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spectra does not diverge. An idea of the magnitude of
this photon diffusion coeKcient can be had using
r=10 ', (E s)=3X10 ', giving an effective diffusion

coeKcient of 1 cm'/sec corresponding to a carrier mo-

bility of 40 cm'jvolt sec at room temperature, which is

quite small compared to actual mobilities.
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fhe thomas-Fermi theory of the atom is generalized to include the effects of temperature as well as ex-
change. "@his leads to a nonlinear integral equation for the Fermi electron-momentum distribution function,
and the usual Poisson 'equation for the electron-density distribution. Analytical solutions of the integral
equation are given for the limiting cases of near-degeneracy and complete nondegeneracy, and a numerical
method of calculating solutions in the intermediate case is described. A complete discussion, of the thermo-
dynamics of the atom is given; in particular, it is shown that the Gibbs free energy is the product of the
number of electrons and the electronic chemical potential (Fermi energy), despite statements which have
been made to the contrary. Numerical results have verified the virial theorem for all Z, T, and atomic vol-
umes. The ratio of the calculated energy for T=(P=O to the experimental total ionization energy varies
from 2.07 for H down to 1.33 for Al, and is presumably still closer to unity for higher-Z elements. Some
numerical results are given for iron over the density range 0.1 to 10 times normal and for values of kT from
0 to 1000 ev. Pressures, energies, and entropies are lower than the corresponding values calculated without
exchange by as much as 40% at hT =10 ev, by up to 10% at hT = 100 ev, and by only negligible amounts
at kT= 1000 ev.

1. INTRODUCTION

'HE Thomas-Fermi (TF) and Thomas-Fermi-
Dirac (TFD) statistical models of the atom' '

have been extensively used as the basis for approximate
calcUlations of the equations of state of compressed
materials. 4 ' The original Thomas-Fermi model has
been extended in two directions —6rst by taking into
account exchange eGects at zero temperature' ' and
secpnd by allowing nonzero temperatures but neglect-

ing exchange. ' '
Spme attempts have been made to include the sects

pf bpth exchange and elevated temperatures. Umeda

~ L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927);
E. Fermi, Z. Physik 48, 73 (1928).

2 P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).
3 For general discussions see for example: L. Brillouin, Actualites

sci. et ind. 160 (1934); P. Gombhs, Die statistische Theoric des
Atoms und ihre Anmendungen (Springer-Verlag, Mien, 1949); E.
M. Corson, Perturbation 3lethods in the Quantum 3fechanics of n-
E/elytron Systems (Hafner Publishing Company, New York. , 1950),
Chap. IX.

4 J. C. Slater and H. M. Krutter, Phys. Rev. 47, 559 (1935);
H. Jensen, Z. Physik 111,373 (1938).

5 Feynman, Metropolis, and Teller, Phys. Rev. 75, 1561 (1949).' R. E. Marshak and H. A. Bethe, Astrophys. J.91, 239 (1940).
7 J. J. Qjlvarry, Phys. Rev. 96, 934 and 944 (1954); J. J. Qil-

varry and G. H. Peebles, Phys. Rev. 99, 550 (1955); R. Latter,
Phys. Rev. 99, 1854 (1955).

and Tomishima have done this by deriving a tempera-
ture-perturbation type of Thomas-Fermi equation' in
which the effects of exchange are taken into account
by using an effective temperature' which minimizes
the Helmholtz free energy. Ashkin" has generalized
the Thomas-Fermi-Dirac theory (with exchange), ob-
taining equations applicable for a,ny temperature. How-
ever, his solution, obtained by an analytical perturba-
tion procedure, is (like Vmeda and Tomishima's valid
only to temperatures of a few volts (1 volt —11 605.6'K).
The present paper is an extension of this early work
(including the perturbation solution), and also outlines
a method by which accurate solutions may be calcu-
lated for arbitrarily high temperatures.

2. THEORY

A. Basic Integral Etluation and Associated
Differentia1 Equation for the Charge Density

The application of the statistical theory of the atom
to equation-of-state calculations is well known, but for

e K. Umeda and Y. Tomishima, J. Phys. Soc. (Japan) 8, 360
(1953).

9 A. B.Lidiard, Phil. Mag. 42, 1325 (1951)."J.Ashkin (unpublished).
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completeness the basic arguments involved will be
summarized here. An atom of a solid in the metallic
state may be considered as a polyhedral cell which
contains one nucleus and a number of electrons E equal
to the atomic number Z. At high pressures, this cell
exhibits a rather high degree of symmetry; thus the
electric field at points outside the cell due to the charge
within is small and drops off rapidly with increasing
distance from the cell. It is therefore a good approxima-
tion to replace each polyhedral cell by a sphere of equal
volume and regard the electron distribution within the
cell as being exactly spherically symmetrical. This
makes the electric held within a cell dependent only
on the charge distribution within that cell, so that the
problem of calculating properties of the solid as a whole
reduces to that of 6nding the properties of a single
atom. The volume of the solid is measured by the size
of one of the spherical cells, the pressure (being uni-
form throughout the solid) is equal to the pressure of
the electron cloud at the surface of the sphere, and the
internal energy of the solid (since interatomic forces
are neglected) is simply the product of the energy per
atom and the total number of atoms.

For the purpose of finding the electron distribution
within a spherical cell, we shall start with a wave
function for the electrons of the atom which is an
antisymmetrized product of one-electron wave func-
tions. From Pock's equations for the individual wave
functions it, (r), the energy of an electron in the ith
state is found to be"

lies in any particular one of these states will be assumed
to be given by the Fermi distribution function

I;=L1+expP(E;—y)$ ' (2.2)

or integrating over the direction of p'

2e. ~ p+p, .

Eex, i= p
kp;~ p p' —p'

N(p r~)dp (2.3)

where P=1/kT, E; is the energy of the ith electron as
defined by Eq. (2.1) for this particular state of the
atom, and p, is a constant whose value is the same for
all electrons of the atom. The validity of Eq. (2.2) has
been established, to a certain approximation, by a
statistical-mechanical treatment of the atom from the
point of view of the grand canonical ensemble. "

In order to evaluate the integrals in Eq. (2.1) we
now assume, in keeping with the usual Thomas-Fermi
theory, that the individual wave functions are approxi-
mately localized in position and momentum, so that
we can assert of the ith electron that it lies approxi-
mately at a point r; with approximately a momentum
p;. Replacing the sum over j in Eq. (2.1) by an integral
over phase space, with a density of states 2/ks and
hence an electron density 2rl/k', the exchange energy
of an electron in the state i is found to be'

f
(ri)~i'� '(ri)dri +

J 4 ' (rl) I
gati '(ri)dri

2mb

Similarly the remaining terms of the energy are found
to be

Ekin, i+Eel, i+Eee, i

P,s Ze' 2e'
t t e(P', r')

+—
~

~ dp'dr'. (2.4)
2m r; k'J " )r' —r,

~

=Ek;„,;+E,„,;+E„,;+E,„,;. (2.1)

(The volume element dr' implies summation over the
electron spin as well as integration over space. ) The
6rst two terms of this expression represent, respec-
tively, the kinetic energy and the electron-nuclear
potential energy of the ith electron. It is convenient
to consider the remaining two terms separately and
they will be referred to as the electron-electron poten-
tial energy and the exchange energy, respectively, even
though properly speaking the sin of the two terms
constitutes the electron-electron potential energy. Con-
sidering the totality of all possible wave functions P,
for the ith electron, the probability that the electron

"See, for example, F. Seitz, The Modern Theory of Solids
(McGraw-Hill Book Company, inc. , New York, 1940), Secs.
49 ff; Eq. (2.1) follows from Seitz' Eq. (51.6) by setting Xg=E;Bi.

Substituting these expressions into Eq. (2.2) we
find that e(p;,r;) must satisfy a rather complicated
nonlinear integral equation in the two variables p; and
r;. It is not possible to get rid of the nonlinearity. It is,
however, possible to replace the equation in two vari-
ables by two separate equations in one variable each:
Introducing a variable

x'=x(ri) = Ee~i E88—,+p, —
,

Ze' 2e' I. t. e(p', r')
dp dl' +p,

r; k'J ~ ~r' —r~
we may write

(2.5)

1—zi(p;, r;) ps 2e' t" p'+p;
kT ln = —

I

p' ln
e(p;,r;) 2m hp, & p p' —p;

&«(p'r~)dp' —x' (2.6)
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This expression shows that the function n(p;, r,) depends
on r, only through the possible values that the potential
energy x; can assume when r; changes. Thus the equa-
tion can be regarded as an integral equation in one
variable for a function js of P; alone, the potential
energy x; playing the role of a parameter in the equa-
tion. "We shall indicate this more explicitly by writing
the distribution function hereafter as js(P;; x;,T) in-
stead of N(P;, r,). Our first problem, then, will be to
solve Eq. (2.6) for tt(P, ; x,, T) as a function of P; and
the parameters x; and T.To find the explicit dependence
(for given T) on the position coordinate r, , it is only
necessary to solve an equation of the Poisson type for
x;. For, denoting by Gs(x;, T) the integral

Gs(x', T) = (4~)-
~

~(P'; x', T)df '

vanishes, then at zero temperature it follows that

1 for P;(P
js(P;; x;,0) =

0 for Pi) P.

Substituting p;=P, then, we find

P' 2e'
t

~ (P+p'q

2jjs hP~ o EP—P')

=P'/2m, —2e'P/h.

(2.10)

From Eq. (2.7), Gs=P'/3, and the Poisson equation
is thus

j&k (P'/251 2e'P/h) =—327r'e'Ps/3hs. (2.11)

This is the equation first obtained by Dirac" for the
exchange case at zero temperature.

6 p

P,sjs(p;; x;,T)dp; (2.7) B. Thernmdynamical Considerations

(which is proportional to the electron density), Eq.
(2.5) can be written

Before taking up the solution of Eq. (2.6) in the
general case, we shall 6rst discuss the thermodynamics
of the atom. For the total energy per atom, we shall
write

Ze' Ss.e' f Gs(x, T)

r; h' ~ ~r' —r( where
Ei,; ——P js,Ei,;„;, Eee s 2 '+iEee, i&

E=Ei. +E. +E-+E. , (2.12)

gg2 32~2g2
«"Gs'dr'+ r'Gs'dr' +jr,

r; h' r&p

Ee» P +iEe», » E'ex. s P jsiEex, i&

and taking the Laplacian of both sides,

Ax, = (32~ses/h') G, (x;,T). Eee&=2 '+, jEee, &j& Eex, &=+ &jEexij& (2 ,13)

the summations being over all energy states for each
electron of the atom. It may be pointed out that the
electron-electron energies are of the form [see Eq.

(2 g)
(2.1)j

and the Poisson equation to be solved is

327l e f' P& dpi
~x'=

h' "s 1+exp'(p, s/2jjs —xi)j (2 9)

This is the equation used by Feynman et al. , in their
treatment of temperature effects."

As the second example we take the case where the
temperature is zero. Here the solution is simple even
when the exchange term is retained. If P= P(x,) is the
value of p; for which the right-hand side of Eq. (2.6)

'e Equation (2.6) for the case of free electrons (x,= je) has been
derived by H. Koppe, Z. Naturforsch. 2a, 429 (1947).

"Reference 5, Eq. (15).

This can be regarded simply as a generalization of the
original Thomas-Fermi equation for the electron
distribution.

The solution of the integral equation (2.6) is espe-
cially simple in two special. cases of interest. First, if
exchange effects are neglected we 6nd immediately that

~(P'; x' T) = {1+exp[~i(P''/2~ —x')3} '

and thus of course depend on the occupation proba-
bilities of electrons other than the ith electron. An
expression for the entropy follows from its de6nition
as the average value of —k lnP, where P is the proba-
bility of occurrence of any particular electronic con-
figuration. Since the probability that any particular
energy state is occupied is m; and the probability that
it is not occupied is 1—e;, this average is"

S= —h P f js, lnjs;+ (1—jt;) ln(1 —jt,)} (2.14)

or, from Eq. (2.2),

TS=g f tj; (E; ji) hT ln—(1——js;)}
=E+E„+E, Njj, hT Q ln(1 —tj—;), (—2.15)

where Ã is the total number of electrons per atom. It
follows from Eqs. (2.14) and (2.10) that S=O at T=O,
in agreement with Xernst's postulate. The Helmholtz

'4 Reference 2, Eq. (20). The exchange term in Dirac's paper is
twice that of (2.11) owing to his neglecting the fact that exchange
interactions occur only between electrons of parallel spin.

"See J. E. Mayer and M. G. Mayer, S/atistical SIechamcs
(John Wiley and Sons, Inc. , New York, 1940), Eqs. (5.13) and
(6.2).
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free energy is then

A =E TS—=lVp, E„—E.—+kT Q ln(1 —e~). (2.16)

In writing these expressions for the thermodynamic
functions, we have used not the most probable elec-
tronic distribution for an atom as a whole, but rather
the most probable values of the occupation numbers of
each of the individual states. For example, in writing

V~ee g ~ij+i'+jE1ee, ijq

we have used in each term the product of most-probable
values of e; and e, rather than the value of the product
which corresponds to the most probable electronic state
of the atom. This means that we neglect correlation
eGects which make the probability of finding an elec-
tron in state i depend on the presence or absence of an
electron in state j Lother than the dependence implicit
in Eq. (2.2)j. The expressions written above are, how-
ever, consistent with the first and second laws of
thermodynamics

gas kinetic pressure of the electrons and the exchange
interactions. Since these interactions are of very short
rang- of the order of the de Broglie wavelength of the
electrons —we may expect the electron density near the
boundary to be essentially constant; for the only thing
which could give a nonuniform density would be a
nonvanishing long-range interaction. The problem is,
then, to find the pressure of a uniform gas of electrons
in which the Coulomb interactions have been reduced
to zero (say by the presence of a uniform positive space
charge) but in which the exchange interactions remain.
For such a uniform gas of iV electrons in a volume V, it
is clear thermodynamically that (except for surface
effects which we may regard as small) the free energy
A can be written in the form A =N&(a(T, V/N); that
is, the free energy is equal to the number of electrons
times the free energy per electron, the latter being a
function of temperature and concentration only. The
pressure is then, from Eq. (2.20)

6'= —(BA/B V)re = (Ba—/B(, V/N) jr

or
dE= TdS 5'd V+@—de,

dA = SdT 5'd V+—I3dN. —
(2.17) From Eq. (2.19),

(BAI V 8
=o(T,V/N)—

EBNi r, v N B(V/N)
For, noting that Ei„„,;, E„;;, etc., depend only on
volume and nuclear charge, it may be seen by direct
differentiation of Eqs. (2.12) and (2.14) that A 6V=—+ . (2.22)

E E(BE/BT) v ~ T(BS/BT) v——~
=g E;(Be,/BT)v, x (2.18) . Thus from Eq. (2.16)

Also, letting E„,;+E. ..= V... it may be seen from

Kq. (2.2) that

f'Be, ) e;(1 e;) —
f Be1 ) I'Bp )

EBNJ r v kT 1 (BNJ r v LBN) r v'

so that differentiation of Eq. (2.16) gives

O'V =E.„kTQ ln(1 —e;), —

since E„is zero for the electron gas under consideration.
Replacing the sum by an integral over phase space with
density of states 2/k3, the volume can be divided out
because of the uniform spatial distribution of electrons,
leaving

(BA/BN)r, v= p, (2.19) 6&= (E, /unit vol. ) —(2kT/k3) I In(1 —e,)dp, . (2.23)

showing that p is the chemical potential of the elec-
trons. Thus Kqs. (2.17) are satisfied provided the
pressure is defined in such a way as to agree with the
relations

5'= —(BE/B V) s, N = —(BA/B V) r, 31 (2.20.)

The pressure may be calculated in two ways. The
first is a consequence of the virial theorem:

For the atom this expression gives the pressure if g;
and the exchange-energy density are evaluated at the
boundary. It may be noted that this formula, together
with the virial theorem (2.21). For the case of zero
potential energy, implies

3Ek in+ 3E en+ 3Eee+ 3Eex q
(2.21)

—(2k T/k3) ln (1—e;)d p;

which has been shown by Feynman et al, ' to hold for
the generalized Thomas-Fermi atom.

A second expression for pressure, in terms of bound-

ary conditions only, can be obtained from its definition
as the rate of transfer of momentum across a unit area
at the edge of the atom. In the case of a neutral atom,
the electrostatic field at the boundary is zero, so that
the only contributions to the pressure arise from the

=—,
' (Ek;„/unit vol. —E, /unit vol. ), (2.24)

a result which will be verified by a detailed calculation
in Sec. 3 )see Eq. (3.9)].

Finally, we wish to obtain an expression for the
Gibbs free energy Ii of the atom. For this purpose we
shall need first an expression for the Helmholtz free
energy A which is provided by Eq. (2.26) below. This
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relation will be established by an explicit evaluation in
Sec. 3 )see Eq. (3,24)$ based on the important identity
in Eq. (3.9). However, the same result may also be
obtained by an artifice which it is instructive to con-
sider at this point in the argument.

Imagine a hypothetical 6eld-free atom in which at
each point the electron density and momentum dis-
tribution are identical with the corresponding values
in the actual atom under consideration, but in which
the positive charge of the nucleus has been smeared
out to make the atom everywhere locally electrically
neutral (thereby reducing all Coulomb energies to zero).
We shall denote quantities relating to this hypothetical
atom by using primes. The momentum distribution at
a point r is given, analogously to Eq. (2.2), by

rt = $1+expP(E tt,'—)j

be interpreted as meaning that Ii /EIJ, as claimed by
Brachman' and by Reiss, ' but rather is due to the
fact that the definition F = A+ (PV is appropriate only
in the case of homogeneous, field-free systems. For the
atom under consideration, the expression (2.17) for
dE is in fact an incomplete description of the possible
ways in which the electronic energy E can change.
Firstly, we must include the eGect of the "external"
field set up by the nucleus. Secondly, although total
volume is an adequate variable for describing the
kinetic and exchange energies (exchange interactions
being strictly local in effect), volume alone is not ade-
quate to determine the long-range electrostatic poten-
tial energies —which depend on the shape of the occupied
volume (or more accurately on the values of the in-
dividual interparticle distances). Thus a complete
expression for the change in internal energy is"

But since by hypothesis e =e;, it. follows that

t =tt +Et—Et'=t +K~.+Eee,.

or, summing over all quantum states,

Ntt=g rt;tz +E, +2E„.

(2.25)
dE= TdS+ttdN+ (BEi„„/BV)d V+ (BE,„/BV)d V

BE„BE,
dr, +,' P dr;,+-d(Ze), (2.27)

Br, ', i Br i B(Ze)

(The variation of the chemical potential tt from point
to point in the hypothetical atom shows that the dis-
tribution is not strictly in thermodynamic equilibrium
if the electrons of one volume element are free to move
into neighboring volume elements. In order to maintain
thermodynamic equilibrium we therefore imagine the
atom divided into small cells, each enclosed in rigid
walls impervious to electrons but perfectly heat con-
ducting. ) Since an expression analogous to Eq. (2.22)
holds locally throughout the hypothetical atom, it
follows that

Q rt;tt, '= (e' —Ts'+ tP') d V',

Ntt= E TS+sEg; +E„+—rsE,„
=A+ (PV+sE„sE,„. —(2.26)

This expression has been obtained by Brachman" for
the no-exchange case.

Since both E„and —E. are positive, it is evident
that NttWA+tPV. However, this inequality is besot to

I6 M. K. Brachman, J. Chem. Phys. 22, 1152 (1954).

where e' and s' represent local energy and entropy
densities, and the local pressure (P' is given by the
virial theorem (2.21) as

en~ 2 . ~ I 1
3kin M 3~ex ~

Thus

P tt;tt, '= (5/3)Ei„'+ (4/3)E.„' TS'—
= (5/3)Es; + (4/3)E. TS, —

since S'=S from Eq. (2.14). Using the virial theorem
(2.21), we obtain finally

where the negatives of the derivatives with respect to
U, r, and Ze are of the nature of pressures, forces, and
potential, respectively. (More correctly, in the cases
of the kinetic and exchange energies one should perhaps
subdivide the volume U into a large number of sub-
volumes within each of which the Coulomb potential-
and hence also the electron density and momentum dis-
tribution —is essentially constant. However, this would
not alter the final result obtained below. ) Correspond-
ing to this expression for dE, one has the following ex-
pression for the Gibbs free energy":

F=A (BEs; /BV)V—(BE, /BV)V—

BE,„BE„BE,„
r;—ssP r;; Ze. —(2.28)

Br; ', i Br;; B(Ze)

F=A+ sEg;„+sE,„+E.„+E„-E, -—
=A+ fPU+-' E„ssE,„, —(2.29)

' H. Reiss, J. Chem. Phys. 21, 1209.(1953).' See, for example, R. Fowler and E. A. Guggenheim, Stu-
tisticu/ Thermodynumics (Cambridge University Press, Cambridge,
1956), pp. 58 ff; J. L. Finck, Thermodynumics from the Clussic
aitd Gewerabzed StaitdPoilts IBookman Associates, New York,
1955), pp. 67 ff, 108 ff.

The second and third terms on the right are just the
contribution of the kinetic and exchange energies to
(PV, which from Eq. (2.21) is zsEs;„+—', E,„. (Or alter-
natively, it may be noted that for constant occupation
numbers e; of the quantum states, the kinetic energy

p /2rtt of a particle in a box scales as V &, and the
exchange energy according to Eq. (2.3) scales as p; or
as V &.) The remaining terms are easily evaluated,
giving
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F=X@,

just as for a homogeneous, field-free system.

(2.30)

from Eq. (2.21). Comparison of this result with Eq.
(2.26) indicates that indeed

It is evident physically that n(P; x,8) tends to zero
as p tends to infinity, and in fact it is necessary that e
tend to zero more strongly than p

' in order that Ga
(which will be shown to be related to the kinetic energy
density) be defined. Under the assumption that this is
true, it is not difficult to show from Eq. (3.5) that

3. CONVERSION TO REDUCED VARIABLES

Before continuing further, it is convenient to express
all quantities in terms of dimensionless variables. For
this purpose, we choose the following units of length,
momentum, energy, and pressure":

I(0; x,H) =G (x,H),

and that as p tends to infinity,

I(p; x,H)-p 'G. (x,-H).

(3.7a)

(3.7b)

%e then let

e = (3/32m'Z')&= 0.21178271Z—
&.

x=r,/rp, p=p;/po,

8=hT/Hp, x=x;/Hp.

(3.2)

(3.3)

In terms of these variables, Eq. (2.6) for the momentum
distribution function can be written

( 9~2 ) i 0.468479X10

4m'me' E 128Z) Z'*

P0=8me~/h=2. 53662)&10 "g-cm/sec,
(3.1)

80=pp /2@&=3.53262)& 10 "ergs=22. 0532 ev,

5'0= 4irHOPO'/h' =24.9321 && 10"dynes/cm'

=24.9321 megabars,

and also introduce the quantity

00

G~=- ~ P'~(p)I:~(p' I x)/H—phd—p
3~0

"p'p"~(p)~(p')
= —,'G3+-', G4 —— dp'dp

3~0 40 p"-p'
= 3G3+3G4. (3 9)

It will appear later that this identity establishes Eq.
(2.24), and thereby also the expression for the Helm-
holtz free energy A given in Eq. (2.26) or in Eq. (3.24)
below.

Since the density of energy states in phase space is

2dydr/h'= (8%po'/h') p'dpdr (3.10)

It follows from Eq. (3.4) that

~(p; x,H)-""exp( —P'/8) (3.8)

It can then be shown with the aid of an integration by
parts that

N(p; x,8)= {1+expL(p'—I—x)/Hj) ', (3.4) the electron density is
where

&ex, i 1 + p+p
1(p;x,H)= — =—„P' »

2P" o p' P-
&N(p', x,H)dp' (3 5)

(8~p"/h')G2(x, H) = (26'o/80)G2(x, H)

= 1.41153&(10"G2electrons/cc. (3.11)

Introducing a further dimensionless variable P related
to z in the following way:

is the exchange integral. For convenience in later use,
we introduce the following momentum integrals (in
dimensionless form):

Ze'P 1 P 1
x=

8pr 16 (4e)'x 16
(3.12)

Gi(x,8) = e(p; x,8)dp,

GH(x, H) = P4e(p; x,H)dp,
0

«(x,H)=
~

'p(I;p ,x)H~(;p x)Hd,p
0

(3 6a) the Poisson equation (2.8) can be written

&0 de/dx~ = (18/&2Z2)xG =3 (4e)3xG2 (3 13)

G (x 8) f P2~(p. x 8)dp p
—3G ( . T) (3 6b) The problem at hand, then, is first to solve the

J 0

'
integral equation (3.4) to obtain the momentum dis-
tribution e(p; x,H) for each of a number of values of
the parameter x at each temperature 8 of interest.
After evaluating the integral (3.6b) to obtain the
electron density as a function of x (or of @/x), the
Poisson equation (3.13) can then be integrated to give

p (and hence the potential energy per electron) as a
function of x. Solution of Eq. (3.13) is of course subject

(3.6e) to two boundary conditions. The first of these follows
immediately from Eq. (2.5):

"Numerical values are based on the table of fundamental con-
stants given by J. W. M. DuMond and E. R. Cohen, Phys. Rev.
82, 555 (195&).

limrg; = limr80y =Ze',
r~O
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TABLE I. Electronic energies for 6xed x.

Electron-
Kinetic Exchange nuclear
energy energya energy&

Electron-electron
Coulomb energya

Electron with
momentum P:
One electron, aver-
aged over all p:
Per electron, aver-
aged over all p:

Per unit volume:

8pP2

Gs8p-
G2

Ga8p-
G2

—8pI

G4—Hp-
G2

Hp G4

2 G2

2 (PoG3 —(PoG4

Hp

(4e)2$

Hp

(4e)2x

Hp

(4e)2x

25'oG2
(4e)2~

Ho
II 8pX+ (4

Hp
p Hox+ (4

v —Hox+
2 2 (4e)2x

+oG2 —"—x+

a In the case of electron-electron interactions, a factor $ is involved in
passing from energy of one electron to average energy per electron or to
energy per unit volume.

b Hp/(4e)' —=Ze'/rp

or, from Eq. (3.12),
(3.14)

or, integrating by parts:

y'(X) =y(X)/X+(1V —Z)/ZX. (3.16)

The boundary having been determined in this manner,
the chemical potential (per electron) may be calculated
from the expression for the potential energy of an elec-
tron at the surface of a spherically symmetric atom of
net charge (Z—1V)e: From Eq. (2.5),

p =x, (X)—(Z—1V)e'/rpX

=8oxx+ (h' —Z)8o/(4p)'ZX. (3.17)

For any given value of x, expressions for the various
energies and the entropy can be readily found from the
various equations already given. For example, from
Eqs. (2.14), (3.10), (3.6), and (3.9), the entropy per
unit volume is

p'(p' I x)edp— —
AU h'8

—8 p' ln(1 —e)dp

= (2 P'o/8o8) (Go—G4 —xGp+Gp)

= (26'p/8o8) [(5/3)Gp —-', G4 —XGp]. (3.18)

Other results are collected in Table I.
'2' For most purposes E is of course numerically equal to Z.

Starting with an arbitrary value of the initial slope
p'(0), integration of Eq. (3.13) is carried forward to a
value x=x such that the total number of electrons
within the sphere of radius X is equal to the desired
number 1V.oo Using Eqs. (3.11) and (3;13), this leads
to the second boundary condition

pX ~X
1V =32m'(ropo/h)' x'Gpdx= Z xQ"dx, (3.15)

J0 0

Once a solution of the differential equation (3.13)
has been obtained, giving x as a function of x, total
energies and entropy can be calculated. Noting that
6'odU=4m. (Pprp'x'dx=98px'dx/or'Z, and using the rela-
tions (3.13) and (3.16), the results may be written

~X
x'Gad@,Eg;„(188p/——or'Z)

J0

~X
E,„=—(98p/m Z) x'G4dx,

0

(X
E,„=—$188p/m'Z(4o)'$, xGpdx= —8pZ(4p) '

"0

(3.19)

(3.20)

X L
—y'(0)+P(X)/X+ (1V—Z)/ZXj, (3.21)

E„=—(98p/m'Z) x'gGpdx+-, '1Vp, ——',E,„
0

A =E—TS= PpEg;„—IoE,„—E„—+1Vp,

Ii =ÃIJ, .

(3.24)

(3.25)

Setting E,„equal to zero, the expressions for TS and.4 reduce to those given by Brachman" for the tem-
perature-dependent Thomas-Fermi theory.

The pressure may be found either from the virial
theorem (2.21):

6'U=-', Ej;.+-o'E,.+-o'E„+-',E.„, (3.26)

or (for the case 1V= Z only), from Eqs. (2.23) and (3;9):
6'= Po(2Gp —G4)x= Po((4/3)Go G4]x (3 27)

(which can be seen from Table I to be just the virial
theorem for a uniform electron gas in field-free space).

It should perhaps be noted that the integral equation
(3.4) does not involve Z explicitly. Hence solution of
this equation and evaluation of the integrals (3.6) as
functions of x and 8 provide results applicable to any
element. Solutions of the Poisson equation (3.13) are,
however, applicable only to the value of Z for which &

was evaluated.

4. SOLUTION AT ABSOLUTE ZERO

At l'=O'K, most of the equations of Sec. 3 can be
simplified greatly. If J'p is the value of p at which

~' M. K. Brachman, Phys. Rev. 84, 1263 (1951).

98 tI
x'

x'yGpdx+-, '8p1Vy»
X'Z~ 0

8p1V(1V—Z)
+ ——',E, , (3.22)

2(4p)'ZX
~X»= (»8o/~'Z) *'L(5/3)Go —pG4 —xGp]«

40

= (5/3)E~; + (4/3)E, +2E,.+E. 1Vp, (3.23)—
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p' I(—p; )t,8)—x vanishes, then

1, p(pp
n(p; x,o) =

0, p) Pp.
(4 1)

The exchange integral (3.5) can in this case be easily
evaluated, giving:

Plaskett" has derived an equation di6ering from
(4.7) in that e is replaced by —,'4. This results from his
use of an average exchange energy in place of the
function (4.2): From Eq. (4.5), this average is (4PO')/
(-', Po')=4PO, which gives in place of Eqs. (4.3) and
(4 4)

I 0 4PP)

p ri'&'& yy1
Io(p; y) =—

y ln
2~0 y —1

1 1 (Po p ) Po+p
=Po -+-I ——)» —. (42)

.. 2 4E p Po Po —p

(4 4)

Since I'0 must be non-negative for physical reasons,
the + sign must be used except possibly for 0)')t) ——,', .

The integrals (3.6) are easily evaluated with the aid

of Eqs. (4.2), (3.4), and (4.3):

Gio(x) = Pp,

G2'(x) =po'/3,

G3'(x) = Po'/5,

(4.5a)

(4.5b)

(4.5c)

P4 P4 ~l 1+y P4
G40()t)= + ~ (y —y3) ln dy=

4~,
(4.5d)

f
G,'(x) =lim8 p' ln(1+exp/( —p'+I+x)/8]}dp

8-+0
0

pPp

p ( p'+I+x)dp

=2Pp'/15+ Pp'/12 (4.5e)

The boundary pressure for the case X=Z is, from

Eq. (3.27),
(4.6)(P'= (Po (4Po'/15 —P04/12) x.

The differential equation (3.13) may then be written,

with the aid of Eq. (4.4), in the well-known form

d'y/dx'= x[eW (y/x) l]'. (4.7)

For each solution of this equation, giving I'0 as a
function of x, expressions (3.19)—(3.25) for the thermo-

dynamic functions can be evaluated by using the

expressions (4.5) for the required G '.

Thus P(0; )r) = Pp, Io(po, x) =-,'Po, and I'(P; x) Po'/
3p', in agreement with Eq. (3.7). From the definition

of Po, it follows from Eq. (3.12) that

(4.3)

po = 8~Lx+ (9/64)]'

There is no need for us to make this approximation,
and we shall therefore use Eq. (4.7) as it stands.

II=—(O' I x)/8, -— (5.1)

is monotonically increasing and (for fixed positive x)
has one and only one zero" at some value P =P( Po). —
At this point, e equals -'; and for the case with which

we are concerned here, the value of ~z changes rapidly
from essentially 1 through -', to essentially 0 in a very
narrow interval about the point P. For purposes of
evaluating n, we need to be able to calculate II only
in this interval —within which we write

II=aix+ a2x'-+ a3x'+ =y+ b&y'+ b3y'+, (5.2)

in terms of variables

x= (p P)/P, y= a,x—. (5.3)

By comparison with Eq. (5.1) it may be seen that the

term p'/8 contributes 2P'/8 to ai and P'/8 to a2. Thus

any remaining contributions to a~ and a2, and all of

the coefficients a3, a4, . are due to I(p; x,8). V, e

shall assume that in the region of interest II can be

approximated to sufhcient accuracy by retaining only

the first three terms of the series (5.2). We now develop

expansions for n= (1+eH) ' and 1—e= (1+e a) '.
Considering 8 to be fixed and P variable (and large)

and for brevity keeping at this point only those terms

22 J. S. Plaskett, Proc. Phys. Soc. (London) A66, 178 (1953),
Sec. 5.

al W. Zimmermann, Z. Physik 132, 1 (1952) discusses a case in
which the existence of three zeros is assumed.

S. SOLUTION OF THE INTEGRAL EQUATION
FOR LARGE POSITIVE y

At nonzero temperatures, n. (p; X,8) loses its simple
step-function form, and the integrals (3.6) can no

longer be evaluated analytically. However, for large
(positive) x and/or small 8, the distribution function
approximates a step function and one can obtain
approximate analytical expressions by a perturbation
treatment.

For the case T=O, it may be seen from Eq. (4.2)
that the exchange integral is a monotonically decreasing
function of p. It is rea, sonable to assume that this is
true also in the present case, so that the exponent in

Eq. (3.4),
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which prove to be most important, we obtain

[boy'+ b,y'+ b,b,y']
1+e & (1+e &)2

b

then without great error throughout the entire range
of the integrals —and may even replace the lower limit
0 by —oo. If F(y) is the form which f(P) takes when
the change of variable (5.3) is made, then for the sum

2 b y'e —&
2 3g& of the last two integrals in Eq. (5.12) we may write+, (5.4) approximately

(1+e—o)2

1 n= —+ [boy'+boy' —bob oy']
1+e" (1+e")'

2b2b3y'e"
+ (5 5)

(1+e&)2

The coefficients a1, a2, a3 will be evaluated by equat-
ingderivativesof Eqs. (5.2) and (5.1) at P=P(x=y=0).
(This procedure does not, of course, lead to the best

cubic approximation to H since it gives nonzero values
for a4, a5, ~ ~ ~, but this is an approximation which we
must make. ) Letting

J(P) =2PI

P oQ boy'e '
[F(y)+F ( —y)]„J„ (1+e—o)2

2bpy'
dy. (5.13)X 1+boy'—

1 e &

~QQ GQ

(P/a1) F(y)n(y)dy (P/—a1) J~ F( y) [1——n( —y)]dy
0 0

P t" e" boyoe"
[F(y) —F(—y))

a(~0 .(1+e ") (1+e ")'

OQ

=lim t + ~ p'In

from Eq. (3.5), and

P'+P
&(P')dP', (5.6)

P' —P

[In the case of J'"'(P), the lower limit 0 must be re-
placed by e, and a limiting process carried out after the
integrals have been evaluated. ] It turns out that the
functions F(y) encountered are mostly powers of y or
lny. Thus we shall encounter integrals of the form

)t= P2 J(P)/2P, — (5.8)

J(o) (p)
—d(n) J(p)/d+(s) —a nd(n) J(p)/dy(n) (5 7)

(where the differentiation is to be carried out under the
integral signs before the limit is taken), the results are

~" y'e '(lny)'dy

"0 (1+e ')'

e "dy

y'(1 +e ")"

(5.14)

(5.15)

a1——0 '[3P'-—X—J'"(P)/2P],

2( + )=t) '[6P' —J"'(P)/2P],

6(ao+a2) =8 '[6P' —J")(P)/2P).

(5 9)
These integrals can be evaluated by using series ex-

(5 10) pansions and the following relations obtained by par-

(5 11) tial integration (for j~ 1):

In evaluating the integrals J("'(P) and also the
integrals (3.6) it is evident that we have to do with
integrals of the form

poQ ~P 00

f(P)n(P)dP= ~' f(P)dP+ J f(p)«p
0 aJ 0 P

~P— ' f(P)(1-n)dP (5»)
J0

In particular,

~j20 j1~ (j—1)10)

2~j30 J~(j—1)20+~j20~

~j21 g~ (j—1)11+~ (j—1)10.

&„o——2r2/12,

=1~020 2)

9310=5.682 197)

9111=0.449043)

=0.180628, 0 =0.086391.

(5.16)

(5.17)

In the last two integrals, we use the expressions (5.4)
and (5.5). Although these are accurate only near p= P
(y=0), they are so small elsewhere that we may use

Applying Eqs. (5.12)—(5.17) to Eqs. (5.8)—(5.11) we
obtain after rather lengthy calculations the following
results (keeping in each case only the leading terms in
a 1/P expansion):

P P
X P ~110+

2 81

282—1 (8111+8110[2—In(2a)))}

P P a, ( a2)=P' —0.038+1.721—+—0.—82—2—
I

1—2—I ln(2a1) & (5.18)'I'



THOMAS —FE R M I —D I RAC STAT I ST I CAL TH EOR Y i53

P 1 t" (e"—1)dy a28020 a38110
as ———P——,

' ln(2a))+-3, +-'2& sg
—— +

8 4~ 0 y(ep+1) g 328'

P 1 I' (e"—1)dy 28»pas
a& ———2P+ ', ln-(2a&) —-', —8»+—, + = (P/8) (2P+ , ln(-2a, ) —0.437+1.64asag ),

0 2& p y(e"+1) a33
(5.19)

= (P/8) [P 3 ln—(2as)+0.594—0.822asa& ']—: (1 sP/—0a~), (5.20)

Pa&' 1 t' (1 e&—)+-'sy(1+e")dy a38020
&-si+—

38 2~ p y'(1+e&) aP
= —(0.0355PaP/8) —: (1 ', P/0ag—).- (5.21)

For given values of P and 8, a& can be found by sub-
stituting Eq. (5.21) into Eq. (5.19) and solving by
iteration; a2, a3, and x can then be calculated easily.
This determines H from Eq. (5.2)—and therefore also
I and 23 from Eq. (5.1)—as a function of P (or x) and 8.

There remains the problem of calculating the mo-

mentum integrals Gs, Gs, and G4 from Eq. (3.6). The
first two of these involve only a straightforward
application of Eq. (5.13), and the results are:

8&pupas ( as
G2= —+—,4~»pl 1—I+ I

5——2
I

(5.22)
3 a,' 0 a, & aP E a., )

Gs + 4~1101 2—I+, I
5—4

I
(5 23)

5 aP ( ag& aP ( ag )

finally

P' P4t
G4 ———+—&ispi 4P

a, l

4a2+4-
a, )I

p4
+

g 2

a, ( 60asq
8111 8310 ] 16P

I
' (5 28)

as' P il

a~ =2P02/0,

as Pp'/8, ——
asai ' ———0.0178/Pp,

P=P0(1+0.10382P0 '),

(5.29)

In the extreme limit P~~ (for fixed 0), these results
reduce [using Eq. (4.5)] to:

I=P' x 0(y+&s-y—'+ &—sy') (5.24)

In order to evaluate G4, we note by comparison of Eqs.
(5.1) and (5.2) that, for small y,

G2 G20 =—sr282/24P0,

Gs Gs' = sr202P p/—8,

Gs —G30=8'( —(sr2/24) ln(4P02/8)+0. 804).
(5.30)

Using this expression for f(p) in the last two integrals The results (5.30) will be used in Sec. 8 as a guide in

of Eq. (5.12), we obtain making analytic fits to results calculated as described
in Sec. 7.

~P P' ( P'
~ 28P'

G4= ~ p'Idp+Gs- —xi G2 ——i—
5 ( 3j a~

X (8ysp 3bsdsip). (5.25)

It may be easily seen from Eq. (3.5) that

0. SOLUTION OF THE INTEGRAL EQUATION
FOR LARGE NEGATIVE K

When —x/8))1, it is evident from Eq. (3.4) that
23(P; x,0)((1 for all P. It follows from Eq. (3.5) that
I(p; x,0) is negligible compared with p' —x, so that
Eq. (3.4) reduces to the Maxwellian distribution

f
p'Id p = p2Ipnd p,

0 Jp
(5.26) 23(P; x,8) = e"t' exp( —P'/8). (6.1)

where by Ip is meant the expression (4.2) with Pp re-

placed by P. Using Eq. (5.12) once again gives [see
Eq. (4.5d)] G, (X,0)=e ' exp( p'/0)dp=s—(~0) e ',

Jp
(6.2a)

From Eq. (3.6), we readily obtain the asymptotic
results:

Jp

Ps P tt' Ps) P'
p'Idp= —+-I G.—I+—

4 2E 3) a,' G2(x,0) = e«' P' exp( —P'/0) dP = ss (sr8') &e"'3, (6.2b)
0

X (8iiz 8iio ln2ay). (5.27)

With the results (5.18), (5.22), and (5.23), we obtain
G, (x 8) =ex«P' exp( P'/8)dP 33(sr0—3) ie«3 (—6 2c)

Jp
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I.Q

-Q5

—IQ

tion of the exchange integral I(p;) from Eq. (3.5) by
numerical quadrature Lusing values of rz(p;) from the
preceding cycle] is possible, but is complicated by the
presence of the singularity in the integrand at p'= p.
Consequently, the following analytic scheme was used.

Case I Sma. ll 7t.—In the case of (algebraically) small

7r, rz(p) does rzot approximate a step function and ps
must be chosen equal to zero. At each cycle in the
iteration, rz(p;) was calculated for all values of z from
Eq. (3.4). For this purpose it was of course necessary
to know I(p;) This .was computed from Eq. (3.5) by
approximating the values rz(p;) from the preceding
cycle with the function

- I.5

rz(p') =a„+bz;p', pz) s&P'&Ps, (7.1)

-2.0

-3.0
Q I 2 3 4 5 6 7 8

X

9 IO

Here b» was set equal to the slope of the chord from

(Pz& s, 'Izs&' s) to (pz, ,zzz, ), and 4zz, was then chosen so
that the area under the line segment defined by Eq.
(7.1) was equal to the area found by applying Simpson's
rule to the three ordinates n2j—2 G2j—], /$2j This choice
of the coefficients gives the correct value (to the ac-
curacy of Simpson's rule) for the total area Gr=1'zzdP,
and hence from Eq. (3.7a) the correct value of I(0).
Using Eq. (7.1) in Eq. (3.5), the exchange integral
may be written in the form

Fzo. 1. The "potential" function p(x) for iron at normal density 1(~.) —~ W (&, a2. ,»
.I ~

pa= 7.85 g/cc. (The curve for kT =500 ev extends to g= —7.086
at the atom boundary. ) + 2 P (bz, —bz~+z)Pz~ Is(Pz, (P,), (7.2)

AVith the changes of variable

r cosg=P8, r sinrb=P'8 ',

we obtain from Eqs. (3.5) and (6.1)'4:

G4(x,8) =48-'e'x 4 ~ rz exp( —rs)dr

(6.2d)

X ~t (sin2$) ln
~

tan (g+ —,'zr)
~

d&f&

(1

V. SOLUTION OF THE INTEGRAL EQUATION
FOR INTERMEDIATE y

For the intermediate case in which
~
7t/8

~

is not large,
neither of the previously given analytical solutions of
the integral equation is adequate, and numerical
methods must be used for su%cient accuracy. Such
solutions have been obtained by an iterative scheme
with the aid of IBM type 701 digital computers. For
these purposes an integration mesh of 49 points p;= ps,
Pl Pz' ' ' p4s was used. The value of p4s was chosen such
that rz(P4s) —10 szz(0), and Ps was chosen to be either
zero or such that 1 —rz(Ps) —10 ' to 10 '. Direct evalua-

24 The value of the p integral is given in B. de Haan, Nouvelles
Tables d'Jntegrales definies (G. E. Stechert and Company, New
York, 1939), Table 309, No. 6.
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Fro. 2. Electron density as a function of radius for
iron at normal density p0=7.85 g/cc.
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where a» ——b» ——0 for j)24, and the integrals 10 i I

kT =1000ev

x+1I (y)=y " x" In dx
J„

(7 3)

are easily evaluated analytically.
Iteration was continued until all values n(p, ) were

essentially constant, and the G integrals (3.6) were
then evaluated numerically.

Case II. Large x.—In the case of large y, e(p) ap-
proximates more or less closely to a step function, and
the calculations were modified to avoid excessive loss
of significant figures by calculating

103

E
O
O

IO
2

O
ELI

I

LLJ

kT =10e

IO
4

kT=100 ev

1 —e= {1+expL—(p"-—I—y)/tI7) ' for i ~ 24,

and (7 4)

I
10

e= (1+exp[(p' —I—y)/07) ' for i ~ 24.

The value of p.4 could usually be taken equal to Pp,
Eq. (4.4), and the entire range of values p,~p4, was
taken only such that the values calculated from Kq.
(7.4) were appreciable. The straight-line approximation
of Eq. (7.1) was applied to values of n —1 ra, ther than
n for i~24, and the G integrals evaluated in the form
of Eq. (5.12).

Calculations have been made for a number of values
of x and |I. The numerical results for large and small y
are in good agreement with the analytical results of
Secs. 5 and 6, respectively, and in all cases verify the

IQ

IO I

O. I 1.0

p/p,

IO

relation (3.9)—which in view of Eq. (3.27) is equivalent
to the virial theorem for a uniform field-free electron
gas, and which is responsible for the expression (2.26)
for the Helmholtz free energy A.

FIG. 4. Comparison of the electron energy of the iron atonI
relative to the energy at T= 5'=0 as calculated with (TFD,
EII= —43 285 ev/atom) and without (TF, Eo———41 886 ev/atom)
exchange. (po ——7.85 g/cc).

IO

IO

(A
CL

CD

IO

W
0

(A
CA
w

Q

IO

I 0
Q. I I.Q

P,

10

G~ ——-'(pro')le&"F (x 0) (8.2)

for small y. The functions F+ and F were chosen such
as to tend asymptotically to unity, so as to agree with
the results (5.30) and (6.2). For use in evaluating the
thermodynamic functions (3.19)—(3.27), similar analytic
fits were made for G3 and G4. (In all three cases, dis-
continuities were avoided by making a gradual change-
over from G+ to G over a range of values of Po with the
aid of an exponential weighting function. )

As with the work of previous investigators for the
case T=O;" numerical integration of Eq. (3.13) was

8. SOLUTION OF THE POISSON EQUATION

Calculation of equation-of-state data requires nu-
merical integration of the Poisson equation (3.13),
which involves the electron density G.. For this purpose
the numerical results of Sec. 7 were fit with analytic
functions of the form

G.+= —',P '+ (m'8'/24Pp) F+ (Po,6)

for large y, and

FIG. 3. Comparison of the electron pressure at the boundary
of the iron atom as calculated with (TFD) and without (TF)
exchange. (po ——7.85 g/cc).

N. Metropolis and J. R. Reitz, J. Chem. Phys. 19, 555 (1951);
also reference 5.
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I I I I I I I I I I I I I I for the G functions. "Graphical differentiation of calcu-
lated values of E and 3 in a few specific cases has
given results in agreement with Eq 0, within the
error of the graphs. Finally, calculations made for fixed
Z but several different values of X have shown that the
calculated value of (BA/B.V)r v agrees with the va, lue
of p found from Eq. (3.17); see Eq. (2.19).

Extensive equation-of-state calculations have been
carried out for a number of different elements, using
IBPI Type 701 digital computers. As an example,
somee results for iron are given in Figs. 1 to . igure 1

r lshows for the normal-density iron atom at severa
temperatures the function p(x), which is related to the
potential distribution within the atom through Eqs.
(2.5), (3.3), and (3.12). Figure 2 shows for some corre-
sponding cases the form of the electron-density function
G~ Lsee Eq. (3.11)].It may be noted tha, t for a tem-
perature of 10000 volts, the electron density is essen-
tially constant throughout the volume of the atom—
indicating, as one would expect, practically complete
ionization. Figures 3 to 5 compare some equation-of-
state results for iron with the corresponding values as

5
O, l 1.0

P/P,

I.O

FIG. 5. Comparison of the electron entropy of the iron atom
as calculated with (TFD) and without (TF) exchange. (p0=7.85 g/cc).

0.5

e-e

begun with the aid of a series solution of the form
EXCHANGE (X IO)

(8.3)

Temperature-correction terms were added to the ex-
pressions given by 3 letropolis and Reitz for the a;;
however, Eq. (8.3) was used only out to such values of
x that the temperature corrections were negligible.
Integration was advanced beyond these values of x by
a diR'erence method. The boundary value x=X was
determined from Eq. (3.16), and as a check .V was
calculated by numerical evaluation of the integral
(3.15). The value of .V thus computed usually agreed
with the value used in Eq. (3.16) to five or six sig-
nificant figures.

Evaluation of the necessary integrals for calculating
the thermodynamic functions (3.19)—(3.26) was carried
out analytically for the region in which the series solu-
tion was used, and by numerical quadrature elsewhere.
The pressure was calculated from Eq. (3.27); values
thus obtained (for .I'=Z) agreed with those given by
the virial theorem (3.26) (except in the case of very low
pressure where serious significant-figure loss was in-
volved) usually within 0.1%—which is all that can be
expected from the accuracy of the analytic fits used

-0.5

C:

4J
IO0

CL
LLI

-I 5
TOTAL

-2.0

-2.5

-3.0 I

O. l 0 2

kT=O——k T=500ev

I I I I

0.5 I.O 2.0 5.0 IO 20 50

FIG. 6. The distribution of energy among the various forms of
potential energy for the iron atom at temperatures of zero and 500
volts. In the case of exchange energy, 10 E,„/Ez; has been plotted
for greater clarity.

In the case T=O where analytic fits were not involved, the
ratio of the virial-theorem to the boundary-value pressure was
about 1.00028, independent of Z or the value of x to which (8.3)
was used. The departure from a value unity is probably due to
errors inherent in the numerical methods used.
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TABLE II. Comparison of calculation with experimental total ionization energies (ev/atom)

1
2
3
4
5
6
7
8
9

12
13

Ekln

28.07
126.7
312.4
596.3
987.5

1494
2122
2878
3768
7286
8757

Eex

—8.34—23.7
—44.3—69.6—99.1—133—170—210—254—404—461

Eea

—58,65—277.4—695.4—1339.7—2231.5—3390—4830—6564—8611
—16 716—20 110

Eee

10.85
47.6

115.0
216.8
355.6
535
755

1018
1329
2548
3056

Ecalc

—28.07—126.7—312.4—596.3—987.5—1494—2122—2878—3768—7286—8757

Eexp a

—13.595—78.983—203.428—399.033—670.790—1029.81—1485.64—2043.28—2715—5448—6600

Eca le/Eezp

2.065
1.604
1.536
1.494
1.472
1.451
1.428
1.409
1.388
1.337
1.327

a Experimental values are from C. E. Moore, Atomic Energy Levels, U. S. National Bureau of Standards Circular No. 467 (U. S. Government Printing
Office, Washington, D. C. , 1952), Vol. II, p. xxvirr. (The ionization potential of the final electron for Z =9, 12, and 13 was estimated from that for Z =8).

calculated on the basis of the temperature-dependent
Thomas-Fermi theory (exchange effects omitted). '" It
may be seen that the differences are quite large at low
temperatures, become rather small at kT = 100 ev, and
are negligible for kT 1000 ev. In Fig. 6 the partition
of potential energy among the various forms is shown
for iron as a function of density and temperature. At
zero temperature and low density the total potential
energy is equa1 to —2Ek;„ in agreement with the virial
theorem.

The ca1culated partition of energy among the various
forms for the special case T= (P=O is given in Table II ETF= —20.915Z'". (8.4)

for low-Z elements, together with experimental total
ionization energies. The agreement between calculated
and experimental values is quite poor, particularly (as
is to be expected) for the smallest Z. This is shown also
in Fig. 7, where comparison is extended to higher Z
with the aid of theoretical values calculated by Mayer
using screening constants together with energy levels
for an electron in a Coulomb field."Also shown in the
figure is a curve representing the Thomas-Fermi
(no-exchange) values"
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E E, ~IS.6OZ

The large errors in the values given by the statistical
theories are due primarily to the fact that these theories
predict infinite electron densities at the nucleus, whereas
quantum mechanics indicates the density should remain
finite. The appropriate correction to the TFD energy
has been calculated by Scott" to be

Z'e'/2a0 ——13.60Z' ev. (8.5)

As shown in Fig. 7, this correction markedly improves
the agreement with experiment. (The poor agreement
with Mayer's values at high Z is due to the fact that
Mayer included relativistic effects in his calculations. )
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