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An extension of the method of Chew and Low is developed for interacting boson-fermion systems for
which a portion (H&) of the interaction can be treated exactly and is included in the zero-order problem. It
is applied to the scalar pair term of meson theory.

INTRODUCTION

A NALYSES of low-energy pion processes on the
basis of the approximation method of Chew and

Low' have proved valuable in correlating pseudoscalar
meson theory with experiment. It is a new feature of
this development that one deals directly with physical
nucleon states (and renormalized coupling constants).

In this note we report an extension of these methods
to interacting systems for which a portion of the inter-
action can be treated "exactly" and is included in the
zero-order problem. A simple example of this in ordi-
nary potential scattering is the analysis of proton-
proton scattering in terms of Coulomb wave functions.

In potential scattering with Hr=Hi+Hz+Hp, the
S matrix can be given in two equivalent forms

H, pp corresponding to the ground state, i.e., a physical
nucleon, pA,

(+) to a one-meson scattering state with
outgoing (+) or incoming (—) waves asymptotically,
etc. We choose Hpp=0. A state' p„+&(+) may then be
constructed out of a state p„(+' by the relation
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Here Hp„(+)=E p„(+', and the state p„+I(+' contains
in addition to the mesons of p„(+) a real meson in the
state p. If we define a new operator b~'+)t by
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we can then write
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(H, +Hp) p &+) =E,p, &+),
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With this definition, it is straightforward to show that
(2) we also have

(+) —b (+)~ (6)

The central result contained in this paper is the field-
theoretic analog of Eq (1), in. which there appears
only physical nucleon states, i.e., eigenstates of the
total Hamiltonian, H~.

An application of this method to the scalar pair term
of meson field theory is discussed and compared with
earlier work. '

DEVELOPMENT

Consider first a Hamiltonian

H= IZ)+Hp,

Hp= Z)~)zz~ ized

that is, the operator b~(~) acting on y„(+) gives zero
unless one of the zz mesons in qr„'+) is the meson p, in
which case it gives the state with that meson missing.

The operators b„'+' and b„'+' may thus be inter-
preted as destroying and creating physical mesons in
the exact scattering states of FX.

The usual properties of creation and destruction
operators are easily verified; namely,

I b i+) b (+)z$ —b

and we find, as is to be expected,

H= P b &+)tb ~+).

The operators aA, and aI, ~ destroy and create mesons in
free particle states specified by quantum numbers k.
Let pp, pj, (+), . be the complete set of eigenstates of

*This work supported in part by the U. S. Atomic Energy
Commission and the 0%ce of Naval Research.

' G. F. Chew and F. E. Low, Phys. Rev. 101, 1570 (1956).' Drell, Friedman, and Zachariasen, Phys. Rev. 104, 236
(1956). Hereafter referred to as I.

It remains now to relate the two kinds of operators,
b(+) and b( ) corresponding to states with outgoing and
ingoing boundary conditions.

Let k represent a state specified by the angular
momentum /, m and the energy k; i.e., k~k, l, m. The
meson field may then be expanded in the complete set

' We use the notation y to specify a state of n mesons, without
explicit indication of the states occupied by these mesons.
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of scattering states of the Hamiltonian H:

p.(x)= 2 (2~p) '
l,m, k

X [b) , '+).uu'+) (x) I') (ll,)+c.c.]. (10)

Here the u)k'+' are radial eigensolutions (in the case of
separable H) corresponding to plane waves plus out-
going (+) or ingoing (—) scattered waves. Now the
difference between the outgoing and ingoing radial
wave functions for the scattering is just

u&), '+) (x) = exp[2ib)") (k)]u)k' ) (x), (11)

where 8&(') is the lth phase shift produced by the inter-
action H&. Thus, we have

construct

S„p——(P, —IPp+ )

27ri
b( „—p),)(4„~—)

I [H,b, &+»] I%o). (20)
Z2

It should be noted that the two coefficients of
2mib(p)~ cu,—) in Eqs. (17) and (20) are not themselves
equal unless cu~=co, . The renormalization constant Z2

may be incorporated into the coupling constant of H2,
thus including renormalization effects of H&. We there-
fore drop the Z2.

We define the transition amplitude

b) p. '+) =exp[ —2ib~") (k)]b& I,.& ). (12) (21)

Next let an additional interaction H~ be added to
the Hamiltonian H. Write

Hr H&+ H p+——H p, (13)

with eigenstates 'kp, PI, (+)' ' '. Denote by E, the self-

energy due to the presence of H&. Thus,

HT'kp =E,+p,
HH'~'+) = (E,+~a)+p'~), (14)

Writing
s (+ &

—)Io &+) (15)

(6) —~ (6)Pu
H Q)p&z6

(H& —E,)+„&+), (16)

and performing some algebraic manipulations, we are
led to

etc. We suppose that the problem for the Hamiltonian
H=H)+Hp is exactly solved; that is, we know the
states p, and the expansion of the fields in terms of the
operators bI, (+) and b~( '. Thus we assume that ex-
pressions like [Hp, b~'+)] can be evaluated. We also
assume that the S matrix for H& alone is known.

The S matrix for scattering due to both H~ and H2 is

Again letting q p, etc. , specify states of a given
angular momentum /, we can write

where

r, (P) = T, , )(p, /) exp[2ib)"'(q)],

T. (P i) =(+.' 'ILH, b. ' "]I+o)

(22)

(23)

T now satisfies the usual type of Chew-Low integral
equation, ' ' obeys a unitarity condition on the energy
shell, and is therefore of the form sinb&") exp[ib)"'].
The total scattering amplitude for a given l then takes
the form

APPLICATION

sinb~"' exp[i')")]+exp[2ib &"] sing&&') exp[i' &')]

=sin(b ")+b "') exp[i(b ")+b '-))], (24)

the first term on the left-hand side being the scattering
due to H~ alone.

The interaction H~ has thus been separated out from
the problem. Its presence influences the equation for
scattering by H2 alone only in that the inhomogeneous
term of the Chew-Low equation now involves [H&,b&' ) )]
instead of [Hp, up~].

s„,= ( pp„&
—' q p'+) )—2~ib (p)„—p),) Let us now apply the above formalism to an explicit

X (@ (—)
I
(H E ) I

(+)) (17) example. We consider the pair term

The first term here is just the S matrix due to H&

alone. This being presumed known, we confine our
attention to the second term. Using

H, =Xp')t (xpp) pp(x)s(x)d'x, (25)

and
(+)—$ (+) f Pp

1
Zpppp=%'p+ —(1—Pp) (Hp —E,,)%'p,

H
(19)

with the source density s(x) =3/47ra',
I
x

I
(z, and =0

for
I
x

I
)a. The eigenproblem for Hp+H) can be

solved exactly. "We write

p, (x) =g(2~p) '[b)p, ' )u)q& '(r)P~(cos8)+c.c.], (26)

where Z&= (ppp I%'p) and Pp projects' onto happ, we

4 We wish to thank Dr. S. Gartenhaus for a discussion of this
point.

' S. D. Drell and E. M. Henley, Phys. Rev. 88, 1053 (1952).
6L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-

pany, Inc. , New York, 1955), second edition, p. 77.
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and. exhibit the ingoing radial solutions for /=0:

zzp„~
—'(r)

cosbp sechPaip(Pr), r(a
tanhpay

cosbp jp(kr)+ka~ 1— ~zzp(kr), r) a (27)
pa j

where

those obtained' in I. Using the values for the (re-
normalized) constants from I, namely Xp

——0.4/zz; X
=0.4/p, ', we have r, =0.85.

Photoproduction with the couplings H&+Hz may also
be discussed on the same basis. The inhomogeneous
term is again multiplied by r„so the effective coupling
constant for S-wave photoproduction is r, j. In the
P-wave scattering, however, the effective coupling
constant becomes r„j', where

~3XpP
P 1 q

/

—k'a'
2zr EMaj

(28)
s(r)j &(kr)rzdr=1. 0.

J)
With this expansion,

(29)

so the b«' ' above are the required operators.
S-wave scattering due to this H& alone is given by

tanhpa )
tanBp(k) = —ka~ 1—

E pa
(30)

Now we include a second coupling term

f
Hz=hp~.

J
y(x)s(x)d'x X

~
zp(x)s(x)d'x . ('31)

The inhomogeneous term in the Chew-Low equation
for the transition amplitude [Eq. (23)] describing
S-wave scattering from H2 is

(+p
~

Lb„(-),[H„b,~-»]]
~

+p).

This term is the same as it would be in the absence of
H&, except multiplied by r,', with

If not significant, it is nevertheless amusing to note
that the agreement between the coupling constant f
obtained from photoproduction and from P-wave
scattering is improved. ' '

The proof of the Kroll-Ruderman theorem may be
carried through just as in I, using b's instead of a' s.

As far as pion pair production is concerned, the
following comments may be made:

(i) The theorem' relating pair production to P-wave
scattering is valid only in the absence of S-wave scatter-
ing. The presence of H~ in the unperturbed Hamiltonian
therefore destroys this theorem.

(ii) The results of Bincer" are not altered by this
type of treatment of the BI term.

(iii) An exact calculation of pion pairs due to Hq
alone is possible using the methods of reference 5. The
contribution to one S-wave and one P-wave pion is
down from the perturbation result of Lawson" by a
factor

Ma(1 —tanhPa/Pa) '

f
s(r)up' &(kr)r'dr s(r)j p(kr)rzdr. (32)

Jo

So far we have been guided by simplicity in con-
sidering a source density' which is a square cutoQ in
coordinate space. However, in the papers of Chew and
Low, and in I, a square cutoG in momentum space is
used. For comparison we have computed r, both with
a square cutoG and with a Gaussian cuto8, and have
obtained very similar answers. We thus feel that the
detailed shape of the cutoff may be safely ignored.
Also we may treat r, as a constant independent of
energy to a good approximation for ka&1.

The equation for T, then, is identical with Eq. (24)
of I, with Xp ——0 and with p(k) multiplied by r, . Solu-
tions to this equation give results quite consistent with

corresponding to the parameters in I, showing the
effect of H~ alone to be negligible. "

These methods also lend themselves naturally to the
inclusion of Coulomb eGects in the analysis of pion-
nucleon scattering.

' Notice that the pair term, Eq. (5) is here treated as a local
interaction in contrast with I, where separability was assumed.
For simplicity we still maintain the separability assumption in
Eq. (6).

See discussion below Eq. (67) in I.
~ R. E. Cutkosky and F. Zachariasen, Phys. Rev. 103, 1108

(1956).
' A. M. Bincer, Phys. Rev. 105, 1399 (1957), this issue."R.D. Lawson, Phys. Rev. 92, 1272 (1953). In this notation

g2/47r corresponds to p ~0.07.
"A large damping of the pair production due to a p' coupling

has also been demonstrated by A. Petermann, Phys. Rev. 103,
1053 (1956).


