confined to the shaded region of Fig. 1 when q'((1. If
a(a'+b) ' is close to the upper limit of (5.7), one may
say that lt' is a linear combination of several lowest
states. On the other hand, if a(a'+b) '«1 or a+ ba '&)1,
either or both of the relations a))1, b))1 must hold
because of (5.6). When a»1, P' must have contributions
from highly excited states in the positive energy
continuum. When b)&1, P' would be a mixture of large
number of states which must contain states of large
positive energy, too.

In Fig. 1 the points (o,h) are plotted for several trial
functions listed in Table II. At each of these points, one
may draw a straight line with a slope (Et—Es) '
=(Er—h) '. The intersections of these straight lines
with the A,-axis are the corresponding lower bounds Xl. to
Eo. Thus the lower bound obtained in the last section
corresponds to the extreme case lb'=ltr. The rapid
improvement of the lower bounds with the increased
accuracy of our trial functions indicate that our lt' is
actually a mixture of many highly excited states rather
than a linear combination of the few lowest states.

It is interesting to observe that all points (o.,h)
plotted in Fig. 2 lie in the neighborhood of a dashed
straight line though these points could be scattered in a
much wider region as is suggested by Fig. 1."This leads
us to a speculation that the f"s corresponding to our
plots (o.,X) are more or less similar to each other having
similar slopes a(a'+b) ' at each point. If this is the case,
different points (o., 'A) are distinguished by different
values of p only. The dashed line intersects with the A-

axis at the point (O,h*), where



GROUND STATE OF THE HELIUM ATOM

X=(f,HQ)

-29035

-2.9036

-2.9037

Tangent of
this tine is

(E
~

—Ep)

-290370

X.(f,Hg)

-2.9037I-

rp
p

pr~

-2.9038

-2,9039 I

0.00 I 0.002 0.003 0.004
cr=(HQ, HQ) (Q,-HQ)a

-2.90372—

I i 1 1 1 I

O.OOI 0802
o =(Hf, Hf) (Q,-Hf)

FIG. 1. The expectation value of energy X= (P,HP) eersns
a = (HP, HP) —)2. For any P, the corresponding point (0.,X) will be
confined to the shaded region. The boundary of this region consists
of two straight lines, with gradients 0 and (E1—Ep) ', respectively.
Both lines must go through the point (O,E0). Note that these lines
are drawn only for the sake of illustration. They are not known
exactly because of uncertainty in the value of F0. The small circles
indicate the location of (0.,)) corresponding to some of the trial
functions listed in Table II. At one of these points, a dashed-
dotted line is drawn with a slope (E1—E0) '. The intersection of
this line with the X axis gives the lower bound, ) g, of E0.

As is easily seen, this formula can be rewritten as

n'( (~—Eo)/(Ei —Eo). (5.10)

If Eo and E~ are known, this formula can be used to
evaluate the accuracy g of P. When Eo is not known very
accurately, (5.10) can be replaced by the weaker
formula

~' T. Kato J.Phys. Soc. Japan 4, 334 (1949);Phys. Rev. 77, 413
119501.

considerations are on a right track, the value (5.8)
would be a very good approximation to the actual
energy Eo.

It is likely, however, that the above argument is a
little oversimplified. In fact, if one studies all the
available data more carefully, one finds a trend indi-
cating that the dashed line should probably be replaced
by a curve which is slightly convex downward. Thus the
linearly extrapolated value (5.8) might be too low
compared with the actual energy Eo. At this moment,
however, we have not enough material to make a better
estimation of Eo. Therefore we shall simply express our
belief that the actual position of the energy Eo will be
very close to and perhaps slightly higher than the
value (5.8).

It would also be interesting to estimate the accuracy
of our trial functions directly. "For this purpose, let us
first notice the obvious inequality:

(4, (&—E )4)+(E —Eo) (1—~')

= P (E,—Eg)a,2)0. (5.9)
i&2

FIG. 2. A portion of Fig. 1 is magnified by a large factor (espe-
cially in the vertical direction) in order to show the details clearly.
Two more points corresponding to the 18- and 22-parameter
functions obtained in the intermediate stage of our iteration
procedure are added. The calculated points are scattered in the
neighborhood of the dashed line. The intersection of this line with
the X axis may be used to obtain an approximate value of the
actual energy E0.

6. RELATIVISTIC AND MASS POLARIZATION
CORRECTIONS

According to Sucher and Foley, ' the expectation value
of the relativistic correction in the ground state is given,
correct to the order o.', by

E ~
= (E&'+E&"+E&"'+Ea'+E3")a' ry, (6.1)

where
k4

L(~~~,~~~)+(~2v, ~2~)j,
4E

E If
2xk'

L(~,~(ri) ~)+(~,~(r2) v )j,g
2mk'

(v,~(rn) v ),
Ã (6.2)

k'p 1
E3'=—

I ~, -L&1~2+('~~1)(u~&)jP

E3"= —2Eg"',
8 pQE= (y, p) = i ds du dtu(s' —1') y',

(5.11)
(E,—X)2+a

which follows from (5.10) and Temple's formula (4.3).
In columns 8 and 9 of Table II are given the quantity q,
evaluated by making use of the formula (5.11) and
(5.10), respectively. In the latter case it is assumed that
Eo is given exactly by our extrapolated value (5.8).
This will be a quite reasonable assumption for the
relatively simple trial functions. Even for our best trial
functions, it is likely that (5.10) gives a closer estimation
than (5.11) of the accuracy of wave functions.
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TABLE III. Relativistic and mass polarization corrections evaluated with various trial functions. The reference numbers refer to
footnotes in the text. Data without references were obtained by using trial functions of Table I. E;, (= —4.000'' ry) is the relativistic
correction for the ground state energy of He'+. Figures are given in the units o. ry except for the last two columns.

Refer-
ence

No. of
parameters

1
3
6

10
10
18
18
22
34
38
39

—20.30—26.71—27.25—27.209—26.978—27.0218—27.0367—27.0226—27.0507—27.0461—27.0459

19.20
22.60
22.83
22.74
22.727
22.7408
22.7486
22.7424
22.7545
22.7523
22.7521

I'l l +E
1.20
0.73
0.70
0.69
0.683
0.6735
0.6732
0.6725
0.6693
0.6694
0.6693

Es'

0—0.30—0.29—0.283—0.281—0.2790—0.2788—0.2788—0.2784—0.2783—0.2783

Ere l Eio n

4.10
0.32—0.01—0.062
0.151
0.1139
0.1068
0.1139
0.0951
0.0977
0.0976

Ere l Eion
(in cm ~)

24.0
1.87—0.06—0.362
0.882
0.666
0.624
0.666
0.556
0.571
0.570

(in cm ')

0
5.34
4.95
4.799
4.591
4.789
4.788
4.790
4.786
4.786
4.786

& See reference 3.
b See reference 10.
0 See reference 2.
4 See reference 4.

and y is given by (3.5). Sucher and Foley evaluated
these corrections with the Hylleraas 3-parameter func-
tion, leading to

(6.3)Ere] Eion: 0.32cl ry

ns —(p, ~,V', p) (atomic units),
MH, S

(6.4)

and the results are also included in the last column of
Table III.

It will be seen that the expectation values Quctuate
considerably for the trial functions of up to 10 parame-

where E;,„=—4.000n' ry is the relativistic correction for
the ground state of ionized helium.

At first sight, one might think that the relativistic
correction can be evaluated with enough accuracy using
a relatively simple trial function since it is small
numerically. It is to be noticed, however, that E,.~

itself is about 13.5 times larger than the difference
(6.3). Moreover, the relativistic correction will be much
more sensitive to the details of the wave function than
the energy itself since the former contains higher
derivatives of the wave function than the latter. Since
the accuracy of expectation values of quantities like
(6.2) will be proportional to the accuracy of the wave
function itself, not to its square, it is necessary to
evaluate them with a function which is accurate to the
desired degree.

We have also to notice that it is not known whether
the relativistic correction can be bounded from above
and below. This makes it hard to find how close the
computed value is to the actual value. For these reasons,
we have decided to compute it with various trial
functions and see whether its value will converge to a
certain limit when the accuracy of the trial function is
improved. In Table III are given the values of the
relativistic correction evaluated with various functions
up to 39 parameters. Similar calculations are carried out
for the mass polarization correction

and
Hei —& 0~=0.57p&0.05 cm ', (6.5)

E2= 4.&86&0.01 cm—', (6.6)

respectively. The accuracy is derived from p2 listed in
Table II. If one uses qi instead of q2, one obtains of
course much broader limits. As was mentioned above,
however, the limits of errors of (6.5) and (6.6) are given
in a more or less arbitrary manner and therefore they by
no means have an absolute significance. Nevertheless it
is plausible that these limits of errors are of the correct
order of magnitude.

/. DISCUSSION

When one includes the mass polarization and rela-
tivistic corrections (6.5) and (6.6), the nonrelativistic
energy (3.7) obtained with our 39-parameter function
leads to the ionization potential

198311.61 cm ' (7.i)
for the ground state of He atom. This value does not
include the Lamb shift and other smaller corrections. If
one adds to this the best estimation of the Lamb shift,—1.23&0.3 cm ', evaluated with the 6-parameter
Hylleraas function, " the final theoretical prediction for

'P. K. Kabir and E. E. Salpeter, Bull. Am. Phys. Soc. Ser. II,
1, 46 (1956).The quoted error of ~0.3 cm ' comes largely from an
estimate of the order of magnitude of some quantum electro-
dynamical correction terms, which have not yet been calculated.

ters. For the functions with more than 18 terms, how-
ever, the Quctuation is pretty small and indicates that
the expectation values are really settling down to
limiting values. The accuracy of E„& and E2 may be
estimated in terms of the accuracy of approximate
eigenfunctions used to evaluate them. Obviously the
accuracy of correction terms is proportional to p. It
must be noticed, however, that nothing is known about
the actual magnitude of the proportionality constant so
that an absolute estimation of accuracy is impossible.
From these arguments, we may conclude that the
relativistic and mass polarization corrections are
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the ionization potential (I.P.) becomes

I.P.theory
= 198310.38 cm (7.2)

which agrees remarkably well with the present experi-
mental value'

I.P., ~=198310.5&1 cm '. (7 3)

~ H. M. Schwartz, Phys. Rev. 103, 110 (1956).

As was shown before, the mathematical limit of errors
of the nonrelativistic energy is still very large. Thus the
value (7.1) could be as large as 198345 cm '. But it is
plausible from the argument of Sec. 5 that our value
(7.1) is smaller than the correct value by only 0.3 cm '

or less. If one accepts that argument, our final results
(7.1) and (7.2) will have to be increased by this amount.
It is therefore likely that the correct ionization potential
is very close to 198310.64 cm '. Its uncertainty will be at
most of the order of &0.5 cm '.

The accuracy of our calculation will therefore be
better than that of the present experiment. It will not be
su%cient, however, for the purpose of serious compari-
son of theory and experiment in the near future. It is
therefore highly desirable to improve the accuracy of
theoretical calculation still further. Though it will be
possible to improve the energy value by varying our 39-
parameter trial function further, since it has not
minimized the energy yet, it might be necessary to add
many more terms to our trial function before we can
achieve a substantial improvement. At this stage, it
might be more eKcient to use a variation method for
(HP, HP) (f,HP)' rather t—han the ordinary variation
method, as was mentioned in Sec. 4. More accurate
evaluation of the Lamb-shift correction and higher
order radiative corrections will also be required.

In this paper, we have deviated from the customary
approach by introducing negative-power terms as a
possible form of trial functions. Advantages of such
functions have been emphasized in Sec. 2 and also in the
Appendix. The real criterion for the usefulness of
negative-power terms can be obtained, however, only by
evaluating their eGectiveness in the actual numerical
calculation of energy and wave function. The result of
our calculation with 10- and 22-parameter functions
may be regarded as an indication that the negative
terms are in fact useful for our purpose (see Table II).
On the other hand, the remarkable improvement of
accuracy in the cases of 34 or more terms might have
been obtained simply by the large flexibility of trial
functions resulting from the tremendous number of
terms involved. It would be interesting to notice,
however, that some of the formal requirements on
ct, ~„, such as (A.15) and (A.16), are satisfied to a
better extent by trial functions containing negative-
power terms than by those with positive powers only.

Finally we shall refer to other recent approaches
to the eigenvalue problem of the He ground state.
Schwartz" has used trial functions involving fractional

powers of the variables and obtained a remarkably good
energy value with a variation method using a 13-
parameter function. Unfortunately, however, it is diK-
cult to see whether it is physically significant or not,
since the expectation value (HP, HP) diverges loga-
rithmically for his trial function at z&=0. For the same
reason the relativistic correction term E~' becomes
divergent. "Hylleraas and 3Iidtdal-" have carried out a
variation calculation using a trial function with 24
terms out of which three are negative power terms and
one is a logarithmic term. The energy value obtained
seems to be about 1.3 cm ' better than our best result
(3.7). If this were true, it would upset our argument
about the linear extrapolation and make our value (5.8)
unreliable. On the other hand, the result of Hylleraas
and Midtdal will lead to a theoretical ionization po-
tential which is more than 1 cm ' too large compared
with the present experiment. In any case, it would be
very profitable to investigate further trial functions of
the type used by Hylleraas and Midtdal.
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APPENDIX. FORMAL SOLUTION OF THE He
SCHRODINGER EQUATION

A. Existence of Formal Solutions

First, we shall show that we can construct infinitely
many formal solutions of the He Schrodinger equation

24 Closely related to these troubles is the fact that Schwartz's
trial functions do not satisfy Kato's boundary conditions (2.6).
Nevertheless, we have been able to convince ourselves that his
energy expectation value will not become lower than the actual
energy. This is quite interesting since it suggests that the expecta-
tion value of the Hamiltonian might converge to the correct limit
under less stringent boundary conditions than (2.6).

ss E. A. Hylleraas and J. Midtdal, Phys. Rev. 103, 829 (19S6).
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Altogether there are ~' equations to determine ~'
quantities c&.

Let us call the set of indices (l,m, zz) larger than the
other set (l',m', zz') when

OI

or

nz) m',

m=m', e)e'.
(A.2)

Equation (A.1) has such a structure that the first term

c~ „can be determined for e /0 when the c~, , „'s are
known for some of the smaller indices. Therefore, if the
coefficients c~, are determined successively, starting
from those of smaller indices, no inconsistency occurs in

general among the equations of (A.1). For 24=0, one
obtains

Oc), , p
——0, (A.3)

so that c&, , p can be chosen arbitrarily for all values of )
and m. Furthermore it is not dificult to show that all

quantities ci, , (zz~2) can be expressed uniquely as
linear combinations of parameters c~, , p. We have thus
seen that Eq. (2.3) has formal solutions of the type
(2.11) with n02 arbitrary parameters.

It is to be noticed that the existence proof of formal
solutions given here depends on the procedure of con-

struction of c&, , „starting from quantities of smaller

indices. It will, of course, be possible to construct formal
solutions in different ways. However, if some of the
quantities having larger indices are determined before-

hand, one usually encounters some inconsistency and
the whole process of construction of c~, „breaks down.
In particular, it is because the restriction,

(2.3) if we assume that P can be expanded in the gener-
alized form (2.11).To prove this, let us introduce the ex-
pansion (2.11) into the left-hand side of (2.3) and
rearrange the resulting expression into the power series
of s, u, and t. Requiring that all coe%cients of this series
vanish, one obtains the following recurrence formula
for ci, m, ~'.

2z(zz 1—)cl, , „+(m —zz+2) (m+zz —1)cl

+ (l m ——zz+4) (7+m zz—+3)c 1

—(m —zz+2)(2t —m —zz+7)cl, 2, „4
—(l—m+4) (7 m+—3)~lm —4,, n—4 cl 1, m—1, n 2— —
—(l—2Z

—5)C1 1, —v, —2+(m 22+—2)Cl im —2, n —4, —

+~l—1, rn—2, n—4+ (1 m+3)~l 1, —4, n——4

+(E+-'4)(~l—2, m—2, n—2 Cl—2, m—4, n—4) 0 (A1)

theorems. "Kato has recently given rigorous proofs for
the following two theorems about the properties of
solutions of the Schrodinger equation for atomic sys-
tems. They have been assumed as obvious in many
applications but have not been justified before.

1. Kigenfunctions of a Schrodinger equation are con-
tinuous everywhere (even at the signularities of the
potential energy) if the potential has no stronger
singularities than the Coulomb potential.

2. First derivatives of the eigenfunctions at the
singularities of the potential satisfy the following
relations

and

(~& l = —2&(s=zz=t=r2),
~ 821~ rv =0 Av

s,0,0,
(47$)

(QZZJ n 0 Av

(A.5)

(A.6)

where the left-hand side of these relations are averages
of first derivatives over spheres of small radii whose
centers are r&=0 and N=O, respectively.

When the first theorem is applied to our expansion
(2.11), one finds the following results:

ci, p, &=0 foI e/0,
c0, , „——0 for (m, zz) N (0,0).

(A.7)

(A.8)

and

P (l m zz)c—l—„=0 f, or all l,
0

P(I+1) 'C , , 110n5C O1, O1. —

(A.9)

(A.10)

It is interesting to notice here that, for m=1, the
recurrence relation (A.1) is simplified to

This is because terms corresponding to these coe%cients
have finite discontinuities at I=0 and s =0, respectively,
and therefore must be removed from the expansion
(2.11). Equation (A.7) coincides with (2.10) which

follows from the boundary conditions (2.6). This is also
obtained by solving the recurrence formula (A.1) for the
case m=0. It seems, however, that the relation (A.8)
does not follow from any requirement other than
continuity. "

Applying the second theorem to our expansion (2.11),
we are led to the following relations between the
coe%cients:

c~, , „=0 unless l~ m&e, (A.4)
zz(zz 1)ct, i, n zz(zz 3)cl, i, n 2

—cl 10 2=0. (A.11)
is imposed on the coeKcients that the Hylleraas ex-
pansion cannot lead to any formal solution of Eq. (2.3).

B. Kato's Theorems

Before discussing some properties of formal solutions
of Eq. (2.3), it will be useful to mention briefly Kato's

2' T. Kato, New York University, Research Report No. CX-25,
1956 (unpublished).

"As is easily seen, a discontinuity of the wave function P at
n=0 is ruled out by the boundary condition (2.6). On the other
hand, at s=0, a discontinuity (or even a logarithmic singularity)
does not contradict (2.6). This is because the integration domain in
the immediate neighborhood of s =0 is 6-dimensional while that at
m=0 is only 3-dimensional.
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Solving this set of equations, one finds

cl, i, 2 cl, i, 0+0 5cl 1, 0—0) (A.12)

0 5cl, 1, 2+ cl, l, 0 0 5c l—1, 0, 0. (A.14)

Obviously this is consistent with (A.12) only when the
following relations hold:

Cl, 1, 0 0 SCL—1, 0, p

c~, ~ „——0 for n~2.
(A.15)

(A.16)

(A.15) and (A.16) are valid for arbitrary values of /. In
the numerical computation, where only a finite number
of parameters are used and therefore the recurrence
relation (A.1) cannot be satisfied exactly, the relations
(A.9)—(A.16) may not have to hold strictly. We have
therefore preferred to keep in our trial functions a few
terms which are supposed to vanish according to (A.16)
and watch their behavior when they are allowed to vary
freely in the variation calculation. The result of our
calculation seems to confirm the relation (A.16) since
the parameters c~, ~, 2 and c2, I, ~ of our 38- and 39-term
functions are among the smallest terms.

C. Some Properties of Formal Solutions

Since Eq. (A. 1) is very complicated, it is not easy to
investigate the properties of its solutions in detail. As is
seen from (A.11), however, some of the lowest order
recurrence relations contain only a few nonvanishing
terms and thus we can learn a little about the behavior
of the solutions. In the following we shall outline some

aspects of formal solutions.
(i) /=0. Because of the continuity condition (A.S),

the only nonvanishing Parameter is cp p p.

(ii) /= 1. The case m= 1 is already included in (A.15)
and (A.16). For nz=3, one finds

3 (++2)
Ci, 3, ~= C1, 3, 0.

2(e—1)(u —3)
Therefore the sum

(A. 17)

Ci, 3, ~
n=p

diverges logarithmically. Similarly the sum P ci,
diverges for any fixed odd m. Since a sum like (A.18)
may be regarded as the limit of a certain partial sum of
our expansion (2.11), it leads to the divergence of
(2.11), at the regular points of the potential u= &t. If
we wish, we may avoid such trouble by assuming

«, , 0=0 for all odd m (~3).
For even m (and e), we obtain the following result:

c~, &, „=(e—1) 'ci, i, 2 for v~2. (A.13)

If one substitutes (A.13) into (A.10), the following
relation is obtained:

Thus there are at most (m+2)/2 nonvanishing terms
for each even m. It is not known whether the series

—p ci, , „converges (conditionally perhaps) or
not when summed over all even ns."If it diverges, it
would lead to a singularity of the expansion (2.11) at
the singular points s= n of the potential energy.

(iii) In the general cases, one will have to treat
various kinds of divergent partial sums. Divergences of
some types may be removed consistently in the same
manner as in the case of (A.18).If we try to eliminate all
the divergences by removing them from our expansion,
however, we might get into trouble of the same kind as
that of the Hylleraas expansion. On the other hand, it is
rather questionable whether one may remove tee-
chmical/y all divergent partial sums of c&, since our
expansion (2.11) may be a conditionally convergent
series, if it converges at all.

Thus it seems to be very hard to construct an actual
solution starting from formal solutions. Meanwhile it
would be equally useful if one could show that the actual
eigenfunction can be approximated arbitrarily well when
more and more terms of (2.11) are added to our trial
function. To answer such a question, however, it is
necessary to carry out a complicated mathematical
analysis and it is not known yet whether the Hylleraas
expansion (2.7) or our expansion (2.11) can lead to such
a result or not. ' For the moment, we therefore cannot
tell which of the following alternatives will turn out
valid: (a) Both (2.7) and (2.11) can approximate the
actual eigenfunction arbitrarily closely. (b) Only (2.11)
gives arbitrarily accurate approximations. (c) None of
them work. In the last case, we may have to look for a
totally diferent approach. On the basis of numerical
computations, however, we are inclined to believe that
the case (a) is valid. If this is true, we may have to
determine why it is advantageous to introduce an ex-
pansion (2.11) when the simpler expansion (2.7) is
sufhcient.

D. Relation between the Hylleraas Expansion and
Our Expansion

It is known" that the Hylleraas expansion (2.7)
forms a complete set of functions in the domain of
integration 0~

~

t
~

~u~ s( ~ with the weight function
u(s' —t'). Since our expansion (2.11) contains the
Hylleraas expansion as one of its parts, it is obvious
that (2.11) is also complete in the same sense. One
might naturally ask whether (2.11) contains more
terms than necessary.

In order to understand the situation, let us first
consider a set

(A.20)

defined on an interval (0,1). As is well known, (A.20)
forms a complete set of functions in this interval. Now,
if one removes the first few terms from (A.20) and

ci, ~„=0 if u~tn+2 (A.19)
"However, it is easily seen that a partial sum like Z c1,

diverges for even m,
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considers a new set

x ' rt=np rtp+1 rtp+2 ' ' (A 21)

it can be shown easily that this is also complete. "We
have therefore two complete sets where one is a subset
of the other. Such a situation may occur because the
x"'s of (A.20) are not orthogonal to ea, ch other and thus
the removal of some x"'s does not necessarily diminish
the dimensions of the Hilbert space constructed on the
set (A.20).

~ The completeness of the set fx"; n=0, 1, 2, . - } may be ex-
pressed as follows: ff 1&'P f(x)x"dx=0 for n 0, =1, 2, , f(x) must
be identically zero. Therefore, to prove the completeness of
(A.21), we have only to show that f(x) =0 derives from the rela-
tion J~' f(x)x"dx=O for n=n0, n0+1, nf)+2, - .. Now, since this
relation can be rewritten as jp f(x)x"0x"dx=0 for n=0, 1, 2,
we obtain f(x)x"0=0.Thus f(x) =0 for x/0. We may not have to
worry about the value of f(x) at x=O since it does not contribute
to the integral.

The orthonormal complete sets constructed from
(A.20) and (A.21) may, however, look quite different.
Thus a function f(oc) may be expanded in different ways
in the different sets. Which set is more convenient will
depend on the function we want to expand. It will be
obvious however that the set (A.20) is more convenient
than (A.21) when we expand a function which may be
approximated easily by a linear combination of x" with
n~ np.

As is seen immediately, the relation of the Hylleraas
expansion to our expansion is quite similar to tha, t of
(A.21) to (A.20). Thus the above argument suggests
strongly that the actual eigenfunction of He atom will

be approximated more easily and quickly by the
generalized expansion (2.11)than the ordinary Hylleraas
expansion (2.7), if it is possible at all.
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An improved microv ave spectrograph has been developed which permits measurements of electric field
intensity to one part in ten thousand. The instrument is employed to make precise Stark effect measure-
ments. A method is also given for measuring the polarizability of polar molecules in a given rotational state.
The transition J= 1+2, b,M=0 for the ground vibrational state of carbonyl sulfide (OCS) was studied and
the electric dipole moment was determined to be (0.7124&0.0002) Debye units. In addition the polariza-
bility anisotropy (n„—a, ) was measured and found to be (2.4+3.0)X10 "cm'.

Effects caused by the fourth-order term in the perturbation expansion for the Stark Effect v ere observed
and found to be in good agreement with theoretical predictions.

I. INTRODUCTION

'HIS work was motivated by the need for improve-
ment of the precision of Stark efI'ect measure-

ments in microwave molecular spectra in order to study
higher order eGects. The splitting of degenerate rota-
tional energy levels through the Stark 6eld interaction
with nonvanishing electric dipole moments is in general
many times greater than that caused by other Stark
held interactions. Consequently, Stark displacements of
rotational spectral lines are taken to be the result of
dipole interactions even though other interactions are
recognized and known to be present. For the most

* Part of a dissertation submitted by S. A. Marshall in partial
fulfillment of the requirements for a Ph. D. at the Catholic Uni-
versity of America.

t Present address: Armour Research Foundation, Chicago,
Illinois.

part, these weak interactions present no serious prob-
lems to the determination of electric dipole moments
because of their very small eGects; in addition the
determination of field strengths in most microwave
Stark cells is not sufficiently precise to establish their
presence conclusively.

Because of its uncomplicated rotational spectrum
and its lack of nuclear quadrupole coupling, carbonyl
sulfide (OCS) has in recent years been the object of a
number of microwave investigations. ' ' Dakin, Good,
and Coles' reported the first microwave Stark investiga-
tion of the molecule and later, Shulman and Townes'
investigated its various vibrational state electric dipole
moments. By using a set of carefully selected Stark

' Dakin, Good, and Coles, Phys. Rev. 71, 640 (1947).' Strandberg, Wentink, and Kyhl, Phys. Rev. 75, 270 (1949).' R. G. Shulman and C. H. Townes, Phys. Rev. 77, 500 (1950).


