
P H YSI CAL R EVI EWV VOLUME 105, NUMBER 4 FEBRUARY 15, 1957

Pair Production of s-Wave Pi Mesons*t'
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A theory for pair production of s-wave ~ mesons is constructed along the lines of the Chew-Low-Wick
formalism. A bilinear s-wave interaction of the form (Xo/p) fi fi+ (&/p') s.p X sr as used by Drell, Friedman,
and Zachariasen is added to the p-wave interaction (4m)&(f/p)rr &s P. as used by Chew and Low. It is
shown that if the s-wave interaction is limited to the Xo term (scalar pair theory) the cross section for pair
production of s waves vanishes.

By using both the ) o and 'A terms, the cross section for inelastic scattering of a p-wave meson into two
s-wave mesons, near threshold (total energy of the produced mesons &350 Mev), per unit energy of one
of the produced mesons is determined to be of the order of millimicrobarns/Mev; for photoproduction the
corresponding number is 1000 times smaller.

A comparison is made with the work of Cutkosky and Zachariasen and it is concluded that if there is
no meson-meson interaction s-wave pair production may be neglected except possibly as the very threshold.

I. INTRODUCTION
'

~~RELL, Friedman, and Zachariasen' have shown
recently how the fixed source theory of the

p-wave pion-nucleon interaction of Chew and Low' can
be extended to include s-wave pion-nucleon interactions.
We report here an analysis of pair production of s-wave
m mesons based on the work of above authors. In
particular we study the inelastic scattering of a p-wave
meson into two s-wave mesons and the photoproduction
of s-wave meson pairs near threshold for these processes.

The Hamiltonian is taken to be

H=Hs+H'; H'=H„'+H, '.

Here Ho is the Hamiltonian of the free meson field (the
energy of a physical nucleon is taken to be zero), H„' is
the interaction Hamiltonian as used by CL, and H, is
the s-wave interaction Hamiltonian added by DFZ.

The interaction Hamiltonian (1) serves as the basis
for discussion of inelastic meson scattering in Secs. II
and III. In Sec. IV we discuss photoproduction of
s-wave meson pairs on the basis of the Hamiltonian (1)
modified to include electromagnetic eGects. A method
for this modification is presented which preserves the
gauge invariance of the theory without introducing any
gauge currents if one works in the Coulomb (V A=O)
gauge. In Sec. V the equations derived in the preceding
sections are solved approximately and various cross
sections are calculated.

In view of the fact that H„' is responsible for the
interaction with the nucleon of p-wave mesons only

and B,' of s-wave mesons only, it is convenient to
expand the meson field in terms of spherical waves.
The various terms in the Hamiltonian (1) then become
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(q, r, s= cyclic permutations of —1, 0, +1). (4)

The phases of the creation and annihilation operators
above are chosen so that the only nonvanishing corn-
mutator is given by

L~s(pfm), as'(P'f'm')7= (—)~ ~s.-e ~;-- ~~, ~ ~n, n' (~)

We use the system of units in which )'t= c=1. f' is
the nonrenormalized p-wave coupling constant of CL,
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p= z component of the isotopic spin,

R'= angular momentum (orbital or spin),

p'= s component of angular momentum,

r= magnitude of linear momentum.

(6)

(The last quantum number is always assumed to be
zero and therefore omitted, when referring to nucleons. )
Thus, for example, when dealing with inelastic scatter-
ing we need a matrix element of the scattering matrix
denoted by

(BRS IAL+), (7)

because the initial state of the system consists of a
nucleon (A) and a p-wave meson (L), whereas the final
state of the system consists of a nucleon (8) and two
s-wave mesons (R and S). The superscripts + and-
are used to denote the fact that the corresponding states

' G. Racah, Phys. Rev. 62, 438 (1942); Biedenharn, Blatt, and
Rose, Revs. Modern Phys. 24, 249 (1952).

Xo' and 'A are the nonrenormalized s-wave coupling
constants of DFZ. X is a normalization constant which
also enters into the expression for the density of states
in phase space and which cancels out in the final
expressions for cross sections. p, stands for the rest mass
of the 7r meson and co„= (p'+p')l is the energy of a
meson with momentum p. v(p) is the Fourier transform
of the nucleon source density u(r): v(p) = J'cc(r)e'v'dr.
o and r„m, q= —1, 0, +1, are Pauli spin matrices
acting in spin and isotopic spin spaces respectively.
a,t(ptm) is the creation operator for a meson of charge
qe, energy a&„, square of angular momentum l(t+1) and
s component of angular momentum m; whereas a, (plm)
is the annihilation operator for a meson of charge —qe,

energy cd„, square of angular momentum /(1+1) and
s component of angular momentum —m. (Note the
minus signs in these definitions. ) Finally a, (p) is a
shorthand notation for a, (p00) and a, (pm) is a short-
hand notation for a, (p1m).

We note that a, (plm) and ( )'+ a,—t(pl m) are-
each others Hermitian conjugates, riot a, (Plm) and

a,t(plm). The reason for this choice of phases is that
now a, (plm) I as well as a,t(plm)] behaves as the m

component of an irreducible tensor of rank l as defined

by Racah' under rotations in space; and as the q
component of an irreducible tensor of rank 1 under
rotations in isotopic spin space. The relation between
a, (plm) and its Hermitian conjugate is a, iso in agree-
ment with the notation of Racah.

To complete the discussion of the notation, we turn
now to the symbols used for the description of the states
of the system. We use the symbols A, 8, C to describe
nucleons; other symbols used in a state vector refer to
mesons. In particular we use the symbols R, S to
describe s-wave mesons, and the symbol L to describe
a p-wave meson. Each symbol stands for an aggregate
of quantum numbers, thus E represents the aggregate:

R= the isotopic spin,

are scattering eigenstates of the total Hamiltonian
defined by the boundary condition at infinity of only
outgoing or incoming waves respectively.

In a manner entirely analogous to CL and DFZ,
we find for the states entering Eq. (7):

IAI+) = {a,t(n')
—(H —cuc —ie)

—'LH', apt(tX')])
I
A), (8)

.BRS )= {a, (r)a, (s) —(H —„—,+i )
'

XLH', a, '(r)a. (~)]) I
8). (9)

II. SCALAR PAIR THEORY

It has been shown in the work of DFZ that both the
A, p and X' terms are necessary to account for the experi-
mental s-wave phase shifts and therefore we will use
both terms. However, we would like to show first that
the Xo' term alone leads to zero transition amplitude
for the process that we are considering.

Substituting Eq. (9) into Eq. (7) gives

(BRS
I
A L+)= (8

I (—) &+'{a, (r) a (s)
+[H',a, (r)a .(~)](H—co,—~,—ie) ')

I
AL+). (10)

In a manner analogous to CL and DFZ, one obtains

a, (r)a .(s)IAL+)
= (H+co,+co, is) 'I H', a—,(r)a .(s)] I

AI+) (11).
Hence Eq. (10) becomes

(BRS
I
A L+)= 2v.i6 (cd, —co„—u, ) (—) c'+'

X(8
I
LH', a, (r)a, (s)] I

A L+). (12)

From Eq. (12) we see that the appropriate element of
the transition matrix for our process is

—(—) '+'(8
I

LH', a-.(r)a-.(~)] I
A L+) (13)

This element of the transition matrix can be written
as follows:

(8 I
LH', a-.(r)a-.(~)] I

AL+)

= (8 I La, (r), LH',a, (s)]]+[H',a, (r)]a,(s)

+LH', a, (s)7a, (r) I
AL+)

=(BILa-.(r) I:H' a-.(~)]7

+I H', a p(r)](H+(u, —oic —ie) 'jH', a .(s)]

+I H', a, (s)](H+co,—o~c—ie) 'LH', a, (r)] I
A I+)

=(8
I
La-. (r),LH',a-.(~)]]AL+)

(8 I
$H', a c, (r)]E+)()V+I LH', a, (s)]AL+)

EN+M& cdc ce

(BI PH', a, (s)7)V+)(cV+I rLH', a ~(r)]AL+)

EN+cdr oil zE

where we have inserted a complete set of eigenstates of
the Hamiltonian with the + convention denoted by
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FrG. 1. Two-vertex diagrams.
Frc. 2. Three-vertex diagrams.

= —U, Q U (M+l (N —1,)+)8

(M+l [H', a .(p)]N+)
+(M+

l
(N+I .)+)+

Esr E~ ze+co~

(M+
I
LH', a-'(p))N+)

E~—E~—$6—M p

(20)

It follows from Eq. (20) that U. '(M+l[H', a (s)]N+)
is independent of the momentum s and therefore

S+, and used two relations of the following kind:

a, (s) l
AL+)

= (H+(u, co( —ie) '—[H',a, (s))
l
AL+). (15)

In the special case of the scalar pair theory, one
finds readily:

(M+l [H', a .(s)]lN+)
= —U, py Uy(M+la .(p)+a .'(p) lN+), (16)

with
U = (Xo')'(4spco, ) ~Nv(x). (17)

Here lM+) and lN+) are any two eigenstates of the
system with the + convention. We construct next

a .(p) lN+)=
l
(N —1.)+)b.~"+(H+co„—E~—ie) '

X [H', a .(p)] l
N+), (18)

a .t (p) l
N+) =

l
(N+1 .)+)+ (H ~„E~—is)— —

X LH', .'(p)) IN+ ), (19)

where
l (N —1,)+)8,„~represents an eigenstate obtained

from
l
N+) by removing an s-wave meson of momentum

p and charge oe [if the state lN+) did not contain
such a meson, then l(N —1 )+)b.„~=0] and where

l (N+1,)+) represents an eigenstate containing in
addition to what was in lN+) an s-wave meson of
momentum p and charge —a.e.

Using Eqs. (18) and (19), we obtain from Eq. (16):

(M+
I
[H',a .(s)]N+)

states lM+) and lN+) difFer by one s-wave meson of
charge o.e, but are otherwise identical. Hence the
summation over N+ in Eq. (14) vanishes. What remains
in Eq. (14) is the double commutator:

L —,( ) [H' —.(s)))=—(—)'~., —.U.U' (22)

This is a c number which can be pulled out and we are
left with (BlAL+)=0 owing to orthogonality of these
two eigenstates. This completes the proof that the
transition amplitude for our process vanishes for a
scalar pair interaction.

We observe that above result can be anticipated if
the process in question is pictured in terms of a series
of diagrams grouped together according to the number
of vertices involved. We have the two-vertex diagrams
pictured in Fig. i, the three-vertex diagrams pictured
in Fig. 2, etc. (Only one class of diagrams is shown,
others can be obtained by interchanging mesons 8
and S.) The diagrams are to be read from right to left.
The horizontal line represents the nucleon, the other
lines are meson lines. At the vertex a the p-wave
meson I. is absorbed. Hence the operator in question
as far as the nucleon is concerned is err. At all the other
vertices s-wave mesons (R,S,E) are scattered or created
in pairs. Hence the operator in question as far as the
nucleon is concerned is simply unity (scalar pair theory).
Therefore all the vertices commute and it does not
matter whether we write ab or ba. The only diGerence
between the contributions from diagrams with the
same number of vertices is in the energy denominators
and one sees easily that the contributions from all such
diagrams add up to zero.

The crucial point in this "proof" by diagrams is the
commutability of vertices, valid in the scalar pair
theory. We note that if not all diagrams with a given
number of vertices are considered, the mutual cancel-
lation will not take place. This is what happens in
approximation methods such as the Tamm-DancoR'
method, 4 leading to erroneous results.

III. INELASTIC SCATTERING
(M+

l
[H',a, (s))N+)

We start again with the expression (7) for the
relevant matrix element of the scattering matrix. In
Sec. II we proceeded by replacing (BRS

l
by Eq. (9)—

this approach was dictated by some special features of
the scalar pair theory. In the present case we proceed
in the orthodox way of replacing lAL+) by Eq. (8) toDisregarding the singular case when the value of Xp'

is such as to make the denominator in Eq. (21) equal
to zero, we find that (M+

l
[H',a, (s))N+) =0 unless the

4 I. Tamm, J. Phys. (U.S.S.R.) 9, 449 (1945); S. M. Dancoff,
Phys. Rev. 78, 382 (1950).

U, Q„U„[(M+l (N —1,)+)8, ~

+(M+l (N+1 .)+))
(21)

$ 1—2 g~ U~'~~/[(Esr E~ ze)' ~~') f—— —
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N, (S):

R

F, (r, &):
S R

(b) By the "2 —', approximation" we mean the
assumption that all p-wave scattering phase shifts may
be assumed to be equal to zero except for the phase
shift corresponding to scattering in an eigenstate of
total angular momentum J and total isotopic spin T
equal to the eigenvalues —', .

As a consequence of these approximations our basic
Eq. (26) becomes

(BSRI iV (s) I C)(CI0(l) I AL&
(BRSIF,(r,l) I

AL) =Q
M, (S): F, (r, 4):

(BRS IAL+)
= —27rib(cui —co„—(u,)&BRS

I
[H', ap,t(Di')]A)

=—27ri8 (cubi co, co,)—(BR—S
I F, (r,l) I

A L). (23)

We recognize that the coefficient of —2~i'(cubi co„—~,)
is just the required matrix element of the transition
amplitude in view of the relation between the scattering
matrix and the transition amplitude matrix

S~b= Lb 2%18(M~——Mg) T~b. (24)

(We are dealing with an off-diagonal matrix element of
S and therefore the b, b term does not appear. )

Instead of Eq. (9), we can use for IBRS ) the
equivalent expression:

I
BRS-)= (a,'(r) —(H—~.—~.+i~) '

x [H', a,t(r)] I
Bs-&. (25)

Using Fq. (25) the transition amplitude becomes

(BRSIF,(r l)IAL)=(BS I[H'~( )'a-~(r)](H
—cu, —is) '[H', ay~ (lX')]+[H', apt (9.')]

X (H+,)-'LH', (—) 'a-, (r)] I
».

Equation (26) is the basic equation of this problem;
however it is not very useful unless certain approxi-
mations are made. As in CL and DFZ, we proceed by
using closure to introduce into Eq. (26) a coinplete set
of eigenstates of the Hamiltonian with the —convention
and then make two approximations:

FIG. 3. The functions 0, N', M, F, and E. The blob indicates
the complete physical interaction.

obtain

(B I 0(l) I CL)(CSR I
~', (s) I

A &

Me+~r

(clt
I
M, (k) I BR&*&CRSIF.(k,i) I

AL)

(Cl o(l) I
AL) —=(C

I
LH', a"(i&')]A&. (2g)

The functions M and X are related to the scattering
and pair production of s-wave mesons and can be
obtained from the work of DFZ; (see Figs. 3 and 4)
they are defined by the relations

&CLAIM, (k) IBR)=—&cz ILH', a,'(r)]B),
&BSRI& (s) IC)—= —(» ILH', (—)'a-. (r)]C&.

(29)

The function E, however, is unknown. It is dehned by
an equation similar to Eq. (26):

(BSIE,(r,l) I
ARL) = —(BS

I
[H', a t(r)](H+~,

—u, —is)—'[H', apt (D.')]+[H', ai t (D.')]
X (H—cg„+ic)—'[H', a,t(r)]

I
A). (31)

Subject to the same approximations as used in obtaining
Eq. (27), Eq. (31) becomes

GO)'c COs Z C

&»IE.(»l) I«L&(«RI'~'. (k) IA&
(27)

CK ~i+~r

Equation (27) is an integral equation for the function
F. Of the quantities appearing in it the function 0 is
related to the absorption of a p-wave meson and can
be obtained from CL; it is defined by the relation

the "one-meson approximation, "
the "—,'

—,
' approximation. "

(BS
I M„(s)

I CR)(C
I
0 (l) I

A I.&&BslE,(.,l) IARI&=p
(b) c Q)g Gd @+ZAN

(a) By the "one-meson approximation" we mean the
same approximation as that used by CL and DFZ. In
the present work, the actual details are different since
we must deal with states such as IBRS ) which is a
two-meson state. However, the spirit of the one meson
approximation is maintained by allowing only such
two-meson intermediate states in which only one meson
is rescattered, the other being identical with one of the
two mesons in the final two-meson state.

(BIO(l) I CL)(CS I M, (s) IAR)

QJ8 COq+ZE

&BSIE.(k l)ICAL)&csclM, (k) IAR)

~k CO~+'ie

(CKRI» (k) IB)*&CItslF.(k,l) IAL&
(32)

CK ~i+~
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Thus Fqs. (27) and (32) form a system of two coupled
linear integral equations for the functions E and F
which must be solved. (See Figs. 5 and 6.)

First, however, we dispose of the dependence of F
and E on the magnetic quantum numbers which merely
represent the geometry and not the physics of the
problem. By making use of well-known orthogonality
and symmetry properties of the Clebsch-Gordan and
Racah coefficients, ' one obtains in place of Eqs. (27)
and (32) the following:

.iV„*'(s)—N „l(s)
F,(r,l) =A 0(l)

Rr+&s

R R

. E
A C 8 C A

R S L S LR

)N, 1(s)q N'2(s)s(r) )1y

E&V,l(s)) 4p((u, co,)1 &1)

E E
CK B C A CK B C A

Fr@. 5. Equation (27) in terms of diagrams.

and

M,*(k)F,(k,l) N, (k)E,(k,l)
+6

G)g —
M&

—Z6

M„1(s)—M„i(s)
F., (r,t) = aA O(l)

Mg Mq +Zs.

(33)

with
co ——0.04; ci=0.14; c2&0.01.

IV. PHOTOPRODUCTION

(39)

M, (k)E, (k, l) .V„*(k)F,(k,l)
+6 . (34)

Mk Mp+ZE'

Equations (33) and (34) are matrix equations and the
meaning of the various symbols is explained in the
Appendix.

As stated, the functions 0, M, and X are known.
From the definitions (28), (A-1) and (A-4) as well as
from Eqs. (3) and (5), we obtain

o(~)=(2llf'«ll2&»(~)(24 ~) '~/p, (35)

where (2ll f ra. ll-', & is the reduced matrix element of f 'ra,
as defined by Racah, ' taken between physical nucleon
states. But this last quantity is simply a multiple, say
f/f', of the same matrix element taken between bare
nucleon states:

(2llf'«II2&=(2llf«ll2&b- =6f (36)

From the work of CI, f-'=0.08.
The functions M and S are not found as easily.

DFZ derive a set of coupled nonlinear integral equations
to determine these functions. Solving these equations
approximately, they find

In the presence of electromagnetic fields the Hamil-
tonian H as given by Eqs. (2), (3), and (4) goes over
into H(A), where A is the vector potential. H(A) must
have a structure which is gauge-invariant. This means
that the following equation must be satisfied':

where

e*nH (A) e *n =H (A+ v G)—

D= I drG(r)p(r).

(4o)

(41)

Here p(r) is the charge density of the system, given in
this case by

p(r) =p. (r)+-2'(1+ro)eh(r), (42)

where p (r) is the charge density of the mesons and
—2'(1+ra)eb(r) is the charge density of the nucleon
assumed to be located at the origin of the coordinate
system.

The function G(r) is a scalar gauge function —any
electromagnetic field operator which commutes with A.

If it were not for the source function u(r) the transi-
tion H—+H(A) could be accomplished by the standard
prescription

(M,1(s)) Nsv(s)v(r) (1y

(M„t(s)) 4p((a, (o,)1 (13
R L R L

vy, (r)~(v+ieqA)y, (r), (43)

~„+~~ u~ —u~ t
—1 t

+ e +e —

l l, (37)
P ill ( 2) 8 C A

+ E
C 8

R S
S L R R$ L

to)

8 C A

(b)

FIG. 4. The meaning of our one-meson approximation as
applied to two-meson intermediate states: keep diagrams like
(a) and disregard diagrams like (b),

X E
CK 8 C A CK 8 C A

FIG. 6. Equation (32) in terms of diagrams,

' R. H. Capps, Phys. Rev. 99, 926 (195S).
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where

y, (r)~L(r)y, (r),
m, (r)~L (r)m-, (r),

rq~L(0) rq,

Vp, (r)—+L(r) [V+ieqA(r)]g, (r),

(44)

where P, (r), q = —l, 0, +1, is the meson field amplitude.
One easily verifies that the Hamiltonian modihed
according to Eq. (43) fails to satisfy Eq. (40).

It is well known that the manner in which an extended
source theory is made gauge-invariant is not unique.
The standard manner is to introduce certain exponential
factors as multipliers of the meson held amplitudes

p, (r), the conjugate momenta m, (r), and the Pauli
matrices 7„ to imitate the operator properties of the
nucleon field amplitudes g(r) .

«t (r) which were elimi-

nated in favor of the source function m. (r).'
We shall follow the same course except for taking a

difI'erent exponential factor. Instead of the substitution
(43), we take the following:

where Hk" is the matrix element of H" taken between
states of the radiation 6eld of one photon of type k and
no photons. (We are treating electromagnetic effects in
perturbation theory. )

Just as p, was expanded in spherical waves to obtain
Eqs. (2), (3), and (4), we now expand A(r) in spherical
transverse vector waves regular at the origin. These
are denoted by M&„(r) and N&„(r),' and we have

A(r) =P~ N(2k) «P~ (—) (M~ (r)Lc(klan)

+c~(kbn)]+ N~ (r) [d(kim)+dt (klm)]}, (49)

where X is a normalization constant and the sum over
l starts at 1. The c's and d's are annihilation operators
for photons with properties analogous to the a's-
meson annihilation operators. The parity of c(klm),
ct(ktm) is —(—)' whereas that of d(klm), dt(klm) is

(—)'
Since the states (BRS

~

and (A
~

in Eq. (48) are
both states of even parity and angular momentum -'„

HI," is obtained from H" by simply replacing A(r) by
the coefficient of c(k1m), i.e.

ieq t V' A(r')
L(r) =exp ——

~ dr'
4m~

J
r —r'f It then follows that if we expand p, in spherical

waves the only contribution to (BRS ~HI,"~A) comes
from the p waves. Hence we may take for HI,".Dor the nucleon located not at the origin but at ro, r,

is modified not by L(0) but by I.(ro)].
One easily verifies that .the Hamiltonian modi6ed in

accordance with (44) satisfies Eq. (40) and hence is
gauge-invariant, ' provided one restricts oneself to
gauge transformations such that VG(r)—+0 as r—+&a.

Since the Hamiltonian is gauge-invariant, we may
choose a particular gauge to work in. The advantage
of our formulation lies in the fact that if we now choose
to work in the Coulomb gauge (V A =0) all the
exponential factors reduce to unity.

Thus, in the Coulomb gauge,

Hy"=P, (—)'ieqV(2k) «(4n)«(f'/«J)JV

Xg„(2u„) «( —) r La (pm)+a, t(pm)]

X ««(r) ji(pr) &i (Q,)e M imp(r)drJ

+&' Q &4~„~,)
—

«( —)"+ '[a, (pm)+a, &(pm, )]
pm, u'm'

(45) 1V(2k) «Mi~l, (r) =X(2k) 'VX[rF'ink(Q„) j&(kr)7. (50)

H (A) =H+ H", (46) X$a, (p'm')+a, (p'ns')) j&(pr) V, ,„(Q„)

where H is the Hamiltonian given by Eqs. (2), (3),
and (4) and

H"=p, (—)'ieq ~g, (r)A(r) Vp, (r)dr
X»mj, (r) V[j~(p'r)I', „(Q,)]dr . (5l)

(a) H~" contains operators for p-wave mesons only;
(b) Ha" as far as rotations in space are concerned

behaves like the mI, -component of an irreducible tensor
of rank 1;

(c) HI," as far as rotations in isotopic spin space are
concerned behaves like the 0-component of an irre-
ducible tensor of rank 1.

Keeping the above features in mind, we now compare
(BRS ~H~" ~A) and (BRS

~

[H' aot(km'))A) and con-
clude that the following relation (similar to a relation

f' P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), p. 1865.

We are interested in the element of the transition
amplitude corresponding to the absorption of a photon
of type k and creation of two s-wave mesons R and S.
This is given by

(BRS-iH„"iA), (48)
' L. L. Foldy and R. K. Osborne, Phys. Rev. 79, 795 (1950).
7 R. H. Capps and R. G. Sachs, Phys. Rev. 96, 540 (1954);

R. H. Capps and W. G. Holladay, Phys. Rev. 99, 931 (1955).
We note that if the theory is made gauge-invariant in a

manner different from ours, additional currents appear; however,
at Iow energies their contribution is negligible.

The explicit structure of H&" as given by Eq. (5l)

+ (4 )«(fo( ) I ( ) A ( )~ ( )d (47)
will not be used except for the following features
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of CL) must exist:

(BZS-lH,"lA)=—
—,
' (g„—g„)e/2M

(4~)'(f/~)(k/~~)'

X(BRS l
[H',aot(km')]A). (52)

then our solution can be written in terms of the f, (r)
as follows:

ct)q+td~= 2.25 p
' —0.223

'

0.087
—0.114

,
—0.013,

2.5 p
' —0.241

'

0.085
—0.123

,
—0.016.

(54)

We see from Eq. (54) that f, (r) is essentially constant
near threshold, being independent of co, and co,. In
obtaining the numbers given by Eq. (54) it was assumed
that the cut-off functions w(s), v(r), etc. , are equal to
unity up to the cut-off energy ~,„=4.5p and equal to
zero for higher energies.

In order to calculate cross sections, it is necessary to
form actual physical states from the eigenstates of the
total isotopic spin so far considered. Thus, suppose
that we are interested in the reaction

p+vr ~n+7r +~+ (55)

The initial state of the system can be written in terms
of isotopic spin states as

I p~ &= —(s)'l k)+(s)'I 2&, (56)

and the final state can be written as

In~ ~'&= (k)'I2(8)&+(-'.)'14(2))+(i'o)'l —;(2)), (5&)

where we omit the symbols for the 2' component of the
isotopic spin and the quantity in brackets refers to the
isotopic spin of the subsystem. Hence

(58)

Here M stands for the mass of the nucleon and g„(g„)
is the anomalous gyromagnetic ratio of the proton
(neutron). (CL use here the full static magnetic mo-
ments, and not just the anomalous ones —the theory is
not accurate enough to decide this question. )

Equation (52) yields immediately the photoproduc-
tion transition amplitude once the Eqs. (33) and (34)
are solved.

V. RESULTS

We were unable to solve Eqs. (33) and (34) exactly
but obtained approximate solutions. Near threshold,
the use of the approximate solution is estimated to
result in an error of less than 25%. If we define the
function f, (r) by

cV' t' 0(l)
E (r ~)—=

I lf (r), (53)
12'' E ((o~,) ')

TABLE I. d~/Cko„ the cross section per unit energy of one of the
produced mesons, in millimicrobarns/Mev.

Process+

p+~ ~p+~ +~'
~n+~ +~+
~n+7r'+~'

p+&~p+~'+~'
~P+m++~
~n+H+~+

2.25 y

0.08
0.68
0.86
6.00X10 '
0.39X10 '
0.02X10 '

2.5 p

0.27
1.5
1.9

163 X10 '
0.80X10 '
0.07X 10-3

Similarly one may change from eigenstates of the
total angular momentum to states with plane-wave
mesons. After this transformation, the density of final
states per unit energy interval is given by

(d'n/dEd~, )dk&, = 4 V'(2n)'rs~. ~,dko„, (59)

where V is the volume in which the plane wave mesons
are quantized and E=a&,+co,= energy of incident meson
or photon (i.e. , we neglect any recoil of the nucleon).

Expression (59) vanishes at the two limits cu, =p and
~,=p, and reaches its peak value at co„=co,=E/2 Using.

this peak value we obtain the maximum value for the
cross sections. In Table I we list do/d~, (cross section
per unit energy of one of the produced mesons) for a
number of possible reactions and for two values of E
near threshold.

There are as yet no data available with which to
compare Table I. Some experimental data exist for
higher energies, in particular for the reaction p+p —+p
+~++~ ."Cutkosky and Zachariasen" obtain a good
fit to these data by using the theory of Chew and Low
(no interactions for s waves); their numbers are roughly
10000 times larger than ours. One reason why our
numbers are so much smaller is that in order to produce
two s-wave mesons the photon must be absorbed by
the nucleon, whereas an s- and a p-wave meson (as
assumed by Cutkosky and Zachariasen) can be pro-
duced by having one of the mesons absorb the photon.
For this reason our cross sections should be smaller
than theirs by a factor of the order (M/p)'~50. The
fact that our cross sections are smaller yet must be
blamed on the weakness of s-wave interactions as
compared with p-wave interactions.

We conclude that the s-wave pair production may be
neglected except possibly at the very threshold when

phase space inhibits very strongly the production of
an s-wave and a p-wave. We note that a meson-meson
interaction (not considered in this work) could change
the above results.
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APPENDIX

The functions 0, M, N, F, and E have been so defined
that they behave as scalars under rotations in both
space and isotopic spin space. Therefore their matrix
elements taken between eigenstates of the total angular
momentum J and total isotopic spin 1are independent
of the magnetic quantum numbers. Since the value of
J is always —', (the final state being a state of a nucleon
and two s-wave mesons), the elimination of the angular
momentum quantum numbers is very simple. We re-
write all state vectors as eigenstates of the total angular
momentum (—,'a'

I
and then ignore this trivial dependence

by denoting

M, r(s) = (Tr —
I
M, (s)

I
Tr). (A-6)

The possible values of T and T' are —,
' and -,'—hence

there are four diferent functions F~~' and E~~'. 9'e
define therefore the following four-row, one-column
matrices:

,
F"

iF"

E"
Ell ' (A-7)

The phase and normalization in Eq. (A-5) are chosen
for convenience, the subsystem being formed with the
meson whose symbol appears inside the angular
brackets (i.e., meson 5 in above). Finally we define

(-,'~'I&I-', ~') by X. (A-1)
We also define the following diagonal matrices:

0(~)—= (kr I0(~) I lr), (A-4)

Next we concentrate on the values of the isotopic
spin T. To specify completely states consisting of a
nucleon and two mesons, it is not enough to specify the
total isotopic spin —we must in addition specify the
isotopic spin of the subsystem consisting of the nucleon
and one of the two mesons.

Let (Tr(T'r')
I

denote an eigenstate with total iso-

topic spin T (s component=r) formed from a sub-
system with isotopic spin T' (a component=r'). Then
we define

F rr'(r, l)—:(Tr(T'r')
I
F,(r,l) I Tr), (A-2)

E rr'(r, t):(Tr I
E,(r, l) I

—Tr(T'r')), (A-3)

where the subsystem is formed with the meson whose
symbol appears first inside the bracket (i.e. , meson R
in above definitions). Since matrix elements of 0 and
lV are always taken between states of total T=-,', we

define further

M' 0 0 0
0 M' 0 0
0 0 M' 0

. 0 0 0 M'

N' $0 0 0
ON-: 0 0
0 OE''0

.0 0 0 3,".
(A-8)

T

2%2

.—g5.
1

2&2
9 4
.2+5

2v2 8 ~5
S —2' —+10

—K2 5 —2+5 '

—V'(5/2) —2V'5

The remaining matrices in Eqs. (33) and (34) are
numerical matrices whose elements are combinations
of Racah coefficients resulting from elimination of the
magnetic quantum numbers:

2
~ ' (s)=—(—)'-I

I
(-: (T'")

I
».(s) I

—: ) (A-5)
&2T'+1)

The crossing matrix 6 has the usual property

AA= 1. (A-10)


