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plot proved to be too insensitive to represent clearly
the small diQ'erences in magnetoresistive behavior found
in these specimens. Accepting the apparent validity of
Eq. (2) for Mg(Fe) specimen, Fig. 1 exhibits the data
for both our specimens in the form of a modified Kohler
plot in which log{DR/Roy) —1.326 log(HRO c/Ror) is
given as a function of log(JIRo c/Ror). In this figure,
the solid horizontal line is given by Eq. (2) and the
dashed lines represent deviations of &10% in DR/Ror.
The agreement with Kohler's rule in the measurements
on the XIg(Fe) specimen, as well as the deviations from
this rule found in the i1'Ig(Mn) specimen, are quite
evident.

Also shown in Fig. 1 are the results of measurements
of the magnetoresistance of magnesium reported by
Thomas and Mendoza" and by Yntema. " The curve
"T R M" represents the average arrived at by Thomas
and AIendoza from measurements on four specimens.
Except for a few points taken at low magnetic fields,
these data and also the results for Yntema's specimen
Mg 2 are in excellent agreement with Eqs. (2) and (3).
Yntema's specimen Pig 5 apparently forms an exception
to the more common behavior. It should be noted that
our first specimen, 3~Ig(Fe), came from the same source
(Johnson-iifatthey, laboratory No. 1848) as did the
specimens measured by Yntema and by Thomas.
However, the mechanical preparation of these speci-
mens was quite different in that our Mg(Fe) specimen
was severely cold-worked, whereas the previously
reported specimens had been drawn into wires and
(except for one of the four specimens investigated by
Thomas) subsequently reannealed.

CONCLUSIONS

1. The magnetoresistance at liquid helium tempera-
tures of a magnesium specimen containing 0.013%
iron, Mg(Fe), agrees both with Kohler's rule and with
the majority of previous measurements on specimens
of similar composition.

2. In a second specimen, Mg{Mn), containing 0.043%
manganese, the magnetoresistance at 4.2'K was in fair
agreement with the magnetoresistance of the Mg(Fe)
specimen. At 1.3'K, however, the magnetoresistance
falls about 10% below the values prescribed by the
Kohler rule.

3. In terms of the Gerritsen classification (see Intro-
duction), it seems probable that the Mg(Fe) specimen
falls into group 2 (metals showing a resistance mini-
mum, but no maximum) and that the Mg(Mn) speci-
men may be an extreme case of group 3 {metals show-

ing both a resistance maximum and minimum). Since
the deviation of Mg(Mn) from Kohler's rule is still
quite small even at one-tenth the temperature of the
resistance minimum (14.5'K), it seems reasonable that
the resistance maximum, if it occurs at all, may be found
at a temperature very close to O'K. These conclusions
are consistent with the fact (see II) that the electrical
resistance of both the i1'Ig(Fe) and Mg(Mn) specimens
increases monotonically for temperatures down to 0.2'K
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The Hamiltonian for the exchange interaction between the ferromagnetic d electrons and the conduction
s electrons is derived. The ferromagnetic relaxation time caused by the s-d exchange interaction is calculated
in a spin wave approximation. When one uses a screened value of the exchange integral (J,&„;,j30), the
calculated relaxation time for nickel at room temperature is 5X10 ' sec as compared to the time 2.5&(10 "
sec needed to account for the experimental line width. The exchange relaxation may be dominant in materials
such as alloys which have narrower lines than nickel.

I. INTRODUCTION

HE line widths observed in electron spin-resonance
experiments on ferromagnetic single metal crys-

tals are of the order of several hundred oersteds, ' cor-

* Supported in part by the Ofhce of Naval Research, U. S.
Signal Corps, and the U. S. Air Force Office of Scientific Research.

' K. H. Reich, Phys. Rev. 101, 1647 (1956); N. Bloembergen,
Phys. Rev. 78, 572 (1950);a list of line widths is given in C. Kittel
and E. Abrahams, Revs. Modern Phys. 25, 233 (1953).

responding to relaxation times of the order of 10 ' to
10 " sec. The widths in several metals appear to be
temperature-independent at low temperatures. ' If we
neglect all interactions except the isotropic exchange
and Zeeman interactions, the Hamiltonian of the
system of ferromagnetic electrons is

BCO ———2 Q J;;S,".S,—gp~H. Q S;.
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By ferromagnetic electrons we mean the 3d electrons in
metals and alloys of the first transition group. In the
spin-wave approximation the energy of the low-lying
states of the ferromagnet (neglecting shape and crystal
anisotropy) is given by

ep= Q (I„+2)(2SJ~'a' gps—H), (2)

2 C. Kittel and C. Herring, Phys. Rev. 77, 725 (1950).
'N. Bloembergen, Phys. Rev. 78, 572 (1950); C. Kittel and

E. Abrahams, Revs. Modern Phys. 25, 233 (1953); A. Kondoh,
Progr. Theoret. Phys, Japan 10, 117 (1953); T. Kasuya, Progr.
Theoret. Phys. Japan 12, 803 (1954); E. Abrahams, Phys. Rev.
98, 387 (1954).

'In regard to the relaxation time calculated by T. Kasuya,
Progr. Theoret. Phys. Japan 12, 803 (1954); Abrahams, Phys.
Rev. 98, 387 (1954) has shown that inclusion of screening increases
the relaxation time by two orders of magnitude.' N. Bloembergen, Phys. Rev. 78, 572 (1950).

E. Abrahams, Phys. Rev. 98, 387 (1954)~

7 C. Kittel and A. H. Mitchell, Phys. Rev. 101, 1611 (1956).
C. Zener and R. R. Heikes, Revs. Modern Phys. 25, 191 (1953).

where n„ is the number of spin waves of wave vector x.
In an insulator trasitions will occur only among the

x=0 levels so that the resonance frequency is
=gpsH/A. It has been shown' that in a ferromagnetic
conductor the resonance frequency for the absorption
of microwave power is shifted in first approximation by
an amount inversely proportional to the square of the
eddy current skin depth b. In other words, the only
spin waves excited by the rf field have wave vectors x
whose magnitudes lie close to the value 1/8.

In order to obtain a relaxation eRect we must intro-
duce a perturbation into the Hamiltonian that will

provide for the decay of any excess over the thermal
equilibrium number of spin waves with

~
r

~

= 1/8.
Several mechanisms' involving magnetic interactions
have been suggested to explain the line widths, but they
appear to yield relaxation times several orders of mag-
nitude too long. 4 Bloembergen' has suggested that the
magnetic interaction of the ferromagnetic electrons
with the conduction electrons should be considered.
Abrahams' has treated in detail the relaxation time
due to the magnetic interaction of ferromagnetic spins
with conduction electron currents and spins, using a
spin-wave description of the ferromagnetic spins. These
interactions do not appear strong enough to explain
the experimental widths.

It is our purpose here to calculate the ferromagnetic
relaxation time caused by the exchange interaction
between the ferromagnetic and conduction electrons
as suggested briefly by Kittel and 3Iitchell. ' We con-
sider specifically pure Fe, Co, and Ni; here the mag-
netization is associated with 3d electrons in a sea of 4s
conduction electrons. In the free atoms of the transition
metals the s-d exchange energy' is of the order of 0.5
ev. However, we have made estimates suggesting that
if screening by 3d electrons is eRective the s-d inter-
action might be reduced to only 1 to 10% of the free-
atom value. It is not obvious that the screening esti-

mates are correct. In this connection we might mention
that in Cu-%In alloys it has also been found necessary
to consider values of the s-d exchange energy 1/10 to
1/50 of the free-atom value. '

Before calculating the relaxation time we repeat the
objections' to the argument that an interaction of the
form S s, where AS is the spin of a 3d ion core and As

is the spin of a 4s conduction electron, cannot con-
tribute to relaxation. The argument is that S.s com-
mutes with the total spin $+s and thus cannot affect
the time dependence of the total magnetization. If,
however, the conduction electron spin is relaxed inde-
pendently by a rapid mechanism, " then in a ferro-
magnetic resonance experiment we are observing the
resonance of S alone and the above objection is no
longer pertinent.

We can estimate how rapidly the conduction electron
spin must be relaxed by an extension of the results of
Solomon" on relaxation processes in a system of two
spins. If we take a perturbation —2JS s giving rise to
a transition probability per unit time w between states
connected by the oR-diagonal components of the
perturbation and add a relaxation process characterized
by a relaxation frequency p for the conduction electron
spin s alone, then Solomon's Eq. (9) becomes

da /dt = (w+ p) (a sp) +w (S Sp),

dS,/dt=w(s, so) w(S,—So)—, —

where so and So refer to thermal equilibrium values. If
the 4s relaxation time is much shorter than the ex-
change relaxation time so that w/p&(1, then these
equations have the solution (8,—so) ~ e &' and (S,—So)
~ e "' showing that the conduction electron spin is
essentially in thermal equilibrium while the relaxation
time of the 3d electrons is governed by the s-d exchange
interaction. From the experimental line widths we
know the relaxation time of the ferromagnetic spins is
in the range 10 ' to 10 "sec. If the mechanism relaxing
the conduction electron spins is that proposed by
Elliott, " the spin relaxation time is r, rg/10(hg)',
where v~ is the relaxation time characteristic of elec-
trical conductivity. In the transition elements the s
and d bands overlap so that Ag is expected to be rela-
tively large, say )10 '. In Xi, v.&~2)&10 " sec at
room temperature and ~g 4&&10 "at 14'K if we use
the experimental values of the resistivity obtained by
Jan and Gijsman. "With these values we obtain a ~,
in the range 10 "—10 "sec, the longer time applying
at low temperatures. Thus in the transition metals the
relaxation times can be such that the exchange inter-
action is effective in relaxing the ferromagnetic spins.
The failure thus far to detect conduction electron spin

Owen, Browne, Knight, and Kittel, Phys. Rev. 102, 1501
(1956); Owen, Browne, Arp, and Kip (to be published).

"The spin-orbit mechanism considered by R. J. Elliott, Phys.
Rev. 96, 266 (1954), is a very effective relaxation mechanism."I.Solomon, Phys. Rev. 99) 559 (1955).

'2 J. P. Jan and J. M. Gijsman, Physica 18, 339 (1952).
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resonance in pure copper is not incompatible with the
above estimates of ~,.

II. SPIN HAMILTONIAN

In deriving the form of the Hamiltonian describing
the exchange interaction between the ferromagnetic
electrons and the conduction electrons, we consider a
periodicity volume of a cubic crystal containing N
atoms and we shall assume that there are N ferro-
magnetic electrons forming a half-filled band. Of
course, in Fe, Co, and Ni the d band is actually more
than half full and there are five orbital states per atom,
not one. The assumption of a half-filled band is made
in order that we may make use of the equivalence of the
running wave and the localized descriptions of the
ferromagnetic electrons. The assumption of one orbital
state per atom is made for the sake of simplicity as we
are interested mainly in finding the form of the inter-
action; we shall later generalize our result in the
obvious way to take approximate account of the actual
spin on each atomic site. These assumptions are equiva-
lent to those made in developing the usual simplified
spin-wave model of a ferromagnet. "

Because the conduction electron spin is relaxed
independently by a rapid mechanism, we can compute
the relaxation time of the ferromagnetic spin system
by considering the scattering of a single conduction
electron by the system of ~V ferromagnetic electrons.
We shall describe the one-electron states of the ferro-
magnetic electrons by localized Wannier functions
a.+(r) which are defined in terms of running wave
Bloch functions b~+(r) according to

a,+(r) =a+(r —R,)= (V) l Q~e '~'" bk+(r), (4)

where the superscript & refers to the spin state of the
electron. The functions defined in this way are localized
about the lattice site R, and are orthogonal and nor-
malized in the periodicity volume V =NO, 0 being the
atomic volume. Because the band is half full, the
description in terms of localized functions is equivalent
to the running-wave description. The conduction elec-
tron is specified by a Bloch function f&+(r), but in
certain instances it will be convenient to express it in
terms of Wannier functions p, (r) as follows:

(iV+1)-electron wave function as

A (iV+,n;, k+) = L(iV+1)!] '
Xdet~ai (ri) 'ani+(mr)' ' 'ag (rx)/k+(riv+i)

~
~ (6)

This wave function describes the state in which the
conduction electron has wave vector k and spin &.
If the conduction electron has spin —,then there are
iV+ ferromagnetic electrons with spin + (located on
sites rii, e~, e~'); if the s electron has spin +, there
are (iV+—1) d electrons with spin + (located on sites
ni, e2, .n~+, ) Th. ese states are eigenfunctions of

with eigenvalues N+, the number of up and down spins.
The number of states with a given value of N+ is
(iV+1)!/PV+)!(iV )!;the ground state /V+=0 is non-
degenerate. The matrix elements of the interaction
Hamiltonian,

between these Slater determinants vanish if the deter-
minants do not have the same N+ value. If the initial
and final states have the same number of up spins,
there are three cases in which the matrix element is
nonzero:

Case 1.—The same set of electrons have spin up in
the initial and final states.

where the J's are summed only over parallel spins and

e'
Kg = dr i2—a;*(1)a, (1)a;*(2)a, (2),

The total wave function of the iV+1 electrons will be

written as an antisymmetric linear combination of
these one-electron functions. We will limit the number
of possible states by considering only the atomic states
in which one ferromagnetic electron is on each lattice
site. We can place one electron on each atomic site
with either spin up or spin down and we have the same
choice for the conduction electron; thus there are 2 +'

states. Using Slater determinants, we can write the

"F. Bloch, Z. Physik 61, 206 (1930); T. Holstein and H.
Primakoff, Phys. Rev. 58, 1098 (1940); F. J. Dyson, Phys. Rev.
102, 1217 (1956).

e2

dr i2—a,*(1)a, (1)a,*(2)a, (2),

E,(k', k) =
~

dri~~~ *(1)P~(1)a,*(2)a,(2),
~l2

J,(k', k) = dri2 —Pk *(1)a,(1)a,*(2)P~(2).

Case Z.—Same as Case 1 except that in the initial
state there is a pair of electrons with opposite spins on
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sites i and j, while in the final state the spins on these
sites are reversed.

(A (;V+)
~
K

~

A (iV+) )= —J;,8g', k.

involving the spin, we write

N N

Xo= 2 P S'' SjJjgzz'zzH'P S)' 2zzsH's; (11)

Case 3.—Same as Case 1 except that in the initial
state the electron on site j and the conduction electron
have opposite spins while in the final state these spins
are reversed.

(A (iV+) ~SC ~A (lV+)) = —J, (k', k).

Now we note that the matrix elements of the following
spin Hamiltonian K(k', k) computed using simple
products of spin functions are identical with the pre-
ceding results and hence BC(k', k) must be the correct
spin Hamiltonian for the exchange interaction:

N

sc(k', k) =Q[E';,.——,
' (1+4S,"S,)J,,]6g g

i&7'

+P[E,(k', k) ——,'(1+4S,"s)J, (k', k)], (10)
i=&

where AS; is the spin of the ferromagnetic electron on
site j and As is the spin of the conduction electron.

Kith regard to the derivation of this Hamiltonian,
it is important to note that use is made of the exact
orthogonality of all the one-electron functions and
therefore we could not have used simple atomic func-
tions to describe the localized electrons. In order that
the conduction electron wave function be orthogonal
to all the wave functions of the ferromagnetic electrons
it must be in a diferent band; hence the Hamiltonian
does not describe the interaction of one extra electron in

the ferromagnetic band with the other X ferromagnetic
electrons. The final result does not depend on the fact
that we described the ferromagnetic electrons in terms
of Wannier rather than Block functions in setting up
the Slater determinants since a ferromagnetic spin-
wave state can be written equivalently in terms of
localized or running wave functions, at least in the
case of a half-filled band. The actual expression for J;,
that we obtained is always positive; as Slater" has
pointed out, we should actually consider also configura-
tion interactions with ionic states when we compute the
term in the Hamiltonian multiplying 8& k which is the
d-d exchange interaction. This modification will change
the numerical value of J;; but will not alter the form
of the Hamiltonian.

Adding the Zeeman interaction, we write the Harnil-
tonian of Eq. (10) as the sum of two terms: BCo describ-
ing the system in the absence of the exchange inter-
action between the conduction and ferromagnetic
electrons and 3C& representing the perturbation caused

by the s-d exchange interaction. Keeping only terms

"J.C. Slater, Revs. Modern Phys. 25, 199 I'1953).

N

X.~= —2 P S,"sJ,(k', k). (12)

To take account of the fact that the 3d ion cores of the
transition metals have a spin greater than one-half,
we shall in general interpret S, as a spin operator with
magnitude [S(5+1)]*'.

III. SPIN WAVE APPROXIMATION

The Hamiltonian 3CO of the unperturbed system can
be diagonalized in the spin-wave approximation by the
method of Holstein and Primakoff. " If g(e, ) is the
spin function for the jth lattice site, e, being the
number of electrons on site j with spin parallel to 8,
then we have the relations

S,*x(n,) = (n, 5)g—(e,), 0&e, &2S,

( '
~, (e,+1),

25I (13)

n; 1q '*—
5,—y(e, ) =(25)l(e,)li 1 —

i y(e, —1).
25 i

5,+x(n, ) = (25)'(e,+1)'i 1—

a;*y(e,) = (n,+1)*'y(n,+1),
a,g(n, ) = (n, ) ig(n, 1), — (14)

so that the usual commutation relation for bosons,
[a,,a,*]=1, is satisfied. In terms of these operators,
we can write the spin operators in the form

S,'= a,.*a;—S,
a,*a,y

'
5;+= (25)'a, *~ 1—

~

—(2S)'a,*,
2S

( a,*a;) &

S, = (25)*~ 1 —
~

a,—(25)~a, ,
E 25)

(15)

where we expand to second order in the a' s. In terms
of creation and annihilation operators, the Hamil-
tonian of the unperturbed system becomes, to second
order in the a' s,

BCO= glzlzSiVH 2przHs* S' P'J;, — —

—2S P'J;, (a,*a,—a;*a,) gjzlzH P a,*a,. (16)—
s I7

By making the transformation" to the spin-wave
representation,

a, = (V)
—l P exp(ivR, )a„, . (17)

We define creation and destruction operators for e,.
according to
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the Hamiltonian 3CO can be brought into diagonal form

BC» = AS—zJd /+ A glVSH 2pa—Hs*

+P n„[2SJ~ex'a' gee—H]. (18)

The energy of the unperturbed system is determined by
the number of spin waves with various x values and by
the conduction electron wave vector and spin.

IV. RELMCATION TIME

The perturbation BC& provides a mechanism by which
the nonequilibrium number of spin waves of vector

~
x~ =1/8 excited by the microwave power in a reso-

nance experiment can return to its thermal equilibrium
value. 3C~ can be written in a more useful form if we
utilize the translational property of the Hloch function,

Pk ——('V) le'k'uk(r)

(assumed normalized over an atomic volume 0). Thus

e2

J;(k',k) = d3r jd'r~ pk. *(rq)a(rq —R,)a*(r2—R,)leak(12)

e2

g2

= e' "="' ~~~ d'rid'r2 4 k *(r&)a(ri)a*(r2)pk(r~)
I'y —1'2

where J,~ is similar to an atomic s-d exchange integral.
This expression for J,~ takes no account of screening;
we include the effect of screening by modifying the
numerical value of J,~ which we treat as a parameter in
that we do not calculate it from the preceding defini-
tion. With this substitution, the Hamiltonian" becomes

x, , (k', k) = —2( v)—'J.gs [P,e*~"—k'~ "~S,]. (20)

This Hamiltonian for k'&k does not commute with
either p;,nS,"S, or p; ~~S,*, so both the z component
and the magnitude of the magnetization of the d elec-
trons can be relaxed by this interaction. For k'= k only

P; PS,' fails to commute with the Hamiltonian; the
magnitude of the d electron spin in this case is not
altered. It is easy to see that in general the total spin of
the d electrons need not be conserved under the s-d
exchange interaction since this interaction need con-
serve only the total spin of the d and s electrons (we
again stress that the s electron is relaxed rapidly by a
separate mechanism). Thus the Hamiltonian Ãq can
describe for instance a process in which a conduction
electron is scattered with a spin fhp from state k to state
k'4 k and the ferromagnetic electron system changes
from the state in which S= —S,„(all d spins down)
and spin wave vector x = 0 to the state S= —S,„+1

(one d spin up) and spin wave vector x= k —k'.
If we now transform to the spin wave representation

by Eqs. (15) and (17), we obtain

f2Sy l
xg(k', k)= —

~

—
~
J,ep[s+aAk' —k, +s a ~k—k', ]

E.v
2J,ds'

p a„*a„8k k. „. „. (21)

'~ Professor K. Yosida has pointed out that a Hamiltonian of
this form has been obtained by T. Kasuya, Progr. Theoret. Phys.
(Japan) 16, 45 (1956).

The first term in the Hamiltonian corresponds to the
scattering of a conduction electron from the state with
vector k and spin down to the state with vector k'
and spin up and the destruction of a spin wave of
vector +=k' —k. The second term scatters a conduc-
tion electron from the st;ate k to the state k' and
creates a spin wave of vector x= k —k'. The third term
in BC~ scatters a conduction electron from state k t.o
state k' without Ripping its spin, destroys a spin wave
of vector x and creates a spin wave of vector
~'= k —k'+~.

The single spin-wave processes provide the most
rapid method of relaxation for the spin waves of mo-
mentum

~
x~ 1/8 which are excited by the microwave

field. The double spin-wave process does, however,
provide a mechanism for relaxing spin waves of vector
zero.

Consider a spin-wave state of vector x (~x~ 1/8);
by standard time-dependent pert. urbation theory we
find for the direct-spin processes:

27r f2$q
~J.e' 2 ~k-k, A(Ek +».—Ek+)

'k (lV) k', k

X[(1—f& )fk+ (n „+1)—(1 f„+)f„n„7. (22)— —

Here Ek+= (k'k'/2m, *)+peH, the energy of the con-
duction electron of wave vector k and spin &, and
e„=25J«~2u2 —gp&B, the energy of a spin wave with
vector x. The Fermi function fk+= (1+exp[(E»+—Er)/
keT]) ' is used as the density of states for the con-
duction electron, since in the introduction we showed
that the conduction electrons are essentially in thermal
equilibrium. To simplify the expression in the square
brackets in Eq. (22), we set n„=n.'+ An„, where
n, ,"=[exp(»,/k&T) —17 '. 3Iaking use of the energy
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SJ,~'«„""( df&)
X~(E~g .

~

—Ee+e.j2paH) =
mh se ( dEe)

where

Xk'dk
Jo

tn*
sin8d8 8(x—cos8), (23)

A'~k

t'A'»'
x=

~
+e„+2@.H

~
(A'»k/m*).

&2m* )
Paying attention to the limits of integration, we get

with

1 SJ 2m*20&„

Tg xh'a

(E;„EF)—
1+«pI I

(24)
kT )

E;„=(E„+e„+2p~H)2/4E, .

For ~x~ =1/8, E„«EF so that

1 SJ 'm*'pe„

Tg wh'ff
(25)

However as K—4, E;„~~ and thereby counteracts
the explosive tendency of e„/»; since Ti &" as»—+0, w—e
must consider the term in Eq. (21) quadratic in the a' s

if we wish to calculate the relaxation time for ~=0 spin
waves (we find that it is several orders of magnitude
longer than the time for

~

sc~ 1/8).

V. COMPARISON WITH EXPERIMENT

For nickel, ' at room temperature and at 24 400
Mc/sec, @~=17 and p=7.74X10 ' ohm cm so that
»=1/8=(4n. cop~/pc')'*=2X10' cm '. We note that the
experimental line width in nickel is temperature-
independent' from T=O'K to T= 293'K, but T~ as
calculated from Eq. (25) has a slight temperature de-
pendence owing to the temperature dependence of lf

8 function and expanding the Fermi function near the
top of the Fermi distribution, we obtain for the
bracketed expression

e„(dfe/dEe)he„.

After summing out k', we can write the following ex-

pression for the relaxation time T&.

Ari„4~SJ,je„( de)Zl-
Dm, NA & 0 dEel

through p. However, the experimental value for the
resistivity at 4'K quoted by Reich' is only about 8 of
the room temperature value, so T~ is increased only

by a factor of about 3 over the room temperature value.
Since the spin-wave approximation is valid only at low

temperatures, we can expect Eq. (25) to hold for
T«T, (631'K in nickel) so that 1/Ti will not show the
large increase that is observed' in the line width at
high temperatures. The calculated relaxation time is
also field-dependent both through the explicit appear-
ance of II in e„=25J«I%„'a-'—gp&H and indirectly
through the dependence of If upon co. If we compare the
relaxation times as calculated at, say, 3 cm and 0.6 cm,
we find (Ti)p e '(T&)z. Bloembergen's measurements'
on a polycrystalline nickel sample yield (AH)3/(AH) i ~

3 and Hoskins' results" for a nickel single crystal
give (~H), ,/(DH)o. e

———,'. The measurements of Hoskins
and Wiener" on Fe-Ni alloys show (~H)3/(~H)p e

=0.36—0.48.
At 24300 Mc/sec, with»=2X10', H=5200 oe, a

=3.52X10 cm, Jdq=230k~=2X10 ' ev, we find
6„=10 "erg. If we take the screened exchange integral
J,~10 ' ev, we obtain 1/Ti=2X 10' sec '; this value
of T& is an order of magnitude shorter than the shortest
time calculated using magnetic interactions, ' but is an
order of magnitude longer than 1/T2 ——3.8X10' sec '

observed by Reich' in nickel. XVe cannot choose a
larger value of J,~ to obtain agreement with experiment
as this would result in a large line shift. ' The line width
in nickel is unusually large and the mechanism sug-
gested by Stevens" may play an important role in
explaining the observed width. In some materials, such
as alloys, in which the lines are narrower, the exchange
mechanism may play a dominant role in ferromagnetic
relaxation.
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