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Current theories of "single-domain" ferromagnetic particles compare the free energy in a state of uniform
magnetization v ith that in an arbitrarily chosen state of nonuniform magnetization, In this paper, the
comparison is made between an initial uniform state and all neighboring states, uniform or nonuniform,
as an initially large applied field decreases. The initial state becomes unstable when, for some choice of the
varied magnetization, the second variation of the free energy changes from positive to negative. This
instability criterion leads to a boundary-value problem; the relative magnitudes of certain eigenvalues
determine whether the deviation from the initial state occurs by uniform rotation or by development of
nonuniform magnetization. Formulas for the critical radius are found in simple cases; they agree, except
for a numerical factor, with formulas of Kondorskii.

1. INTRODUCTION

'HE present theory of "single-domain" ferromag-
netic particles is not rigorous. The usual pro-

cedure' 4 is to compare the free energy of the uniformly
magnetized state with that of some state of nonuniform
magnetization; the latter is of arbitrarily selected form
but contains one or more parameters, which are adjusted
to minimize the energy for the chosen form. The state
of lower energy is taken to be the actual one. Whichever
way the calculation comes out, the conclusion is uncer-
tain. If the nonuniform state has higher energy, there
is no assurance that greater ingenuity might not have
devised one of lower energy. If it has lower energy,
there is no assurance that it is accessible from an initial
uniform state; for there has been no investigation of
intermediate states and of whether an activation energy
is necessary for the transition.

A sounder method is that of Kondorskii. 5 The class
of nonuniform states considered by him includes the
uniform state as a limiting case. This eliminates the
second uncertainty but not the first; for the minimiza-
tion is carried out with respect to only two parameters.

The problem will be attacked here by a rigorous
method. The energy of a specified initial uniform state
will be compared with that of all neighboring states,
both uniform and nonuniform. The conditions will be
determined under which the initial state becomes

unstable; and when instability occurs, the mode of
deviation (whether uniform or nonuniform) will be
determined.

2. BASIC THEORY

Consider a specimen with initially uniform mag-
netization in a specified direction, and take the s axis

' William Fuller Brown, Jr., J.Appl. Phys. 11, 160—172 (1940),
Eqs. (10) and (11). There the method was applied not to fine
particles but to long thin specimens.' Charles Kittel, Phys. Rev. 70, 965—971 (1946).

'Louis Neel, Compt. rend. 224, 1488—1490 and 1550—1551
(1947).

4 E. C. Stoner and E. P. Wohlfarth, Trans. Roy. Soc. (London)
A240, 599—644 (1948).

~E. Kondorskii, Doklady Akad. Nauk S.S.S.R. 82, 365-368
(1952);Izvest. Akad. Nauk S.S.S.R., Ser. Fiz. 16, 398-411 (1952).
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along this direction. Then for a rigid specimen the free
energy is' "

W= —',C t (V'n)'-+ (Vp)'+ (V'y)']dr

+ w(x, y, z,n,p)dr

(Hsxn+ HsvP+ Hs, &)dr+ Wiir . (2.1)

Here d7. is an element of volume, C is an exchange-
energy constant, J, is the magnitude of the spontaneous
magnetization (assumed constant), (n,p,y) are its
direction cosines, Hp= Hp i+Hevj+H&, k is the app1ied
field intensity, w(x, ,y, znp) is the anisotropy energy
density expressed as a function of position and of the
two independent direction cosines (n,P), and Wsr is the
mutual energy of the poles that result from nonsole-
noidal magnetization':

WM = —~J, (nH, '+PH„'+yH, ')dr

=(g.)- t' Hd, . (2.2)
space

The field intensity H'= —V'V of the poles can be cal-
culated from a volume pole density —i7 J and a
surface pole density n J by formulas (25) to (26) of
reference 8; J=J,(ni+Pj+yk) is the vector magneti-
zation, and n is a unit outward normal to the bounding
surface S of the specimen.

Consider a hypothetical state of magnetizatior.
(np, ps, ps), where ns, po, and yIi

——
t 1—ns' —po']» are

specified functions of position. To find whether 8' is a

L. Landau and E. Lifshitz, Physik. Z. Sowjetunion 8, 153-
169 (1935).

7 W. C. Elmore, Phys. Rev. 53, 757—764 (1938).
William Fuller Brown, Jr., Phys. Rev. 58, 736—742 (1940).' Charles Kittel, Revs. Modern Phys. 21, 541—583 (1949),

Sec. 2.
' William Fuller Brown, Jr., Revs. Modern Phys. 25, 131-

135 (1953), Eq. (14).
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minimum in this state, v e must consider neighboring
states n= no+ pu, p= po+ v, y= [1—n' —p'7', where u
and v are arbitrary functions of position and e is an
infinitesimal parameter. For given (u, v), let C'(p) be the
value of IU in the state (n,P). Then sufhcient (or with
~&instead of ), necessary) conditions that W be a
minimum in the state (np, pp) are that

C'(0)=0, C "(0))0 (2 3)

for arbitrary (u, v)."
We shall need 4'(0) for arbitrary (np, Pp) and C "(0)

for np ——Pp
——0. The differentiation with respect to p is

most easily carried out by expanding the integrands to
the second order in the variations (pu, pv). In the ex-
pansion of W~~, the following magnetostatic theorem is
useful: if II, is the field intensity of poles due to mag-
netization J;, then

Ji.H2dr= —
J

J2 Hidr= (42r) J~ Hi Hpdr.
space

(2 4)
For arbitrary (np, pp),

t'anp np a'rp'l t'app pp a"rpp
C"(0)=C

„ l

—— lu+l —— l. dS
4 an p, an ) ( an y, an )

—c
/

vpnp ——vpyp lu

yl v2Po ——v27o lv dr
)

+
J

[2v (x,y, z,np, Pp)u+wt2(x, y, z,np, Pp)v7dr

t' no
lH.——H,

l'J

f po
+l H„H, lv dr, —(2—.5)

)
where H=Hp+H' is the magnetizing force, evaluated
with n=np, p= pp. The exchange-energy term has been
transformed by use of the divergence theorem.

For np ——Pp
——0,

~"(0) =CJ"[(V )'+(V )'7d.

+J
(gllu'+2g12uv+g22v )dr

+J, H( 'u+v') dr+( 4r2)
—' ~ h'dr, (2.6)

space

"F. Schlogl, Handbuch der Physik (Springer-Verlag, Berlin,
1956), Vol. 1, pp. 262—281.

g~
—J,H.= g2 —J,H„=0. (2 8)

If the specimen is homogeneous, so that x is inde-
pendent of position, g~ and g2 are constants; if it is an
ellipsoid in a, uniform applied field (in arbitrary orien-
tation), H and H, are constants; if both these condi-
tions are satisfied, then Eqs. (2.8) can be satisfied by
adjustment of the applied field. We assume that the
stated conditions are satisfied and the adjustment
made; the applied field may still be varied in such a
way as to change only H, ~ For all values of H„ the
first of the two conditions (2.3) (the equilibrium con-
dition) is now satisfied by np ——Pp ——0. We turn our
attention to the second (the stability condition), which
requires that C "(0) as given by Eq. (2.6) shall be
positive.

A sufhcient condition for positiveness of C "(0) is
that the quadratic form T(u, v) = (gii+ J,H, )u'+2gipuv
+ (g22+ J,H, )v' be positive definite. In a homogeneous
crystal the g;, 's are constants, and the x and y axes can
be chosen so that g~2=0; then the state is stable if
—J,H, is less than g~~ and g22. Earlier, ' this theorem
was used to show that the usual postulates of domain
theory were not capable of explaining the observed low
coercive forces of crystals. In discussing that result,
Stoner" suggested that imperfections of structure or of
shape might promote instability at smaller values of
—J,H, . Stoner's suggestion can be made quantitative
by introducing perturbations of homogeneity or shape.
For the present, however, we are concerned with an
ideal ellipsoidal crystal; we must therefore investigate
values of H, for which T(u, v), even without such per-
turbations, is no longer positive definite.

Consider a definite (u, v), and begin with H, large
enough to insure stability. If H, is now decreased, it
must eventually reach a value H, at which, for the
given (u, v), 4 "(0) vanishes; from Eq. (2.6), this value

' William F. Brown, Ir., Revs. Modern Phys. 17, 15—19 (1945).
"Edmund C. Stoner, Repts. Progr. Phys. 13, 83-183 (1950).

See'especially p. 116.

where h is the field intensity of poles due to magnetiza-
tion J,(iu+jv+k0); the g's may be defined as the
coefficients in the expansion of 2v for small (n,P),

+g,n+gpp+ 2 (g»n +2gipnp+g22p )+ . (2.7)

In order that 4'(0) may vanish for arbitrary (u, v),
the coe%cients of u and of v in the volume and surface
integrals in Eq. (2.5) must vanish separately. This
gives two partial differential equations and two
boundary conditions [Eqs. (29) and (30) of reference
87; they, together with the equations that determine U,
must be solved in order to find functions (np, Pp) that
make the first variation of W, pc'(0), vanish. The
functions np ——Pp ——0 satisfy the boundary conditions;
they will also satisfy the partial differential equations
provided
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is given by and if for p=0 Eqs. (2.8) are satisfied. Thus, formally,
we can find the X„'s and the functions (u„,v„) by seeking
the (not necessarily stable) equilibrium first-order
deviations from ap =Pp =0.

+~~ (g»e'+2gizuv+gzzv') d r

+(4zr) 'Jt h'dr
&pace

P
~ (u'+v')dr=——. (2.9)~ ~

If H, is decreased still further, Eq. (2.6) shows that
4 "(0) will become negative. The state no=go=0 will

then be unstable with respect to small deviations of the
folm (pe pv).

We wish to find the smallest value of —J,H, at which
instability sets in for any (u, v). We therefore seek the

(e,v) for which P/Q is a minimum. The requirement
that the first variation of P/Q vanish leads, by a
method analogous to that used in deriving Eq. (2.5), to
the partial differential equations

—CVzz+ (g„—X)e+gizv —J,h, =O)
—CV'v+gizu+ (gzz —X)v —J,h„=O,

and the boundary conditions

Be/Bn = Bv/Bn = 0;

(2.10)

(2.11)

here X=P/Q= J,H, . —
The boundary value problem (2.10)—(2.11) can be

solved only if X has one of a set of eigenvalues X„.The
corresponding eigenfunctions (u,v„) are indeterminate

by a constant factor. Eigenfunctions corresponding to
diferent eigenvalues are orthogonal in the sense that

f
' (u u„+v v„)dr=5„„

~i

(2.12)

for ns/e, and the functions are conveniently normalized

by imposing condition (2.12) also for nz= n. To find the
smallest —J,H„we must find the smallest eigenvalue
of X; the corresponding (pu„, pv„) describe the mode of
deviation with respect to which the state np ——Pp

——0
becomes unstable at this value of —J,H, .

An arbitrary (u, v) can be expanded as a series in the
functions (u„,v„) with coeKcients c„. By substitution
of the series in Eq. (2.9) and use of (2.10) and (2.12),
we find

J.H.=Q. c 'X./Q„c '—. (2.13)

Equation (2.13) shows that J,H, can be as small as-
the smallest X„but no smaller. We have therefore
achieved the desired minimum, and investigation of the
second variation of P/Q is unnecessary. This assumes
the completeness of the set of functions (u„,v ).

The partial differential equations and boundary con-
ditions obtained from Eq. (2.5) reduce to Eqs. (2.10)
to (2.11), to the first order in p, if no= pzz and Pp= pv,

3. UNIFORM AND NONUNIFORM DEVIATIONS

We can always find a solution N = const =up, v = const
=vp. For this solution the boundary conditions (2.11)
are satisfied, h and h„are homogeneous linear functions
of up and vp (involving the demagnetizing factors of the
ellipsoid and the direction cosines of its principal axes),
and Eqs. (2.10) reduce to a pair of homogeneous linear
simultaneous equations in up and vp. The requirement
that the determinant vanish leads, in general, to two
eigenvalues of P. Let A.p be the smaller. If there are no
other eigenvalues as small as A.p, then when —J,H,
reaches the value Xp, the system becomes unstable with
respect to a uniform rotation of the magnetization
vector. The behavior, for this particular orientation of
the initial uniform magnetization with respect to the
ellipsoid axes, is that of a Stoner-Wohlfarth particle. 4

Other eigenvalues correspond to functions (u, v) that
vary with (x,y, s). Let Xi be the smallest such eigen-
value. If P ~ is smaller than P p, then when —J,H, reaches
the value P i, the system becomes unstable with respect
to a nonuniform deviation of the form (oui, pvi). The
magnetization acquires a nonuniform character that
may be described as an incipient domain structure.

I.et the shape and orientation of the specimen be
kept fixed and its size varied. In general X& will vary
when the size varies, but Xp will remain constant.
Which of the two eigenvalues is smaller will depend on
the specimen size, and at some critical size the two will

become equal. This is, for the given shape and orien-
tation, the critical size for existence of a "single-domain"
particle.

4. SYMMETRIC CASE

—J,Ho. =g+ (Nb N.)J.z. —(4.1)

This is the Stoner-Wohlfarth formula. 4

For nonuniform deviations, Eqs. (2.10) give

—CPu+ (g—X)u —J,h, =0,
—CPv+ (g—X)v —J,h„=0.

(4.2)

%e consider the special case in which the ellipsoid is
one of revolution about Os, and gii ——g22

——g, gi2
——0.

This is the case treated in reference 12.
For uniform deviations (eo,vo), h*= 1VbJ,up, —h„=

—EgJ,vp, where X& is the transverse demagnetizing
factor. Equations (2.10) become (g—X+1VbJ,')uo
= (g X+NbJz)vo=0 a—nd lead to a coincident pair of
eigenvalues Xp g+NbJ, z In——stability w. ith respect to
uniform rotation develops at this value of —J,H,

J,(Hp, NJ, ), wh—ere 1V, is—the longitudinal de-

magnetizing factor; the corresponding value of Hp, is

given by
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To determine the whole spectrum of eigenvalues is
difficult. We can find a solution with h=0 by taking,
in spherical coordinates (r,e,&) or cylindrical coor-
dinates (s,p,p),

u= uq—sing, p=+up cos@, Buq/8&=0; (4.3)

For a powder of identical and identically oriented
spherical particles, far apart, the coercive force Hp, is
not smaller than the value of —Ho, at which the state
ap=Pp=0 becomes unstable. Therefore

Hp, g/——J„b(b, ;

then the volume and surface pole densities vanish.
If the ellipsoid is a sphere of radius b,

u~= A j„(kr)P„'(cos8) (u & 1),
where

k'= P.—g)/C;

(4.4)

(4.5)

& (g/J, )$1—(~~J '/g) (1—b '/b') 5, b& b, (.4.10)

The equality sign for b(b, is justified by a calculation
by the Stoner-Wohlfarth method for finite (n,p), for
hexagonal or cubic symmetry.

xi (3C) ~

b, =
J, (4m. )

(4.6)

If the ellipsoid is an infinitely long cylinder of
radius b,

u&=BJi((k' —p')'p) cos(pz —b). (4.7)

The eigenvalues are determined by Ji'((k' —p')*'b)=0
and are smallest for p, =0. Let x~' be the smallest root
of Ji'(x) =0, approximately 1.84. Then by an argument
like that just given, the critical radius is

x,'(C) &

J. E2ir)
(4 8)

For a prolate spheroid in general, we may guess that
the critical minor semiaxis will be given by a formula

xi (C&~
b.= J. &X1

(4 9)

where x&" is a root of a transcendental equation and is
intermediate between 1.84 and 2.08, varying with the
ellipsoid eccentricity.

'4 Julius Adams Stratton, Electromagnetic Theory (McGraw-Hill
Book Company, Inc. , New York, 1941), pp. 404-406.

the notation is that of Stratton. " The eigenvalues of
k are determined by j '(kb)=0 and are smallest for
m= 1. Let xi be the smallest root of ji'(x) =0, approxi-
mately 2.08. Then the smallest eigenvalue of k is xi/b,
and the smallest eigenvalue of X is Xi——g+Ck'=g
+CxiP/b', within the set of eigenvalues corresponding
to solutions of the form (4.3). If solutions of other
forms yield no smaller eigenvalue, then the deviation
from np=Pp=0 occurs by uniform rotation or by the
nonuniform mode (4.3) according as P p or Xi is smaller;
for the sphere, Ep=4m. /3, so that Xp ——g+4~J, '/3. The
deviation is therefore uniform or nonuniform according
as the radius b is smaller or larger than the critical
value that makes A.y=hp, namely

S. COMPARISON WITH EARLIER WORK

Kondorskii, for the case treated in Sec. 4, derived a
formula equivalent to Eq. (4.9) with xi"=0.95+5
=2.13, larger than either of the values 1.84 and 2.08
derived above. His two-parameter method overesti-
mates the energy of the nonuniform state and therefore
predicts uniformity over a slightly too large range of
radii. Stoner and Wohlfarth [their Eq. (6.10)5 have
x~"=7t-, and X instead of Xq. The formulas of Kittel
and of Neel are not of the form (4.9). Kittel's formulas
contain the anisotropy constant, and Neel and Stoner
and Wohlfarth believed that they were neglecting the
crystalline anisotropy; but according to Kondorskii's
calculation and the present one, the critical radius, in
the symmetric case of Sec. 4, is independent of the
anisotropy constant.

With Kondorskii's values [10PC=7.97 (Fe), 3.52
(Ni); J,=1720 (Fe), 500 (Ni); cgs emu5, Eqs. (4.8)
and (4.9) give for the critical radius in A: spheres, 167
(Fe), 382 (Ni); cylinders, 120 (Fe), 276 (Ni). Neel's
sphere estimate for Fe was 160, Kondorskii's 170.

Kondorskii gives Eqs. (4.10) with equality signs, and
with 4m J,'/3g written p and not explicitly evaluated.

6. CONCLUDING REMARKS

The following gaps in the theory should be filled. For
the sphere and cylinder, the rest of the eigenvalue
spectrum should be explored. For the prolate spheroid,
the boundary-value problem should be solved with
spheroidal wave functions. " AIore general cases, e.g. ,
with J inclined to the ellipsoid axes, should be inves-
tigated. The completeness of the set of functions (u„,p„)
should be established.

What may be more fruitful, however, is the extension
of the theory to nonellipsoidal shapes and nonuniform

g,,'s. Such a study should improve understanding of
doTnain nucleation and the coercive force.

"Stratton, Morse, Chu, Little, and Corbato, Spheroidal Wave
Functions (The Technology Press of Massachusetts Institute of
Technology and John Wiley and Sons, Inc. , New York, 1956).


