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spectra does not diverge. An idea of the magnitude of
this photon diffusion coefficient can be had using
=103, (K~2)=3X1073, giving an effective diffusion
coefficient of 1 cm?/sec corresponding to a carrier mo-
bility of 40 cm?/volt sec at room temperature, which is
quite small compared to actual mobilities.
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The Thomas-Fermi theory of the atom is generalized to include the effects of temperature as well as ex-
change. This leads to a nonlinear integral equation for the Fermi electron-momentum distribution function,
and the usual Poisson equation for the electron-density distribution. Analytical solutions of the integral
equation'are given for the limiting cases of near-degeneracy and complete nondegeneracy, and a numerical
method of calculating solutions in the intermediate case is described. A complete discussion.of the thermo-
dynamics of the atom is given; in particular, it is shown that the Gibbs free energy is the product of the
number of electrons and the electronic chemical potential (Fermi energy), despite statements which have
been made to the contrary. Numerical results have verified the virial theorem for all Z, T, and atomic vol-
umes. The ratio of the calculated energy for T=@=0 to the experimental total ionization energy varies
from 2.07 for H down to 1.33 for Al, and is presumably still closer to unity for higher-Z elements. Some
numerical results are given for iron over the density range 0.1 to 10 times normal and for values of AT from
0 to 1000 ev. Pressures, energies, and entropies are lower than the corresponding values calculated without
exchange by as much as 40% at kT'=10 ev, by up to 109 at kT'=100 ev, and by only negligible amounts

at k7'=1000 ev.

1. INTRODUCTION

HE Thomas-Fermi (TF) and Thomas-Fermi-
Dirac (TFD) statistical models of the atom!—?
have been extensively used as the basis for approximate
calculations of the equations of state of compressed
materials.*¢ The original Thomas-Fermi model has
been extended in two directions—first by taking into
account exchange effects at zero temperature?*=® and
second by allowing nonzero temperatures but neglect-
ing exchange.®7
Some attempts have been made to include the effects
of both exchange and elevated temperatures. Umeda

1L. H. Thomas, Proc. Cambr)idge Phil. Soc. 23, 542 (1927);
E. Fermi, Z. Physik 48, 73 (1928).

2 P.rA, M. Dir};.c, Proc. Cambridge Phil. Soc. 26, 376 (1930).

3 For general discussions see for example : L. Brillouin, Actualités
sci. et ind. 160 (1934); P. Gombds, Die statistische Theorie des
Atoms und ihre Anwendungen (Springer-Verlag, Wien, 1949); E:
M. Corson, Perturbation Methods in the Quantum Mechanics of n-
Electron Systems (Hafner Publishing Company, New York, 1950),
Chap. IX.

4a]? C. Slater and H. M. 7Krutter,) Phys. Rev. 47, 559 (1935);
H. Jensen, Z. Physik 111, 373 (1938).

5JFeynman, Metropolis, and Teller, Phys. Rev. 75, 1561 (1949).

¢ R. E. Marshak and H. A. Bethe, Astrophys. J. 91, 239 (1940).

77J. J. Gilvarry, Phys. Rev. 96, 934 and 944 (1954); J. J. Gil-
varry and G. H. Peebles, Phys. Rev. 99, 550 (1955); R. Latter,
Phys. Rev. 99, 1854 (1955).

and Tomishima® have done this by deriving a tempera-
ture-perturbation type of Thomas-Fermi equation® in
which the effects of exchange are taken into account
by using an effective temperature?® which minimizes
the Helmholtz free energy. Ashkin! has generalized
the Thomas-Fermi-Dirac theory (with exchange), ob-
taining equations applicable for any temperature. How-
ever, his solution, obtained by an analytical perturba-
tion procedure, is (like Umeda and Tomishima’s valid
only to temperatures of a few volts (1 volt=211 605.6°K).
The present paper is an extension of this early work
(including the perturbation solution), and also outlines
a method by which accurate solutions may be calcu-
lated for arbitrarily high temperatures.

2. THEORY

A. Basic Integral Equation and Associated
Differential Equation for the Charge Density

The application of the statistical theory of the atom
to equation-of-state calculations is well known, but for

(1;5135 Umeda and Y. Tomishima, J. Phys. Soc. (Japan) 8, 360
9A]B. Lidiard, Phil. Mag. 42, 1325 (1951).
1 J. Ashkin (unpublished).
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completeness the basic arguments involved will be
summarized here. An atom of a solid in the metallic
state may be considered as a polyhedral cell which
contains one nucleus and a number of electrons /V equal
to the atomic number Z. At high pressures, this cell
exhibits a rather high degree of symmetry; thus the
electric field at points outside the cell due to the charge
within is small and drops off rapidly with increasing
distance from the cell. It is therefore a good approxima-
tion to replace each polyhedral cell by a sphere of equal
volume and regard the electron distribution within the
cell as being exactly spherically symmetrical. This
makes the electric field within a cell dependent only
on the charge distribution within that cell, so that the
problem of calculating properties of the solid as a whole
reduces to that of finding the properties of a single
‘atom. The volume of the solid is measured by the size
of one of the spherical cells, the pressure (being uni-
form throughout the solid) is equal to the pressure of
the electron cloud at the surface of the sphere, and the
internal energy of the solid (since interatomic forces
are neglected) is simply the product of the energy per
atom and the total number of atoms.

For the purpose of finding the electron distribution
within a spherical cell, we shall start with a wave
function for the electrons of the atom which is an
antisymmetrized product of one-electron wave func-
tions. From Fock’s equations for the individual wave
functions ¢;(r), the energy of an electron in the ith
state is found to be'

72
E;= —’?:‘“fdh'*(1’1)A¢i(f1)d71'+f¢i*(1'1) Vi(ry)dry
md

+Z fl‘bl (r2)]? [d’t(rl)lzd” tdr)

| 11— 1]

Tz'dTl

éi* (12)¢1(f2)¢1*( 11)¢;(r1)
—Z f l‘z[

(.

(The volume element d7’ implies summation over the
electron spin as well as integration over space.) The
first two terms of this expression represent, respec-
tively, the kinetic energy and the electron-nuclear
potential energy of the ith electron. It is convenient
to consider the remaining two terms separately and
they will be referred to as the electron-electron poten-
tial energy and the exchange energy, respectively, even
though properly speaking the sum of the two terms
constitutes the electron-electron potential energy. Con-
sidering the totality of all possible wave functions ¢,
for the ith electron, the probability that the electron

= Ekin, i+Een. i+Eee, 1'+Eex, 2.

11 See, for example, F. Seitz, The Modern Theory of Solids
(McGraw-Hill Book Company, Inc., New York, 1940), Secs.
49 ff; Eq. (2.1) follows from Seitz’ Eq. (51 6) by setting \;;=E;5;;.
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lies in any particular one of these states will be assumed
to be given by the Fermi distribution function

n;=[1+expB(E;—u) T,

where 3=1/kT, E; is the energy of the ith electron as
defined by Eq. (2.1) for this particular state of the
atom, and p is a constant whose value is the same for
all electrons of the atom. The validity of Eq. (2.2) has
been established, to a certain approximation, by a
statistical-mechanical treatment of the atom from the
point of view of the grand canonical ensemble.!

In order to evaluate the integrals in Eq. (2.1) we
now assume, in keeping with the usual Thomas-Fermi
theory, that the individual wave functions are approxi-
mately localized in position and momentum, so that
we can assert of the ¢th electron that it lies approxi-
mately at a point r; with approximately a momentum
p:. Replacing the sum over j in Eq. (2.1) by an integral
over phase space, with a density of states 2/4% and
hence an electron density 2x/A%, the exchange energy
of an electron in the state 7 is found to be?

(2.2)

Eex, i=— (32/Th)f{n(Plyri)/[ p,_’ pilz}dp’1

or integrating over the direction of p’

p'+p

E i i1
ex, i = T T p{n
hpivo

n(p'rddp’. (2.3)

Similarly the remaining terms of the energy are found
to be

Ekin, i+Een, 'i+Eee, 7
p2 Zé 2e2ffn(p’ ")
£ ]r —r
Substituting these expressions into Eq. (2.2) we
find that #(p;7;) must satisfy a rather complicated
nonlinear integral equation in the two variables p; and
7. It is not possible to get rid of the nonlinearity. It is,
however, possible to replace the equation in two vari-

ables by two separate equations in one variable each:
Introducing a variable

dp'dr’.

(2.4)

X'L=X(7i) = Een, P Eee, i+ﬂ
Zet 2é n(p'r')
'“—f f 27 warsn, @)
7 |t/ — 1
we may write
1=n(pir:) pé 26 P'+pi
ET In = — ’In
n(p,-,n) 2m }Lpl 0 P,_Pi
Xn(p'r)dp’—xi. (2.6)
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This expression shows that the function % (p;,7;) depends
on 7; only through the possible values that the potential
energy x; can assume when 7; changes. Thus the equa-
tion can be regarded as an integral equation in one
variable for a function # of p; alone, the potential
energy x; playing the role of a parameter in the equa-
tion.!? We shall indicate this more explicitly by writing
the distribution function hereafter as n(p;; x:;,T) in-
stead of n(pir;). Our first problem, then, will be to
solve Eq. (2.6) for n(p:; x:,1) as a function of p; and
the parameters x;and 7. To find the explicit dependence
(for given T") on the position coordinate 7, it is only
necessary to solve an equation of the Poisson type for
x:. For, denoting by G2(x;,T) the integral

Ga(xi, T)= (4n)1 | n(ps; x5, T)dps
= f pin(pi; x,T)dp:  (2.7)
0

(which is proportional to the electron density), Eq.
(2.5) can be written

Zet 8wer pGa (X{’,T)
xi=——— | —————dt'+u
r: B |t/ —1,]
Zet 32n% (1 pri °°
- {—f r'sz'dr'—i—f r’Gz'dr’}—I-u,
7 B Aryo T

and taking the Laplacian of both sides,

AXi= (327!'262/h3)G2 (X.;, T) . (2 8)

This can be regarded simply as a generalization of the
original Thomas-Fermi equation for the electron
distribution.

The solution of the integral equation (2.6) is espe-
cially simple in two special cases of interest. First, if
exchange effects are neglected we find immediately that

n(ps; x0,T) = {1+exp[B(p2/2m—x:) 1},
and the Poisson equation to be solved is

32722 j“” pidps
B Jo 14exp[B(p2/2m—x:)]

Axi= (2.9

This is the equation used by Feynman et al., in their
treatment of temperature effects.’®

As the second example we take the case where the
temperature is zero. Here the solution is simple even
when the exchange term is retained. If P=P(x;) is the
value of p; for which the right-hand side of Eq. (2.6)

2 Equation (2.6) for the case of free electrons (x;=w) has been
derived by H. Koppe, Z. Naturforsch. 2a, 429 (1947).
13 Reference 5, Eq. (15).
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vanishes, then at zero temperature it follows that

1 for pi<P

(553 x60) = { (2.10)

0 for pi>P.
Substituting p;= P, then, we find
P 2¢® pP Py
(P
2m  hPYJ, P—yp
= P?/2m—26*P/h.

From Eq. (2.7), Go=P3/3, and the Poisson equation
is thus

A(P/2m—262P/h)=32m22P3/3k5.  (2.11)

This is the equation first obtained by Dirac* for the
exchange case at zero temperature.

B. Thermodynamical Considerations

Before taking up the solution of Eq. (2.6) in the
general case, we shall first discuss the thermodynamics
of the atom. For the total energy per atom, we shall
write

E:Ekin+Een+Eee+Eex, (2~12)
where

Ekin= Z niEkin. 7y Eeez’% Z nz’Eee, iy
Een: Z niEen. 7y Eex: % Z niEex, 7y

the summations being over all energy states for each
electron of the atom. It may be pointed out that the
electron-electron energies are of the form [see Eq.

2.1)]
Eee,z‘=z njEee, 17y Eex,izz njEex, 77y

and thus of course depend on the occupation proba-
bilities of electrons other than the sth electron. An
expression for the entropy follows from its definition
as the average value of —% InP, where P is the proba-
bility of occurrence of any particular electronic con-
figuration. Since the probability that any particular
energy state is occupied is #; and the probability that
it is not occupied is 1—#,, this average is'®

(2.13)

or, from Eq. (2.2),
=E+E et Ex—Nu—kT 3 In(1—n;), (2.15)

where /V is the total number of electrons per atom. It
follows from Eqs. (2.14) and (2.10) that S=0at T=0,
in agreement with Nernst’s postulate. The Helmholtz

4 Reference 2, Eq. (20). The exchange term in Dirac’s paper is
twice that of (2.11) owing to his neglecting the fact that exchange
interactions occur only between electrons of parallel spin.

15 See J. E. Mayer and M. G. Mayer, Statistical Mechanics
gozl;n Wiley and Sons, Inc., New York, 1940), Egs. (5.13) and
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free energy is then
A=E—TS=Np—E.;,~E+kT 3 In(1—n;). (2.16)

In writing these expressions for the thermodynamic
functions, we have used not the most probable elec-
tronic distribution for an atom as a whole, but rather
the most probable values of the occupation numbers of
each of the individual states. For example, in writing

—1
Eoo=% 2 iinintiEBeo ij,

we have used in each term the product of most-probable
values of #; and #; rather than the value of the product
which corresponds to the most probable electronic state
of the atom. This means that we neglect correlation
effects which make the probability of finding an elec-
tron in state ¢ depend on the presence or absence of an
electron in state j [other than the dependence implicit
in Eq. (2.2)]. The expressions written above are, how-
ever, consistent with the first and second laws of
thermodynamics

dE=TdS— ®dV-+udV,
or (2.17)
dA=—8dT— ®dV+udN.

For, noting that Eyin i, E..:j, etc., depend only on
volume and nuclear charge, it may be seen by direct
differentiation of Eqs. (2.12) and (2.14) that
@E/3T)y,n=T(S/0T)v,n

=Z Ei(ani/aT)V,N.

Also, letting Ege, ¢j+ Eex,ij= Vj, it may be seen from
Eq. (2.2) that

on; n;(1—mn; on; u
().~ (), (),
ON/rv kT i ON/rvy IN/rv

so that differentiation of Eq. (2.16) gives
(0A4/N)z,v=u,

showing that u is the chemical potential of the elec-
trons. Thus Eqs. (2.17) are satisfied provided the
pressure is defined in such a way as to agree with the
relations

®=—(0E/3V)s,n=—(34/0V)r,n.

The pressure may be calculated in two ways. The
first is a consequence of the virial theorem:

(PV:‘ %Ekin+%Een+%Eee+”:1§Eex,

(2.18)

(2.19)

(2.20)

(2.21)

which has been shown by Feynman et al.® to hold for
the generalized Thomas-Fermi atom.

A second expression for pressure, in terms of bound-
ary conditions only, can be obtained from its definition
as the rate of transfer of momentum across a unit area
at the edge of the atom. In the case of a neutral atom,
the electrostatic field at the boundary is zero, so that
the only contributions to the pressure arise from the
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gas kinetic pressure of the electrons and the exchange
interactions. Since these interactions are of very short
range—of the order of the de Broglie wavelength of the
electrons—we may expect the electron density near the
boundary to be essentially constant; for the only thing
which could give a nonuniform density would be a
nonvanishing long-range interaction. The problem is,
then, to find the pressure of a uniform gas of electrons
in which the Coulomb interactions have been reduced
to zero (say by the presence of a uniform positive space
charge) but in which the exchange interactions remain.
For such a uniform gas of V electrons in a volume V, it
is clear thermodynamically that (except for surface
effects which we may regard as small) the free energy
A can be written in the form A=NXa(T,V/N); that
is, the free energy is equal to the number of electrons
times the free energy per electron, the latter being a
function of temperature and concentration only. The
pressure is then, from Eq. (2.20)

®=—(04/9V)r.x=—[08a/0(V/N)]r.
From Eq. (2.19),

R )

4
I

eV
N

\ (2.22)
Thus from Eq. (2.16)

CV=E—kT Y In(1—n;),

since E,. is zero for the electron gas under consideration.
Replacing the sum by an integral over phase space with
density of states 2//4%, the volume can be divided out
because of the uniform spatial distribution of electrons,
leaving

®= (Eu/unit vol.)— (2KT/ ) f In(1—n)dps.  (2.23)

For the atom this expression gives the pressure if #;
and the exchange-energy density are evaluated at the
boundary. It may be noted that this formula, together
with the virial theorem (2.21). For the case of zero
potential energy, implies

- (sz/hﬁ)f In(1—7n;)dp;

=2 (Eyin/unit vol.— Ee/unit vol.), (2.24)
a result which will be verified by a detailed calculation
in Sec. 3 [see Eq. (3.9)].

Finally, we wish to obtain an expression for the
Gibbs free energy F of the atom. For this purpose we
shall need first an expression for the Helmholtz free
energy A which is provided by Eq. (2.26) below. This



148

relation will be established by an explicit evaluation in
Sec. 3 [see Eq. (3.24)] based on the important identity
in Eq. (3.9). However, the same result may also be
obtained by an artifice which it is instructive to con-
sider at this point in the argument.

Imagine a hypothetical field-free atom in which at
each point the electron density and momentum dis-
tribution are identical with the corresponding values
in the actual atom under consideration, but in which
the positive charge of the nucleus has been smeared
out to make the atom everywhere locally electrically
neutral (thereby reducing all Coulomb energies to zero).
We shall denote quantities relating to this hypothetical
atom by using primes. The momentum distribution at
a point r is given, analogously to Eq. (2.2), by

ni=[1+expB(E{/—u/) I
But since by hypothesis #;/=n;, it follows that
p=ui{+E;—E/=p/+Een it Ee,i,
or, summing over all quantum states,
Nu=3" nui+Eent2E,..

(The variation of the chemical potential u;” from point
to point in the hypothetical atom shows that the dis-
tribution is not strictly in thermodynamic equilibrium
if the electrons of one volume element are free to move
into neighboring volume elements. In order to maintain
thermodynamic equilibrium we therefore imagine the
atom divided into small cells, each enclosed in rigid
walls impervious to electrons but perfectly heat con-
ducting.) Since an expression analogous to Eq. (2.22)
holds locally throughout the hypothetical atom, it
follows that

> = f (¢ —Ts'+&)dv",

(2.25)

where ¢ and s’ represent local energy and entropy
densities, and the local pressure @ is given by the
virial theorem (2.21) as

®'= %ekin,_l—%eex’-
Thus
2 s = (5/3)Exin’+ (4/3)Ee’ — TS’
= (5/3)Ekm+ (4/3)Eex‘— TS’

since S'=.S from Eq. (2.14). Using the virial theorem
(2.21), we obtain finally

Nu=E— TS+%‘Ekin+Eee+%Eex

=A4+®V+3E..—3E... (2.26)

This expression has been obtained by Brachman!® for
the no-exchange case.

Since both E., and —E,, are positive, it is evident
that Nu#A- ®V. However, this inequality is #nof to

16 M. K. Brachman, J. Chem. Phys. 22, 1152 (1954).
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be interpreted as meaning that F#Nu as claimed by
Brachman'® and by Reiss,!” but rather is due to the
fact that the definition F=A+ @V is appropriate only
in the case of homogeneous, field-free systems. For the
atom under consideration, the expression (2.17) for
dE is in fact an incomplete description of the possible
ways in which the electronic energy E can change.
Firstly, we must include the effect of the “external”
field set up by the nucleus. Secondly, although total
volume is an adequate variable for describing the
kinetic and exchange energies (exchange interactions
being strictly local in effect), volume alone is not ade-
quate to determine the long-range electrostatic poten-
tial energies—which depend on the shape of the occupied
volume (or more accurately on the values of the in-
dividual interparticle distances). Thus a complete
expression for the change in internal energy is'®

dE=TdS+pdN+ (0 Exin/dV)AV+ (0 Eex/dV)dV

0Ecn 0E,, 0L,
dfr}—% Z —drij-I-——d(Ze), (227)
d(Ze)

ar; ©,7 ari,-

+2

where the negatives of the derivatives with respect to
V, r, and Ze are of the nature of pressures, forces, and
potential, respectively. (More correctly, in the cases
of the kinetic and exchange energies one should perhaps
subdivide the volume V into a large number of sub-
volumes within each of which the Coulomb potential—
and hence also the electron density and momentum dis-
tribution—is essentially constant. However, this would
not alter the final result obtained below.) Correspond-
ing to this expression for dE, one has the following ex-
pression for the Gibbs free energy?s:

F=A— (0Exin/dV)V— (3E/dV)V

aEen aEee aEen
Y Y i Ze. (2.28)
ar; i,i Ory; d(Ze

The second and third terms on the right are just the
contribution of the kinetic and exchange energies to
®V, which from Eq. (2.21) is 2Fyint+31Ee. (Or alter-
natively, it may be noted that for constant occupation
numbers #; of the quantum states, the kinetic energy
p2/2m of a particle in a box scales as V% and the
exchange energy according to Eq. (2.3) scales as p; or
as V%) The remaining terms are easily evaluated,
giving
F=A+%Ekin+%Eex+Een+Eee_Een

=A4O®V+43E..—3E.n, (2.29)

17H. Reiss, J. Chem. Phys. 21, 1209 (1953).

18 See, for example, R. Fowler and E. A. Guggenheim, Sta-
tistical Thermodynamics (Cambridge University Press, Cambridge,
1956), pp. 58 ff; J. L. Finck, Thermodynamics from the Classic

and Generalized Standpoints (Bookman Associates, New York,
1955), pp. 67 ff, 108 ff.
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from Eq. (2.21). Comparison of this result with Eq.
(2.26) indicates that indeed

F=Ny, (2.30)

just as for a homogeneous, field-free system.

3. CONVERSION TO REDUCED VARIABLES

Before continuing further, it is convenient to express
all quantities in terms of dimensionless variables. For
this purpose, we choose the following units of length,
momentum, energy, and pressure!®:

n ( On? )% 0.468479X10-8
To= = cm,
4r’me? \128Z VA
po=8me*/h=2.53662X 1071 g-cm/sec, G3.1)
3.
Go=pe®/2m=23.53262 X107 ergs=22.0532 ev,
Po=4m00po®/F¥=24.9321X10® dynes/cm?
=24.9321 megabars,
and also introduce the quantity
e=(3/32n22%)}=0.21178271Z%. 3.2)
We then let
X=7i/7o, =Py y
/10, p="pi/Po (3.3)
0=kT/90, x=x-5/90.

In terms of these variables, Eq. (2.6) for the momentum
distribution function can be written

n(p; x,0)={1+exp[ (P*—I—x)/601}~, (34)
where e ) 4
ex, ¢ * P’ P
I(P;X:e)—_——::_— p/{ln‘T_—
6o 2pve p—p
Xn(p'; x0)dp’  (3.5)

is the exchange integral. For convenience in later use,
we introduce the following momentum integrals (in
dimensionless form):

G(xf) = f w(p; x0)p, (3.62)

Gz(Xye) =f ?271' (P, X;o)dP=p0—3G2 (Xi’T)’ (36b)
0

Galx) = f pinp; x0)ip, (3.60)
0
Galx) = f P13 x0)n(5; x0)dp, (3.6d)
0
Gs(x.0)=—0 f £ In(1—n)dp. (3.6¢)
0

19 Numerical values are based on the table of fundamental con-
stants given by J. W. M. DuMond and E. R. Cohen, Phys. Rev.
82, 555 (1951).
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It is evident physically that n(p; x,8) tends to zero
as p tends to infinity, and in fact it is necessary that »
tend to zero more strongly than $~® in order that G;
(which will be shown to be related to the kinetic energy
density) be defined. Under the assumption that this is
true, it is not difficult to show from Eq. (3.5) that

1(0; x,0)=G1(x.9), (3.7a)
and that as p tends to infinity,
I(p; x,0)~p72G2(x,0)- (3.7b)
It follows from Eq. (3.4) that
n(p; x,0)~ex'® exp(—p*/0). (3.8)

It can then be shown with the aid of an integration by
parts that

1 00
= 3 2
Gs 3[ pu(p)Lo(p*—I—x)/dpldp

o) f f P"’P"%(P)%(P’)

ro_
=2Gs+3Gs. ? 3.9

It will appear later that this identity establishes Eq.
(2.24), and thereby also the expression for the Helm-
holtz free energy 4 given in Eq. (2.26) or in Eq. (3.24)
below.

Since the density of energy states in phase space is

2dpdr/ = (8npe*/ B®) p*dpdr, (3.10)
the electron density is

(8 po*/IP)G2(x,0) = (2®0/00)G2(x,0)
=1.41153X 10%G; electrons/cc. (3.11)

Introducing a further dimensionless variable ¢ related
to x in the following way:

Zép 1 )
= —= —, (3.12)
br 16 (4e’x 16
the Poisson equation (2.8) can be written
&*¢/dx?= (18/1222)xG o= 3 (4€)*4G;. (3.13)

The problem at hand, then, is first to solve the
integral equation (3.4) to obtain the momentum dis-
tribution #(p; x,0) for each of a number of values of
the parameter x at each temperature 6 of interest.
After evaluating the integral (3.6b) to obtain the
electron density as a function of x (or of ¢/x), the
Poisson equation (3.13) can then be integrated to give
¢ (and hence the potential energy per electron) as a
function of x. Solution of Eq. (3.13) is of course subject
to two boundary conditions. The first of these follows
immediately from Eq. (2.5):

limry ;= lim78ox = Zé?,
7—0 7—0
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TaBire I. Electronic energies for fixed x.

Electron-

Kinetic Exchange nuclear Electron-electron

energy energys energyb Coulomb energys
Electron with 0o 6o
momentum p:  0oF* =0l —gge kIt
One electron, aver- Gs Gs 6o fo
aged over all p: 0“‘(;‘2 - 0"52 T @om * —box+ (de)2x
Per electron, aver- Gs 00 G 6o r—0ox fo
aged over all p: a“@ T2G (@o)2x 2 2(3e)%
. 2PG: ( © 1 )
Per unit volume: 206G — PGy — @) PG o x+(4e)2x

aIn the case of electron-electron interactions, a factor } is involved in
passing from energy of one electron to average energy per electron or to
energy per unit volume.

bgo/ (4e)2=Ze2/70.

or, from Eq. (3.12),

6(0)=1. (3.14)

Starting with an arbitrary value of the initial slope
¢'(0), integration of Eq. (3.13) is carried forward to a
value x=X such that the total number of electrons
within the sphere of radius X is equal to the desired
number N.2 Using Egs. (3.11) and (3:13), this leads
to the second boundary condition

X X
N =327 (ropo/)? f Godr=7 f x¢''dx, (3.15)
0 0

or, integrating by parts:

¢ (X)=¢(X)/X+(N—-2)/ZX. (3.16)

The boundary having been determined in this manner,
the chemical potential (per electron) may be calculated
from the expression for the potential energy of an elec-
tron at the surface of a spherically symmetric atom of
net charge (Z—N)e: From Eq. (2.5),

p=x:(X)— (Z—N)e/reX

=foxx+ (N—2)00/ (4e)2ZX. (3.17)

For any given value of x, expressions for the various
energies and the entropy can be readily found from the
various equations already given. For example, from
Egs. (2.14), (3.10), (3.6), and (3.9), the entropy per
unit volume is

AS/E St
AV i |

f PP —I—x)ndp
0

——0f P In(1—n)dp
0

v = <2 (PO/HOH) (GS—G4‘— XGz‘f“Gs)
= (2 5)0/00'9)[(5/3)6;3*%G4—XG2:|-

Other results are collected in Table I.

(3.18)

2 For most purposes &V is of course numerically equal to Z.
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Once a solution of the differential equation (3.13)
has been obtained, giving x as a function of x, total
energies and entropy can be calculated. Noting that
®odV =4rw @oro*x’da=90ex?dx/7*Z, and using the rela-
tions (3.13) and (3.16), the results may be written

X
= (1800/7°Z) f PGy, (3.19)
0
X
Eox=—(900/7Z) f 2*Gydx, (3.20)
’ X
Fun= —[1800/xZ (4] f 2Gads= — 007 (4e)2
0
X[—¢'(0)+¢(X)/X+(N—-2)/2X], (3.21)
X
Fom — (90/7°Z) f xGadrA+- 3N u—1E,
0
99, rX
=—_—— xszzdx—l—%%Nxx
w27/,
6oV (N —2)
——————3FE.., (3.22)
B} 242X
TS = (1800/7°Z) f 22 (5/3)Gy—2G1—xGo Jdx
0
= (5/3) Exint+ (4/3) Eax+2E sotEen— N, (3.23)
A=E-TS= —%Ekin~%Eex—Eeg+Nu, (3.24)
F=Np. (3.25)

Setting Ex equal to zero, the expressions for TS and
A4 reduce to those given by Brachman? for the tem-
perature-dependent Thomas-Fermi theory.

The pressure may be found either from the virial
theorem (2.21):

V= %Ekin+%Een+%Eee+%Eexy (326)
or (for the case N=Z only), from Egs. (2.23) and (3.9):
®= @0(2G5"‘G4)X= @0[(4/3)63—%64]}( (327)

(which can be seen from Table I to be just the virial
theorem for a uniform electron gas in field-free space).

It should perhaps be noted that the integral equation
(3.4) does not involve Z explicitly. Hence solution of
this equation and evaluation of the integrals (3.6) as
functions of x and 6 provide results applicable to any
element. Solutions of the Poisson equation (3.13) are,
however, applicable only to the value of Z for which e
was evaluated.

4. SOLUTION AT ABSOLUTE ZERO

At T'=0°K, most of the equations of Sec. 3 can be
simplified greatly. If P, is the value of p at which

2 M. K. Brachman, Phys. Rev. 84, 1263 (1951).
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p*—1(p; x,0)—x vanishes, then

1; P<P0

0 (4.1)

n(p; x,o>=[
»>Po.

The exchange integral (3.5) can in this case be easily
evaluated, giving:
—|dy

p Po/p
rpi0="[ v
2 0 y—l

1 1,P, p
=Po|——|-—(———)ln
2 4\ p P,

Thus 1°(0; x) =Po, I°(Po; x)=3Po, and I°(p; x)~Pd®/
3p?, in agreement with Eq. (3.7). From the definition
of Py, it follows from Eq. (3.12) that

y+1

Po+-p
Po—p

‘ J (4.2)

(4.3)
(4.4)

x=Po*—3Py,
Po=1=% (x+16) =1 (4o (¢/®)

Since P, must be non-negative for physical reasons,
the -+ sign must be used except possibly for 0= x= —%.

The integrals (3.6) are easily evaluated with the aid
of Egs. (4.2), (3.4), and (4.3):

G:*(x) =P, (4.5a)

G (x)=Pd/3, (4.5b)

GL(x)=Po*/5, (4.5¢)
Pyt Pot ! 14y Pyt

GPX)=—+—] (y—»)In dy=—oj,  (4.5d)
6 4 J, 1—vw 4

G =tjmd [ 4 In(1-+expl(=p+T-+)/013dp
0

Po
= | #=p+1t2dp

0

=2Pg/15+ Py*/12. (4.5¢)

The boundary pressure for the case N=Z is, from
Eq. (3.27),

= ®o(4Po/15— P¢'/12)x. (4.6)

The differential equation (3.13) may then be written,
with the aid of Eq. (4.4), in the well-known form

d’¢/dx?=x[ e+ (¢/x)1 ]

For each solution of this equation, giving P, as a
function of x, expressions (3.19)-(3.25) for the thermo-
dynamic functions can be evaluated by using the
expressions (4.5) for the required G’

4.7)
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Plaskett?® has derived an equation differing from
(4.7) in that € is replaced by 3e. This results from his
use of an average exchange energy in place of the
function (4.2): From Eq. (4.5), this average is ($Po*)/
(3P@#)=%P,, which gives in place of Egs. (4.3) and
(4.4)

x=Po*— 1P,

and

Po=3=£[x+(9/64) 1%

There is no need for us to make this approximation,
and we shall therefore use Eq. (4.7) as it stands.

5. SOLUTION OF THE INTEGRAL EQUATION
FOR LARGE POSITIVE x

At nonzero temperatures, n(p; x,0) loses its simple
step-function form, and the integrals (3.6) can no
longer be evaluated analytically. However, for large
(positive) x and/or small 4, the distribution function
approximates a step function and one can obtain
approximate analytical expressions by a perturbation
treatment.

For the case T=0, it may be seen from Eq. (4.2)
that the exchange integral is a monotonically decreasing
function of p. It is reasonable to assume that this is
true also in the present case, so that the exponent in
Eq. (34),

H=(p*—1—x)/6,

is monotonically increasing and (for fixed positive x)
has one and only one zero® at some value p=P(=P).
At this point, # equals %; and for the case with which
we are concerned here, the value of » changes rapidly
from essentially 1 through % to essentially O in a very
narrow interval about the point P. For purposes of
evaluating #, we need to be able to calculate H only
in this interval—within which we write

(5.1)

H=awx+ax*+asd*+ - - - =y+byy +bsy*+- -+, (5.2)
in terms of variables
x=(p—P)/P, y=aw. (5.3)

By comparison with Eq. (5.1) it may be seen that the
term $2/0 contributes 2P?/6 to a; and P?/6 to a». Thus
any remaining contributions to ¢, and a, and all of
the coefficients as, a4, - -+ are due to I(p;x,0). We
shall assume that in the region of interest H can be
approximated to sufficient accuracy by retaining only
the first three terms of the series (5.2). We now develop
expansions for n=(14€#)™' and 1—n=(14¢ )"
Considering 8 to be fixed and P variable (and large)
and for brevity keeping at this point only those terms

2, S. Plaskett, Proc. Phys. Soc. (London) A66, 178 (1953),
Sec. 5.

23 W. Zimmermann, Z. Physik 132, 1 (1952) discusses a case in
which the existence of three zeros is assumed.
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which prove to be most important, we obtain

e ev

= - [b2y2+bsy3+ b2b3y5]
14+ev (146792
2b2b3y5e‘”
— (54)
(14e)?
e¥ ev
1—1’1/: + [b2y2+b3y3'-b2b3y5]
14ev  (1+4ev)?
2b2b3y58y
+———— (5.5)
(14-ev)?

The coefficients ay, a», az will be evaluated by equat-
ing derivatives of Egs. (5.2) and (5.1) at p=P(x=y=0).
(This procedure does not, of course, lead to the bes!
cubic approximation to H since it gives nonzero values

for a4, as, - - -, but this is an approximation which we
must make.) Letting
J(p)=2pI
. pe * p'+p
—lim [ f + f ]p’ In n(p’)dp’}, (5.6)
0 0 e p —

from Eq. (3.5), and
J®(p)=d™J (p)/dx™ =a"d™JT (p)/dy™ (5.7)

(where the differentiation is to be carried out under the
integral signs before the limit is taken), the results are

x=P—J(P)/2P, (5.8)
a=0"[3P—x—J©(P)/2P], (5.9)
2(arta)=0"[6P2—J@(P)/2P],  (5.10)
6(ast-as)=6"[6P2—J®(P)/2P].  (5.11)

In evaluating the integrals J™(P) and also the
integrals (3.6) it is evident that we have to do with
integrals of the form

j;wf(i’)fz(P)dP:f:f(p)dp-{-j:f(p)ndp

- f O A—n)dp. (512)

In the last two integrals, we use the expressions (5.4)
and (5.5). Although these are accurate only near p=P
(y=0), they are so small elsewhere that we may use

P P
PZ_5 ——{9110—{-[—-—"1]{9111+9110[2 —In(2a1) ]} }

(11 ay

2
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then without great error throughout the entire range
of the integrals—and may even replace the lower limit
0 by —o. If F(y) is the form which f(p) takes when
the change of variable (5.3) is made, then for the sum
of the last two integrals in Eq. (5.12) we may write
approximately

(/o) [ FO)ty—(P/w) [ F=p)1—n(=3) iy
e

e v

(1+ )

—Y

(1+e)?

b3y3€‘y
(1+e7)

=~ f [F(3)—F(— y)][

——f [F(y)+F(— y)]

2b3y3
X[1+b33’3“ ’

]dy. (5.13)

e Y

[In the case of J™ (P), the lower limit 0 must be re-
placed by e, and a limiting process carried out after the
integrals have been evaluated.] It turns out that the
functions F(y) encountered are mostly powers of y or
Iny. Thus we shall encounter integrals of the form

“ yle~v(Iny)‘dy
gjkl:f _—, (514)
o (et
.0 ydy
gﬁjkzj S EEE— (5.15)
L yi(ide)

These integrals can be evaluated by using series ex-
pansions and the following relations obtained by par-
tial integration (for j=1):

9j20=J9 (i—1)10,

29i30= 79 (i—1y20+ 9 j20, (5.16)
9= 79 —nn+9G-no.
In particular,
Jr0=7%/12, I310="5.682197,
Jo20=1, 9111=0.449043, (5.17)

9_11=0.180628,

Applying Egs. (5.12)-(5.17) to Egs. (5.8)-(5.11), we
obtain after rather lengthy calculations the following
results (keeping in each case only the leading terms in
a 1/P expansion):

9_51=0.086391.

i
(112

a a
—0.038—!—1.721—2—{-0.822(1—2——2)ln(2a1)}, (5.18)
a

ay
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P 1 1 (e”——l)dy 29110(13
a= —[2P+% ln(2a1)—%—51_11+—f } ]= (P/6)(2P+% In(2a,) —0.43741.64a3a:7%), (5.19)
0 2Jy y(ev+1) ad
P 1 pt(ev—1)dy a29020 @39110
A9= —[P—% ]n(2a1)+%+%9_11——f { —_ ]
0 4 0 y(e”—f— 1) 2(11 (113
= (P/§)[P—1% In(2a;)+0.594—0.822a3a, 3]+ (1—%1P/6a,), (5.20)
Pd12 1 1 (1—e”)+%y(1+e”)dy 039020
az=— [9_31+~f - ]= —(0.0355Pa*/0)+~ (1—%P/ba,y). (5.21)
2V, y3(1+ey) a®
For given values of P and 6, a; can be found by sub- finally
stituting Eq. (5.21) into Eq. (5.19) and solving by
iteration; as, a3, and x can then be calculated easily. PP 20a, 4a
This determines H from Eq. (5.2)—and therefore also G4=Z+_2 I110 4P—?+4—————ln201)‘
I and # from Eq. (5.1)—as a function of P (or x) and 6. & it
There remains the problem of calculating the mo- Pt as 60a;
mentum integrals Gs, G, and G; from Eq. (3.6). The +— 5111—931()‘(16}’—?) } (5.28)
ay ay

first two of these involve only a straightforward
application of Eq. (5.13), and the results are:

P P a2 8931083/ a2
Gz=—~+—|:49110(1———)+ (5——2)], (5.22)
(113 a

3 012 a

PP a 8931003 f a2
G3:—~+—[451110(2——)+ (5——4)]- (5.23)

5 ary a; 013 131

In order to evaluate G4, we note by comparison of Egs.
(5.1) and (5.2) that, for small y,

I=p*—x—0(y+b:y*+bsy’).

Using this expression for f(p) in the last two integrals
of Eq. (5.12), we obtain

r P? P\ 20P%
G4= f PQIdP—i'Gg—‘?—X(GZ—'—)—
0

(5.24)

3 a
X (9110—3b39310).  (5.25)
It may be easily seen from Eq. (3.5) that
P o0
f pldp= f pI'ndp, (5.26)
0 0

where by I° is meant the expression (4.2) with Py re-
placed by P. Using Eq. (5.12) once again gives [see
Eq. (4.5d)]
P Pt P P P
°1d =——I——(G ——)+—
L =\ ) T
X (9111— 910 In2ay).  (5.27)

With the results (5.18), (5.22), and (5.23), we obtain

In the extreme limit P— (for fixed 6), these results
reduce [using Eq. (4.5)] to:
a1=2Pg/9,
ax=Pg/8,
a3a,3=—0.0178/P,,

P=Py(140.1036°P;7%),

Go— G =122/24P,,

G3—G=70*P,/8,

Gi—GP=0%(— (r2/24) In(4P2/6)+0.804} .

(5.29)

(5.30)

The results (5.30) will be used in Sec. 8 as a guide in
making analytic fits to results calculated as described
in Sec. 7.

6. SOLUTION OF THE INTEGRAL EQUATION
FOR LARGE NEGATIVE g

When —x/6>>1, it is evident from Eq. (3.4) that
n(p; x,0)<K1 for all p. It follows from Eq. (3.5) that
I(p;x,0) is negligible compared with p*—x, so that
Eq. (3.4) reduces to the Maxwellian distribution

n(p; x,0)=ex’ exp(—p*/0). (6.1)

From Eq. (3.6), we readily obtain the asymptotic
results:

Gr(,) = ? f exp(—*/6)ip=3(n)lex,  (6.22)

0

Galx,) =ex f # exp(— p2/0)dp=1(xt%)le®, (6.2b)
0

Galxf) =ex" f 2 exp(— 12/0)dp=3 (x69)bex?.  (6.20)
0
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X

F16. 1. The “potential” function ¢ (x) for iron at normal density
po=7.85 g/cc. (The curve for #T =500 ev extends to ¢ =—7.086
at the atom boundary.)

With the changes of variable

7 cosp=pi~i, 7sing=p'073,

we obtain from Eqs. (3.5) and (6.1)*:

G4(x,0)=i0232X’5f 78 exp(—r2)dr
o (6.2d)
Xf (sin2¢) In|tan(¢p+3im)|do

=10ex/0-} - Y= enPe?XI?,

7. SOLUTION OF THE INTEGRAL EQUATION
FOR INTERMEDIATE %

For the intermediate case in which |x/6] is not large,
neither of the previously given analytical solutions of
the integral equation is adequate, and numerical
methods must be used for sufficient accuracy. Such
solutions have been obtained by an iterative scheme
with the aid of IBM type 701 digital computers. For
these purposes an integration mesh of 49 points p;= p,,
p1, po- - - pss was used. The value of pss was chosen such
that #(ps)=210"%12(0), and p, was chosen to be either
zero or such that 1—7(p0)=210-% to 1078, Direct evalua-

2 The value of the ¢ integral is given in B. de Haan, Nouvelles

Tables d’Intégrales définies (G. E. Stechert and Company, New
York, 1939), Table 309, No. 6.
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tion of the exchange integral 7(p;) from Eq. (3.5) by
numerical quadrature [using values of #(p,) from the
preceding cycle] is possible, but is complicated by the
presence of the singularity in the integrand at p’=$.
Consequently, the following analytic scheme was used.

Case I. Small x—In the case of (algebraically) small
x, n(p) does not approximate a step function and po
must be chosen equal to zero. At each cycle in the
iteration, #(p;) was calculated for all values of 7 from
Eq. (3.4). For this purpose it was of course necessary
to know I(p;). This was computed from Eq. (3.5) by
approximating the values #(p;) from the preceding
cycle with the function

1(p')=az+bap’, poi2=p" <p;. (7.1)

Here b,; was set equal to the slope of the chord from
(paj—o,maj2) to (pajme;), and as; was then chosen so
that the area under the line segment defined by Eq.
(7.1) was equal to the area found by applying Simpson’s
rule to the three ordinates #s;_s, 7221, #22;. This choice
of the coefficients gives the correct value (to the ac-
curacy of Simpson’s rule) for the total area Gi= fndp,
and hence from Eq. (3.7a) the correct value of I(0).
Using Eq. (7.1) in Eq. (3.5), the exchange integral
may be written in the form

I(p) =% 2 (as;— asjya) poil 1 (poy/ p2)

+3 2 (b= bojia) pofla(poi/pe),  (7.2)
00T ] 1 1
i
H =
U 4
E
50 1— 1\ —
i
- ]
Lo
i _
|
1
1
]
10 H- —
h ]
i ]
H ]
._J| -
5 H —
L |
1
1
6, |\ “
\
\
\\
T Se \\ KT = 10000 ev
—~——-_______kT=500ev
= - -
- ~— _¥T-100er ]
0.5 |- - A
S S T T TR SO N R !
o] i 2 3 4 5 6 7 8 9 10

F16. 2. Electron density as a function of radius for
iron at normal density po=7.85 g/cc.
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where a@»;=b,;=0 for j>24, and the integrals

v x+1
Lu(y)=y=" f " In dax (7.3)

0 x—1

are easily evaluated analytically.

Tteration was continued until all values #(p;) were
essentially constant, and the G integrals (3.6) were
then evaluated numerically.

Case II. Large x—In the case of large x, n(p) ap-
proximates more or less closely to a step function, and
the calculations were modified to avoid excessive loss
of significant figures by calculating

1—n={14exp[— (p>—T—x)/0]}7" for 1524,
and

n={14-exp[ (p2—I—x)/6]}*

The value of p»s could usually be taken equal to P,
Eq. (44), and the entire range of values po—pss was
taken only such that the values calculated from Eq.
(7.4) were appreciable. The straight-line approximation
of Eq. (7.1) was applied to values of #—1 rather than
n for 1=24, and the G integrals evaluated in the form
of Eq. (5.12).

Calculations have been made for a number of values
of x and 6. The numerical results for large and small x
are in good agreement with the analytical results of
Secs. 5 and 6, respectively, and in all cases verify the

(7.4)

for 7=24.

PRESSURE (MEGABARS)

F16. 3. Comparison of the electron pressure at the boundary
of the iron atom as calculated with (TFD) and without (TF)
exchange. (po=7.85 g/cc).
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F16. 4. Comparison of the electron energy of the iron atom
relative to the energy at 7= ®=0 as calculated with (TFD,
E,=—43 285 ev/atom) and without (TF, Eq= —41 886 ev/atom)
exchange. (po=7.85 g/cc).

relation (3.9)—which in view of Eq. (3.27) is equivalent
to the virial theorem for a uniform field-free electron
gas, and which is responsible for the expression (2.26)
for the Helmholtz free energy 4.

8. SOLUTION OF THE POISSON EQUATION

Calculation of equation-of-state data requires nu-
merical integration of the Poisson equation (3.13),
which involves the electron density G.. For this purpose
the numerical results of Sec. 7 were fit with analytic
functions of the form

Gt =1Pd+ (m262/24P ) F+(Po0) (8.1)

for large x, and
G = (n8) eI (x) 82)

for small x. The functions F* and F~ were chosen such
as to tend asymptotically to unity, so as to agree with
the results (5.30) and (6.2). For use in evaluating the
thermodynamic functions (3.19)-(3.27), similar analytic
fits were made for G3 and Gs. (In all three cases, dis-
continuities were avoided by making a gradual change-
over from G* to G~ over a range of values of P, with the
aid of an exponential weighting function.)

As with the work of previous investigators for the
case T=0,2 numerical integration of Eq. (3.13) was

26 N. Metropolis and J. R. Reitz, J. Chem. Phys. 19, 555 (1951);
also reference 5.
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kT =1000ev

o

S/k (per atom)

[XI - 1.0 10

PR

Fic. 5. Comparison of the electron entropy of the iron atom
as calculated with (TFD) and without (TF) exchange. (po
=7.85g/cc).

begun with the aid of a series solution of the form

11
d=2 axil?, (8.3)
=0

Temperature-correction terms were added to the ex-
pressions given by Metropolis and Reitz for the a;;
however, Eq. (8.3) was used only out to such values of
x that the temperature corrections were negligible.
Integration was advanced beyond these values of x by
a difference method. The boundary value x=X was
determined from Eq. (3.16), and as a check V was
calculated by numerical evaluation of the integral
(3.15). The value of N thus computed usually agreed
with the value used in Eq. (3.16) to five or six sig-
nificant figures.

Evaluation of the necessary integrals for calculating
the thermodynamic functions (3.19)-(3.26) was carried
out analytically for the region in which the series solu-
tion was used, and by numerical quadrature elsewhere.
The pressure was calculated from Eq. (3.27); values
thus obtained (for N'=2) agreed with those given by
the virial theorem (3.26) (except in the case of very low
pressure where serious significant-figure loss was in-
volved) usually within 0.19,—which is all that can be
expected from the accuracy of the analytic fits used
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for the G functions.?® Graphical differentiation of calcu-
lated values of E and 4 in a few specific cases has
given results in agreement with Eq. (2.20) within the
error of the graphs. Finally, calculations made for fixed
Z but several different values of .V have shown that the
calculated value of (04/dN)r v agrees with the value
of u found from Eq. (3.17); see Eq. (2.19).

Extensive equation-of-state calculations have been
carried out for a number of different elements, using
IBM Type 701 digital computers. As an example,
some results for iron are given in Figs. 1 to 6. Figure 1
shows for the normal-density iron atom at several
temperatures the function ¢(x), which is related to the
potential distribution within the atom through Egs.
(2.5), (3.3), and (3.12). Figure 2 shows for some corre-
sponding cases the form of the electron-density function
G- [see Eq. (3.11)]. It may be noted that for a tem-
perature of 10 000 volts, the electron density is essen-
tially constant throughout the volume of the atom—
indicating, as one would expect, practically complete
ionization. Figures 3 to 5 compare some equation-of-
state results for iron with the corresponding values as
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F1c. 6. The distribution of energy among the various forms of
potential energy for the iron atom at temperatures of zero and 500
volts. In the case of exchange energy, 10 Eex/Ekin has been plotted
for greater clarity.

26 In the case T=0 where analytic fits were not involved, the
ratio of the virial-theorem to the boundary-value pressure was
about 1.00028, independent of Z or the value of x to which (8.3)
was used. The departure from a value unity is probably due to
errors inherent in the numerical methods used.
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TaBLE II. Comparison of calculation with experimental total ionization energies (ev/atom).

Z Exin Eex Een E.q Ecale Eexps Ecalo/Eexp

1 28.07 —8.34 —58.65 10.85 —28.07 —13.595 2.065

2 126.7 —23.7 —2774 47.6 —126.7 —78.983 1.604

3 3124 —443 —0695.4 115.0 —3124 —203.428 1.536

4 596.3 —69.6 —1339.7 216.8 —596.3 —399.033 1.494

5 987.5 —99.1 —2231.5 355.6 —987.5 —670.790 1.472

6 1494 —133 —3390 535 —1494 —1029.81 1.451

7 2122 —170 —4830 755 —2122 —1485.64 1.428

8 2878 —210 — 06564 1018 —2878 —2043.28 1.409

9 3768 —254 —8611 1329 —3768 —2715 1.388
12 7286 —404 —16 716 2548 —7286 —5448 1.337
13 8757 —461 —20110 3056 —8757 —6600 1.327

a Experimgntal values are from C. E. Moore, Atomic Energy Levels, U. S. National Bureau of Standards Circular No. 467 (U. S. Government Printing
Office, Washington, D. C., 1952), Vol. II, p. xxvii. (The ionization potential of the final electron for Z =9, 12, and 13 was estimated from that for Z =8).

calculated on the basis of the temperature-dependent
Thomas-Fermi theory (exchange effects omitted).?” It
may be seen that the differences are quite large at low
temperatures, become rather small at 27°=100 ev, and
are negligible for £7°=1000 ev. In Fig. 6 the partition
of potential energy among the various forms is shown
for iron as a function of density and temperature. At
zero temperature and low density the total potential
energy is equal to —2Ey;, in agreement with the virial
theorem.

The calculated partition of energy among the various
forms for the special case 7= ®=0 is given in Table II
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F1e. 7. Comparison of various theoretical and experimental
values for the energies of the isolated zero-temperature atoms with
the values calculated from the Thomas-Fermi-Dirac theory.

27 R. Latter, reference 7. More accurate values than those which
can be read from the graphs in this paper have been obtained
directly from the author.

for low-Z elements, together with experimental total
ionization energies. The agreement between calculated
and experimental values is quite poor, particularly (as
is to be expected) for the smallest Z. This is shown also
in Fig. 7, where comparison is extended to higher Z
with the aid of theoretical values calculated by Mayer
using screening constants together with energy levels
for an electron in a Coulomb field.?® Also shown in the
figure is a curve representing the Thomas-Fermi
(no-exchange) values”

Erp=—20.915275, 8.4)

The large errors in the values given by the statistical
theories are due primarily to the fact that these theories
predict infinite electron densities at the nucleus, whereas
quantum mechanics indicates the density should remain
finite. The appropriate correction to the TFD energy
has been calculated by Scott® to be

Z%%/2a9=13.60Z% ev. (8.5)

As shown in Fig. 7, this correction markedly improves
the agreement with experiment. (The poor agreement
with Mayer’s values at high Z is due to the fact that
Mayer included relativistic effects in his calculations.)
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