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The application of the two-particle density matrix to the calculation of approximate ground states for
many-body systems is discussed. It is shown that the subsiduary conditions employed by Mayer in this
context are insufficient to ensure that a valid result is obtained. The formulation of adequate subsidiary

conditions presents considerable difficulty.

INTRODUCTION

HE suggestion has been made by Lowdin! and

Mayer? that the problem of finding an approxi-
mation to the ground state of a many-body system
might be approached with advantage by employing the
density matrix. They both point out that the energy
levels of systems involving only two-body forces are
completely characterized by the two-particle density
matrix. Thus the energy may be expressed in terms of
the density matrix element and the variational pro-
cedure applied to obtain the ground state.

Mayer? has actually carried through this procedure
for the case of a gas of electrons immersed in a uniform
positive charge. The further discussion of the use of the
density matrix will, in this paper, be confined to this
particular case. This is because Mayer’s methods afford
a concrete example for discussion and also because this
particular model affords the only true many-body
problem having a simple exact solution in the Hartree-
Fock approximation. A comparison with the Hartree-
Fock solution will be important in the subsequent dis-
cussion. Mayer’s method (which will be discussed in
more detail below) depends on finding a simple trial
form for the two-particle density matrix element which
has the required symmetry and which reduces properly
to the one-particle element on the application of the
appropriate operations. The energy is then expressed
in terms of this element and minimized, the process
being subject to the appropriate normalization condi-

1 P. O. Lowdin, Phys. Rev. 97, 1474 (1955).
2 J. E. Mayer, Phys. Rev. 100, 1579 (1955).

tions. All the relevant physical information is thus ap-
parently included. The results are, however, rather
surprising. Mayer finds that thereisa minimum distance
of approach for pairs of electrons beyond which the
probability density is zero. This is in complete disagree-
ment with the results of various problems involving
small numbers of electrons which have been studied in
detail by other methods. These include the classical
works of Hylleraas® and the problem of two electrons
moving in a “three-dimensional linear oscillator poten-
tial” which may be solved exactly.* These cases indicate
that the probability density goes to zero at r=0 for the
triplet case and remains finite at =0 for the singlet
case. Thus, for a large assembly of electrons, one would
expect the mean probability density to be small but
finite at »=0. This is in marked contrast with Mayer’s?
result.

Now these disagreements with existing results could
possibly be explained in terms of the particular trial
form assumed for the density matrix element or attri-
buted to a qualitative difference between the cases of
very few and very many electrons. However, by using
the framework of Mayer’s? method and applying his
subsidiary conditions, it is possible to obtain certain
entirely absurd results. It is the purpose of this paper
to point this out and to show that the problem is
rather more complex than has been assumed. Thus,
though this method offers great possibilities, it requires
modification before becoming a practicable method of

3E. A. Hylleraas, Z. Physik 48, 469 (1928); 54, 347 (1929);

65, 209 (1930).
4R. H. Tredgold and J. S. Evans (to be published).
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calculation. In order to discuss the question further, it
is necessary to recapitulate certain of the relevant
portions of Mayer’s® paper. This is done in the next
section.

OUTLINE OF MAYER’S METHOD

An assembly of IV electrons in a box of volume V' is
considered. The density is then

po=(N/V) electrons per cc. (1)

The box is supposed to contain a uniform positive
charge of density epo. The unit of length is chosen to be
po} and the unit of energy is the atomic unit=27.21 ev.
¢ is the concentration of electrons per cubic Bohr radius.
The Hamiltonian is then

1 N 1

N
H=—-3c3 V{Z—FC%{ ——2 | —d*x
i=1 NZ2iZj21%; =Y Xy

Let ¢ be the complete wave function for the system and
g. the combined space-spin set of coordinates for the ith
electron. The two-particle density matrix element is
defined as

p2(q),q)""; q2',q2"")
EL\/Y<:\V_1)f . -f1//*(q1’7q2”q3. .. qA\,)

X¢(q1,9:2",qs° - - qn)dgs- - -dgn, (3)

and the matrix element for the coordinates of position
alone is

p2(x 31”5 X2/, xe'") = ffpzadlfld% 4)

where the ¢’s denote the spin coordinates. The single-
particle density matrix element is defined as

pi(x),x1") =

v 1fpz(xl’,xl”;x%xz)d%g‘ )

The functions f(x) and g(x) are defined as
f@)=p(x",x"),

1—g(w12) = pa(X1,X1; Xg,Xz). (7

w=[x'—x"], (6)

It may then be shown that

d2 ) £
E:_ C%[ f(k)J —-%céf 4rxg(x)dx.  (8)

e
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It is further shown in Mayer’s® paper that the appro-
priate symmetry conditions can be satisfied and the
two-particle matrix element can be made to reduce to
the one-particle element properly if

g@) =3/ () +[1-3 /@) [ 2k (@)= ()], (9)

where f(x) and k(x) are even real functions of a. These
functions are now chosen to minimize the energy as
given by (8), subject to the two conditions

f 4ra?g(w)dx=1 (10)
0
and
UNCIORA (11)
where
* sin2watl
6(0)= f A [ (). (12)
0 2mat

The first of these conditions expresses the normalization
of the total wave function and the second, the fact
that not more than two electrons of opposite spins can
occupy one state. A full explanation of why this should
be cannot be given here and reference must be made to
the original source (Mayer?) for the derivation of these
results.

DISCUSSION OF MAYER’S METHOD?

As will be seen from (8), the function k(x) does not
appear in the expression for the kinetic energy and
therefore can be chosen to minimize the potential
energy subject only to the condition (10).

However, if the form of the function f(x) corre-
sponding to the Hartree-Fock solution is denoted by
fo(x), it can be shown that

fw dra?s [ (x)da=1, (13)

and thus, according to Mayer,? Eq. (10) may be satisfied
for nonzero k(x) only if f(x) differs from fo(x). Thus
the introduction of correlation implies k(x)5=0 for
certain values of x and this in turn implies an increase
of kinetic energy over the Hartree-Fock value. This
would, of course, be expected. It is thus found that

k(x)=1,
k(x)=0,

0< x< o,

xo<a o, (14)
where xo is a parameter subsequently determined by
variational means.

However, it is important to notice that if k(x) is
allowed to assume negative values over part of the
region x> xyo, it is obviously possible to choose a form
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such that

0

f dma[1—1 2(2) T2k (x)— B2(x) Jda>0  (15)

0
f dratg(x)=1,
0

with f(x)= fo(x).

Now if (15) and (16) can be simultaneously satisfied,
the implication is that the potential energy has been
lowered as compared with the Hartree-Fock solution.
However, f(x)= fo(x) implies that the occupation of
states in momentum space remains the same as in the
Hartree-Fock treatment. If this result is considered
from the standpoint of configuration interaction, it is
seen to be in error since there is only one possible con-
figuration corresponding to fo(x). Thus if k(x) is

and

(16)
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allowed to take on negative values, the method breaks
down. However, there appears to be no physical or
mathematical reason why %(x) should not take on
negative values over part of the range of x. It is not
even surprising if this behavior makes g(x) negative for
certain regions of x since such behavior is physically
allowable.

CONCLUSIONS

It thus appears that the methods discussed in this
paper cannot be employed with confidence unless some
other set of auxiliary conditions can be introduced to
ensure that the two-particle density matrix can be
derived from an allowable wave function.
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