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Energy Equation of Magneto-Gas Dynamics*
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The general energy equation of a viscous, heat-conducting, and electrical-conducting Quid in magneto-gas
dynamics has been derived. Various simplified forms of energy equations have been discussed, particularly
for the cases with magneto-gas dynamic approximations. The fundamental equations of magneto-gas
dynamics are also given.

I. INTRODUCTION

ECENTI.Y the study of magnetohydrodynamics
of a compressible fluid, more properly magneto-

gas dynamics, ' ' has attracted great attention. How-
ever, nowhere do we find a complete account of the
fundamental equations without simplifying assumptions
injected from the outset. Practically all of the previous
investigations use some approximate relation to replace
the energy equation in the analysis. Banos' tried to
derive an energy equation of magneto-gas dynamics for
nonviscous and non-heat-conducting compressible fluid,
but his result is incorrect because he derived the energy
equation from the equation of motion. It is well known
that in gas dynamics, the equations of energy and of
motion are two independent relations. One cannot be
derived from the other. As a result, in the energy equa-
tion of Banos, Eq. (15) of reference 5, the important
terms involving the internal energy of the gas are

missing. Hence his result does not give the complete
energy equation. Since all the other fundamental
equations of magneto-gas dynamics, ' ' except the
energy equation, have been discussed before, only the
detailed derivation of the energy equation of magneto-
gas dynamics for a viscous, heat-conducting, and elec-
trically-conducting fluid is given in this paper. We shall
discuss other simplified forms of the energy equation of
magneto-gas dynamics. Finally, the whole set of the
fundamental equations of magneto-gas dynamics is given

II. DERIVATION OF THE ENERGY EQUATION

Consider the surface S of a volume V fixed in space.
The law of conservation of energy requires that the
di6erence in the rate of supply of energy to V and the
rate at which energy goes out through S must be the
net rate of increase of energy in V. We have then

r ( BT)
lt «*(r' n )ds U3r. p33,n—,ds

~ I
" ln, ds

~s "s ~s ( Bx,)

S,n, dS ~qs, n, d—S= Upd V—, (1)
~s ~s Bf dv

*This work was supported by the Office of Scientific Research,
Air Research and Development Command.

E. Astrom, Nature 165, 1019 (1950).' N. Herlofson, Nature 165, 1020 (1950).
3 H. C. van de Hulst, Problems of Cosmical Aerodynamics

(Central Air Documents Office, Dayton, Ohio, 1951), pp. 46—56.
4 S. Lundquist, Arkiv Fysik, 5, 297 (1952).
5 A. Banos, Jr., Phys. Rev. 97. 1435 (1955).

14

where i,j= 1, 2, or 3, and the summation convention is
used, e g , u,.n,.= u&n, +333n3+333n3

The meanings of the various terms in Eq. (1) are as
follows:

(a) u;= ith component of the velocity vector q of the
fluid; n,.= jth component of the outer normal of the
surface S; 7-;,=i jth component of the viscous stress
tensor':

~'~= (r")'~ Pb ~—
where p= pressure of the Quid, 8;,=0 if iW j; 8„=1, if
i= j; and

(B33; Bm,, q (Bu3)
(~ )'~ pl + I

—S'il l4,
EB~; Bg, l E Bx~)

p being the coeKcient of viscosity. Here u;(r;,n, ) = rate
of energy produced by the system outside in contact
with the system within, per unit area of the surface of S.

(b) U= total energy per unit mass of the Quid:

1
U= UM+ (Us+ UII) 333 33'+I +I+ (Us+ UII))

P p

where U~ is the energy of the fluid other than the elec-
tromagnetic energy, which consists of: (i) -', 33;u;= kinetic
energy per unit mass of the fluid; (ii) P =potential
energy per unit mass of the fluid; (iii) I= internal per
unit mass of the fluid=C„T for ideal gas, where C„ is
the specific heat at constant volume and T is the ab-
solute temperature.

The second term in Eq. (1) represents the energy Qow

by convection across the boundary S. In the analysis of
magneto-gas dynamics, we assume that Maxwell's
equations for the electromagnetic field hold true, and
hence the electromagnetic energy is localized in the
field and is not carried by the moving gas. Of course
this assumption is only approximately correct, because
the electric charges and electric current are carried by
by the gas. However, in magneto-gas dynamics these
contributions to the electric energy are negligibly small.

UE= —,'eE;E;= electric energy per unit volume, where
e is the dielectric constant and E, is the ith component
of the electric field strength E. U& ———,'p,H;H;=mag-
netic energy per unit volume, where p, , is the magnetic

6 S. I. Pai, Viscous Flozv Theory, I. Laminar Flow (D. Van
Nostrand Company, Inc. , New York, 1956).
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permeability and H; is the ith component of the mag-
netic field strength H. The mks unit system is used in
this note.

(c) x, = jth component of the spatial coordinate, and
a = coefFicient of heat conductivity.

The third term in Eq. (1) represents the energy flow

by heat conduction across the boundary 5.
(d) S;=E,H& Ei,H, =—ith component of the Poynting

vector S=EXH which represents the electromagnetic
energy Rowing across the boundary S, i.e., the fourth
term of Eq. (1).

(e) qadi;= ith component of the radiation energy flux,
and

rlq g;/its, =R„R., —

where R„ is the rate of radiation energy emission per
unit volume and R is the rate of radiation absorption
per unit volume.

The fifth term in Eq. (1) is the rate of energy flow

by radiation.
By Gauss' theorem, we may transform the surface

integrals of Eq. (1) into volume integrals. We have then

8 8(Usrpu;) 8 t' rlT) rl(pUsr)'+
~ v Bx& l9x&' Bx& E clx&.J Bt

8 (UE+ Usr) 8$; Bqn,
d V=0. (2)

Since the volume V is arbitrarily chosen, the integrand
of Eq. (2) must be zero and we have

8 rl(Usrpu') 8(pUM) it(UE+ Urt)
(u;;,)—
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This is the energy equation in magneto-gas dynamics
of a viscous, heat-conducting, electrically-conducting,
and compressible fiuid.

Equation (3) may be simplified by the help of the
following equations:

(i) The equation of continuity:

~(put)—+ 0.
Bt Bx;

(ii) The equation of motion:

8 (UE+ Uu) 8$;
(7)

Combining Eqs. (3) to (7), we have the following
energy equation of magneto-gas dynamics:

DI flu; Bu; 8 f' 8Tq i'-Bqrr;= —p +(. )„+ i
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where

i= J—p,q= o (E+p,qXH), (9)

o. is the electric conductivity of the gas, and i'/o. is the
Joule heat; i is sometimes called the conduction current.

III. SIMPLIFIED FORMS OF ENERGY EQUATION

For the ordinary gas-dynamic problem, if the ab-
solute temperature T is not enormously high, the energy
Row due to radiation may be neglected. Furthermore,
the compressible Quid which we investigate is usually
assumed to be a perfect gas whose equation of state is

p= pRT, (IO)

where R is the gas constant. Under these two conditions,
Eq. (8) may be written in the following form:

DC~T Dp Bu; 8 ( AT) is
+( ")' + i

~ I+—, (»)
Dt Dt rlx, Bx; 0 rlx, ) rr

where C„=C„+R.
For ordinary magneto-gas dynamics, we consider the

cases in which the velocity of the Row q is much smaller
than the velocity of light c. Since the energy in the
electric field is of the order of q'/c' of the energy in the
magnetic field, ' the energy in the electric held may be
neglected. Furthermore, since we shall not consider phe-
nomena of very high frequency, the displacement
current in Maxwell equations:

VXH= J+ (tleE/olt), (12)

&XE= —(rip, H/rlt) (13)

and J,= ith component of the electromagnetic7 force F„
which is:

F.=p.E+ti.JXH,

where p, is the excess electric charge and J is the electric
current density with components J;.

(iii) The equation of electromagnetic energy:

where

DN; BI' Br„.
p = —p + +~',

Dt Bx; Bx;

D 8 8
+us

Dt Bt Oxj,-

(5)

(where V' is the gradient operator), may be neglected,
we have p,—0, and

i= ~XXI. (14)

~ S. Chandrasekhar, Proc. Roy. Soc. (London) A204, 435 (1951).
s F. de Hoffmann and E. Teller, Phys. Rev. 80, 692 (1950).

Under these conditions, the equation of motion (5),
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with BP/Bx, =0, becomes Row, from Eq. (18), the steady Row equation is

Du; (3H,
p

—p,Ha
Dt Bxy

cj ( p,H,H;q B(r~);&
i p+ I+

coax ( 2 2 cjx;

Bho v'y H
z~, = V'XH.

any. 0

—p,qXH . (21)

and the energy equation becomes

Dhp Bp 8 8 (BT)=—+ L~'( ")']+
Dt Bt Bx, Bx, ( Bx;)

(vxH
y(v'xH)

~

—t.qxH (16)

Hence, the stagnation enthalpy is not a constant along
a streamline in magneto-gas dynamics.

For one-dimensional steady flow, i.e., flow in which
all the variables depend on only one spatial coordinate,
say x, Eq. (18) may be integrated. If only the x-com-
ponent of the magnetic field H is diRerent from zero,
Eq. (18) after integration becomes

pmyhp= constant. (22)

where hp C„T+', u——,m, —

The electromagnetic equations may be reduced into
a simple equation for the magnetic field H which is

=&x(qxH) —~x (~xH) . (»)

Dhp p7p

p =—+(vxH).
Dt Bt

VXH —p, qXH . (18)

If there is no electromagnetic energy, Eq. (18) becomes

Dhp Bp
P

Dt Bt
(19)

which is the well-known energy equation for the
unsteady Row of an nonviscous compressible fluid. For
steady flow, Eq. (19) becomes

u, (cjhp/Bx, ) = 0. (20)

Equation (20) shows that the stagnation enthalpy hp

is constant along a streamline. However, with magnetic

Hence we consider the interaction of the magnetic
field H with the fields of gas dynamics under these con-
ditions. This is why we use the name magneto-gas
dynamics.

For a nonviscous and non-heat-conducting fluid, Eq.
(16) becomes

In this case the magnetic field has no influence on the
gas-dynamic phenomena.

If only H2, the x. component of the magnetic field,
is different from zero, then Eq. (18) with the help of
Eq. (17), after integration, gives

1 dHg
p+&~0—peH2

'p, a dx
u~Hp =—constant. (23)

If we put a= ~, the result is the energy equation used

by de HoRmann and Teller in their study of magneto-
hydrodynamic shock. '

IV. FUNDAMENTAL EQUATIONS OF
MAGNETO-GAS DYNAMICS

(24)7' J+Bp,/Bt=0,

(d) the equation of motion (5), (e) the equation of con-
tinuity (4), (f) the equation of state (10), and (g) the
equation of energy (8).

Under the magneto-gas dynamics approximations,
the unknowns reduce to H, q, p, p, and T. The relations
that govern these unknowns are: (u) the equation for
magnetic field (17), (b) the equation of motion (15),
(c) the equation of energy (16), (d) the equation of con-
tinuity (4), and (e) the equation of state (10).

For the problem of interaction of gas dynamics with
electromagnetic fields, the unknowns are H, E, J, p„
q, p, p, and T. The relations that govern these unknowns
are: (a) Afaxwell's equations (12) and (13), (b) the
current density equation (9), and (c) the conservation
of electric charge,


