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The mechanisms by which electrons and holes recombine with the emission of radiation are examined.
Expressions are derived for the radiative recombination lifetimes due to direct and indirect transitions and
are applied to Ge and Si. Matrix elements in the transition probability for direct and indirect transitions
are obtained from analyses of the cyclotron resonance effective mass data and the optical absorption data
close to the band edge, respectively. For indirect transitions the calculated lifetimes were of the order of
seconds and agreed within a factor of 3 with lifetimes calculated by the method of Van Roosbroeck and
Shockley. It is shown that in Ge at room temperature, while the density of filled states in the conduction
band at k=0 is very low, the rate of recombination by direct transitions is nevertheless somewhat greater
than that by indirect transitions. This is consistent with the findings of Haynes. The role of radiative re-
combination in the observed lifetimes of excess carriers is questioned. It is concluded that for those semi-
conductors which have a rather high absorption constant close to the band edge (InSb), an emitted photon
is usually reabsorbed before it can escape from the crystal, producing another hole-electron pair, without
contributing to the macroscopically observed lifetime. In the limit of a very high absorption constant, this
emission and absorption of photons acts as an additional mechanism for the diffusion of hole-electron pairs.
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1. INTRODUCTION

ADIATIVE recombination of electrons and holes
in semiconductors has been of interest from sev-
eral points of view. Several years ago it was considered
quite possible that in the available semiconductors such
as Ge and Si, the lifetimes of injected carriers might be
radiation limited and that therefore lifetimes could not
be improved by improving the metallurgy of such semi-
conductors. The theory of Van Roosbroeck and Shock-
ley! allowed one to calculate the radiative lifetime in a
semiconductor with a specific carrier density if one
knew the absorption spectrum and dielectric constant
of that material. This theory was based on statistical
considerations and did not take into account any details
of the recombination mechanism. Van Roosbroeck and
Shockley concluded that for Ge (and this would be
even more true for Si because of its greater band gap)
the radiation-limited lifetimes were far in excess of
lifetimes yet observed and that some other nonradiative
recombination mechanism must be responsible for the
short observed lifetimes.

Also of interest are the recombination radiation
spectra which have been observed for several semi-
conductors?? including Ge and Si. These are of interest
not only because of the mere possibility of observing
such radiation, but also because of what light they
may cast upon the band structure of semiconductors.
The first observed radiation spectra on Ge and Si were
smooth functions of wavelength with a single maxima
slightly above the absorption edge, and it was suggested
by Herring?* that this radiation was the result of phonon-
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assisted indirect transitions between the valence and
conduction bands. Recently Haynes® has found a
second peak at 1.52 u in the intensity of recombination
radiation from Ge, indicating the existence of another
radiative recombination mechanism. Also, Dash and
Newman® have observed a very sharp rise in the
absorption constant at this wavelength. From our
knowledge of the band structure of Ge,”° it is reason-
able to ascribe both effects to the onset of direct transi-
tions between the valence band and the conduction
band at k=0.

It is our purpose in this paper to derive expressions
for the radiative recombination lifetimes based upon a
microscopic analysis of both direct and indirect transi-
tions. We shall then apply these expressions to Ge and
Si and compare our results with the radiative lifetimes
calculated by the method of Van Roosbroeck and
Shockley in order to test the consistency of the calcula-
tions and of the physical model on which they are
based. Because of misconceptions appearing in the
literature concerning the relationship of the radiative
recombination lifetime to the observed lifetime of excess
carriers in semiconductors, we shall also examine and
discuss the connection between these lifetimes.

The types of band structure we shall be considering
are those for which the valence and conduction band
extrema do not occur at the same point or points in
the reduced Brillouin zone, and for which therefore the
threshold for direct transitions is above that for in-
direct transitions. Most of the well-known semicon-
ductors are of this type. Germanium and silicon both
have warped degenerate valence bands at k=0, but
the conduction minima are out along the (1,1,1) and

5 J. R. Haynes, Phys. Rev. 98, 1866 (1955).

¢ W. C. Dash and R. Newman, Phys. Rev. 99, 1151 (1955).
7F. Herman and J. Callaway, Phys. Rev. 89, 518 (1953).

8 F. Herman, Physica 20, 801 (1954).

9 G. F. Dresselhaus, thesis, Berkeley, 1955 (unpublished).
10 Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 368 (1955).
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{(1,0,0) axes in k space, respectively.'* InSb is generally
attributed to have its conduction minima at k=0,
but it is quite likely that the valence band extrema lie
elsewhere. 1213

The total rate of radiative recombination of electrons
and holes may be written

dn

?i;= — 2 i ®ip=— (ntn0) (p+po){®is), 1)

where 7= p is the number of excess electrons or holes,
noand po are the equilibrium carrier concentrations, and
{®4) is an average of the transition probability taken
over the hole and electron distributions. To obtain the
net recombination rate we must subtract the term in
nopo giving the equilibrium recombination rate, which
is just balanced by the blackbody production of hole-
electron pairs. For a small perturbation in the equi-
librium carrier concentrations, we may write

dn/dt=— (no+po){(®s)- n. 2

®;; will in general contain energy, momentum, and
spin conservation conditions. Except for these condi-
tions, we shall assume in what follows that matrix
elements between bands are essentially constant over
the hole and electron distributions, which are contained
in small regions of the Brillouin zone.

The solution of Eq. (2) is n=n(¢=0)e" 4", where

Te=1/[(n0+po){®is)]. : ©))

Our problem will be essentially to evaluate (®,) for the
two recombination mechanisms mentioned previously.

2. INDIRECT RECOMBINATION

Indirect recombination is a two-step process involv-
ing both an optical transition and phonon scattering.

1 Dresselhaus, Kip, and Kittel, Phys. Rev. 98, 556 (1955).

12 R, W. Keyes, Phys. Rev. 99, 490 (1955).

18 According to the analysis of Blount, Callaway, Cohen,
Dumke, and Phillips, Phys. Rev. 101, 563 (1956), the absorption
spectrum around the absorption edge in InSb (0.15 at 300°K)
exhibits evidence of indirect transitions. However, H. Y. Fan
and G. W. Gobeli [Bull. Am. Phys. Soc. Ser. II, 1, 111 (1956)]
report that the absorption spectra is characteristic of direct
transitions with a band gap of 0.175 ev at 300°K. A comparison
of the photoelectromagnetic response data of S. W. Kurnick and
R. M. Zitter, J. Appl. Phys. 27, 278 (1956) and absorption data
of V. Roberts and J. E. Quarrington, J. Elec. 1, 1952 (1955) was
performed by the author to determine if the absorption between
0.15 and 0.175 ev at 300°K actually resulted in the production
of conducting holes and electrons. A simple theoretical analysis
ignoring surface recombination showed that the shape of the
photoelectromagnetic response near the cutoff should follow
essentially a KL/(1+KL) law, where L is the effective diffusion
length. By using this relation it was possible to accurately predict
the position and shape of the observed photoelectromagnetic re-
sponse edge from the absorption data, indicating that free carriers
are indeed produced well below 0.175 ev.

14 Absorption by indirect transitions is treated by Bardeen,
Blatt, and Hall, Proceedings of the Atlantic City Photoconduc-
tivity Conference, 1954 (John Wiley and Sons, Inc., New York,
1956). It is also discussed in Chicago Midway Laboratories’
Technical Report, CML-TN-55-A.2-13 (unpublished).
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Since optical transitions in semiconductors occur essen-
tially vertically in k space, a phonon collision is required
to take the electron either to a virtual state % above the
valence maximum from which it may drop down opti-
cally (Figs. 1 and 2), or to the valence maximum from
a virtual state »’ above the conduction minimum.
Energy is conserved in the total process, the energy
difference between the initial and final states being
equal to the photon energy plus or minus the phonon
energy, depending upon whether a phonon is created
or annihilated in the scattering. The probability per
unit time for an indirect transition from an initial
conduction band state 7 to a final valence band state f
through intermediate states # and #’ is given by the
usual expression for a second-order transition'® as

27
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where p(%w) is the density in energy of final photon
states per unit volume and is given by

p(hw) = N fw?/n%cH, (5)

where Ny is the index of refraction, H;,* and H,™,
etc., are electron-phonon interaction matrix elements
for phonon creation and annihilation, and H,; and H;,
are matrix elements for spontaneous optical emission.

We are limited in what we can say about the matrix
elements for phonon scattering. They will, however, be
of the form

Hin—zﬂin (65/1'_' 1)—17

Hit=Bin(1—e0T)1, (6)

The optical matrix elements can be shown to be equal
t015

e f2nh\}
an=——(—" Py, )
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where P,; is the matrix element of the momentum
operator between states # and f. We may immediately
write an expression for the radiative recombination
lifetime using Eq. (3) and taking account of the fact
that electrons must conserve spin in the transition.
For simplicity, we shall ignore the %6 contribution to
energy denominators which is small, and also we shall
consider the electron and hole distributions to be
located exactly at the band edges. This is a reasonable
approximation in view of the fact that AE>>ET, where
AE is the band gap.

15 See W. Heitler, The Quantum Theory of Radiation (Oxford
University Press, Oxford, 1944), second edition, p. 59.
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k=0

F16. 1. Band structure favoring indirect transitions from con-
duction band states 7 to valence band states f through inter-
mediate states # and »’. Direct transitions between higher con-
duction band at k=0 and valence band may nevertheless be
important.

The radiative recombination lifetime is

chPm? 1 efT—1
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where v contains all the unknowns and is given by
|Bin|?| H s |
y= <Z '
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Information about ¥ may be obtained from an in-
direct transition analysis of the absorption edge data.
To a good approximation, absorption by indirect
transitions takes the form!

[ (ﬁw-l—k0~AE)2L (ﬁw—-k0~AE)2J
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Here m/a, and m/a, are the valence and conduction
band effective masses, respectively, and the sums over
v and ¢ are over the extrema in these bands. If we
substitute for 4 in terms of 4, Eq. (8) becomes

1 m3¢? Zva‘u—%anc—% 1
dr B AAENG  mot+poe’T+H1

Using this formula, we have calculated values of 7g;
for Ge and Si, obtaining our value for 4 from the
analyses of the absorption edges of Ge!® and Si'” by
MacFarlane and Roberts. The conduction band effec-
tive masses are those given by Dresselhaus, Kip, and
Kittel'® and we assume 4 conduction band minima for
Ge. The valence band effective masses are those given
by Lax and Mavroides'® for the density of states. For
intrinsic Ge at room temperature (1o=2.4X10%),
7r:=1.98 sec, which does not compare unfavorably
with the lifetime calculated by Van Roosbroeck and

16 G, C. MacFarlane and V. Roberts, Phys. Rev. 98, 1865 (1955).

17 G. C. MacFarlane and V. Roberts, Phys. Rev. 97, 1714 (1955).
18 B, Lax and J. G. Mavroides, Phys. Rev. 100, 1650 (1950).
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F16. 2. Analog of band structure of Fig. 1, with roles of valence
and conduction bands interchanged.

Shockley! of 0.75 sec using that part of the absorption
spectra where only indirect transitions are involved.
About this result we may conclude qualitatively that
it supports the indirect absorption model of the ab-
sorption edge in Ge, but that there are appreciable
deviations in the absorption from Eq. (9) several kT
above the edge. These deviations may be due to varia-
tion of matrix elements with energy, p* terms in the
expansion of energy around an extremum, etc. For
intrinsic Si at room temperature (#o=1.4X109), 7,
=1.7X10* sec. For a more attainable impurity con-
centration in Si, of, say, 7o+ po=10%, 7£,=0.47 sec.

3. DIRECT RECOMBINATION

For the type of bandstructure we have assumed, a
substantial recombination by means of direct transi-
tions can occur if the energy gap for direct transitions
AE' is not too many kT larger than the energy gap for
indirect transitions. For the band structure of Fig. 1
there would in this case be a finite density of electrons
in the conduction band at k=0. This corresponds to
the case of Ge for which AE’—AE=0.18 ev at 300°K.®
Similarly, holes could be present in the valence band at
k=0 for the structure indicated in Fig. 2. We shall in
the future discuss only the structure of Fig. 1, but with
minor changes our results will also apply to the struc-
ture of Fig. 2. In Fig. 1 we have drawn the conduction
band states at k=0 as constituting a relative minimum
because of the closeness of the valence band and the f
sum rule.® The density of electrons in the conduction
band at k=0 can easily be calculated if we know the
density of available states in the conduction band
minima and assume that nearly all conduction band
electrons are contained in these minima. We shall also
assume that the conduction band electrons at k=0 have
a simple effective mass given by m/a.. The density of
electrons at k=0 is

fn(p)=?(%)%(zc a )

AE' — AE+ap?/2m
exp( — T ) . (11)

8 A, H. Wilson, The Theory of Metals (Cambridge University
Press, Cambridge, 1953), second edition.
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A further condition which must hold for our analysis to
be valid is that the time for equilibrium between the
conduction minima and relative minima electrons to
occur must be small compared to the time it takes an
electron in the relative minima to drop down into the
valence band. Otherwise our maximum rate of decay
will be limited by the rate at which electrons can be
scattered into the states at k=0. Since acoustical
scattering times are on the order of 1074 sec and those
for atomic transitions are ~10~8 sec, we shall assume
this condition to be satisfied although the scattering
time for a fairly large momentum change such as we
require here may be several orders of magnitude
larger than 1074,
The transition probability is simply

27
G)if=;IHif12P(ﬁ‘*’)5mpf: (12)

where H;; and p(%iw) have been given in the previous
section. Averaging over the hole and electron dis-
tributions, we obtain

1
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We may immediately write down the lifetime for direct
recombination by using Eq. (3) and rearranging some
terms.

1 /m'Pek Ti
il ) )
2020\ fie? AERN | Py 2
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P kT Zv (ac"{"av)_% ”0+p0

Equation (14) applies also to the elementary band
model of semiconductors, for which direct transitions
occur at the band edge, if we let AE’=AE and ay=a..
For Ge, a. and P;; may be estimated from our knowl-
edge of its band structure,®° and the cyclotron reso-
nance data for holes® In the absence of spin-orbit
splitting, there would be 6 valence bands in Ge and
these would be degenerate at k=0. As a result of spin-
orbit splitting, two of these bands have energies 0.3 ev
below the other four at k=0. Away from k=0 the
upper four bands are split into two doubly-degenerate
bands, the states of which have warped surfaces of
constant energy in the Brillouin zone and which corre-
spond to the light and heavy hole bands. An analysis of

(13) -
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these bands may be made by using basis functions
which transform like p-type wave functions times a
spin wave function and setting up the perturbation
matrix between these wave functions and wave func-
tions for higher lying states. Transforming the matrix
to the J, M representation in which the spin-orbit
energy is diagonal, one may then diagonalize the per-
turbation energy and also solve for the new eigenfunc-
tion as linear combinations of the p-like wave functions.

From the cyclotron resonance data it is possible to
calculate the second-order perturbation energy between
the p-like basis functions and the higher lying bands of
various symmetries. The largest contribution is that
due to the conduction band state at k=0, partially due
to its closeness in energy. According to Dresselhaus,®
the matrix element between one of the valence-band
basis functions e and the conduction-band wave
function B~ of the perturbation p-P/m is numerically
given by

| (e | P|B7) 2= | (esF| P, | B7) |2=28.6(2AE! /m).

Expressing the wave functions for the valence bands
in terms of these basis functions and averaging over
the possible polarizations of the emitted photon, one
finds that the optical matrix element for transitions
between the lowest conduction band at k=0 and either
the light hole band or the heavy hole band is given by

| Piy[*=1/3] (et P|7) ]2

ac' is given by the f sum rule,?

| P |2
ac’=1 + Z
m i Ear—Ev1

(15)
One can easily show that the sum of the contributions
from the heavy hole and light hole bands is |Pe'u|?
+ |Pem:|2=2/3| (est|P|B) |2 Also, for the split-off
valence band [P, |2=1/3] (et|P|87) |2 Because this
band is 0.3 ev below the other two valence bands, its
contribution to the f sum will be somewhat reduced.
Following Dresselhaus,® we estimate

0.81

2 1
c:=1—}—(—~i——————)28.6=27, (16)

3 30.814-0.30
corresponding to an effective mass of 0.037 m.

Substituting these values in Eq. (14) and using a

value of 0.18 ev for AE’—AE from the data of Dash
and Newman,® we find the lifetime for direct radiative
recombination in intrinsic Ge at 300°K to be 7r4=0.29
sec. Haynes,® and Burstein, Picus, and Teitler® have
calculated the radiative recombination lifetime for
both direct and indirect transitions in Ge and have
obtained 0.25 sec and 0.30 sec, respectively. For in-
direct transition 7;=0.75 sec, so that if we solve for

2 Burstein, Picus, and Teitler (unpublished).
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the direct transition lifetime using the relation that
1/rr=1/7r:+1/7Ra, an

we find that Haynes’ result corresponds to 0.38 sec and
that of Burstein, Picus, and Teitler to 0.50 sec, for the
lifetime due to only direct transitions, in reasonable
agreement with our result. This agreement can be cited
as additional support for the current model of the
energy bands in Ge, and for the analysis of the cyclotron
resonance data.

The exponential dependence of the lifetime on 7™
in Eq. (14) reflects the dependence of the direct re-
combination rate on the number of electrons at k=0
in the conduction band. When Haynes® observed the
recombination spectrum of Ge at 300°K, he was barely
able to detect the direct recombination component. At
higher temperatures one would expect this component
to become more prominent due to the larger fraction of
electrons at k=0. Because AE'—AE for Si is at least
1.4 ev one would not expect to observe any radiation
due to direct recombination in Si.

4. CONNECTION BETWEENIRADIATIVE AND
OBSERVED LIFETIMES

Frequently, in the literature,?-? it is suggested that
radiative recombination is a factor fundamentally
limiting the maximum obtainable lifetimes of excess
carriers in certain semiconductors. There is a certain
degree of justifiability in this position for semiconduc-
tors such as Ge and Si for which the absorption co-
efficient K is fairly low (~10 cm™) for several kT
above the absorption edge. In this case, an emitted
photon has a good chance of escaping the crystal before
being reabsorbed with the resulting production of
another hole electron pair. For Ge and Si however, the
radiative recombination lifetime is quite long and other
recombination mechanisms must be invoked to account
for the much shorter lifetimes actually observed.

It is a mistake, however, to suppose that there is any
close connection between radiative recombination and
observed lifetimes for semiconductors which have high
absorption constants close to the band edge. This will be
particularly true of semiconductors in which direct
transitions occur either at or near the band edge. In
such materials K will be on the order of 10? for energies
corresponding to the majority of the emitted photons.
Since the transitions are not between localized states,
we do not obtain a degradation of the photon energy
by the Franck-Condon principle. While it is true 7z
may be small and of the order of observed lifetimes for
these materials, except for the radiation originating
within a distance of approximately 1/K from the
surface, none of the recombination radiation can escape,
and consequently no net decrease in the number of
hole electron pairs due to radiative recombination is

2t T, W. Allen and I. M. Mackintosh, J. Elec. 1, 138 (1955).
22 J, S. Moss and J. H. Hawkins, Phys Rev. 101 1609 (1956).
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observed. Therefore, except for thin films, one would
not expect to find radiation limited semiconductors.
Even in the case in which the carriers are initially
produced on the surface of a thick specimen, it may be
shown that the observed lifetime of these carriers due
to radiative recombination is infinite.

When K is large, there will be a diffusion of hole
electron pairs from a region where they are more dense
and more photons are released to a region of lower

- density where they may be absorbed. We shall calculate

the diffusion constant for such a process and show that
it is quite small. We shall be considering only the radia-
tion due to recombination of the excess carriers, since
the radiation from the equilibrium distributions will
be in equilibrium with the blackbody background.
Consider now a smoothly varying distribution of excess
carriers given by #(x), and let us calculate the flux of
photons across a plane of unit cross section at x=0.
Let P(E)dE be the probability that a photon is in the
energy interval dE. The number of photons of energy
in dE being emitted from a layer dx thick is
n(x)dxP(E)dE/tr and of these (ndxPdEK/rr)e X4l
will be reabsorbed within d/ a distance / away from the
initial point of their production. A fraction (I— |x|)/2!
for 1> | x| will cross the plane at x=0. We shall expand
n(x) in a Taylor series about x=0 and throw away all
but the first two terms. Since the constant term can give
no net flux across x=0 we shall ignore it also. The net
flux is

KPdE © [— | %

( ) [f f e Kidldx
27
—f o) =
0 ||

PdE © L—3g

D= f f e LdLdsz,
ax 7 2=0""0

1 PdE ( )
B 3 K*rg =0

The total flux of photons of all energies is

313( ) fP(E)_

—Lao(Z)

corresponding to a diffusion coefficient (1/37z){(K~2).
The average of K2 over the indirect radiation spectra
diverges at the absorption band edge, so that a lower
limit corresponding to =1/L, where L is of the order
of the sample dimensions, is necessary. Radiation for
K <1/L includes the radiation which escapes from the
crystal. The average of K—2 over the direct transition

x
Z—Kldldx],
(18)
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spectra does not diverge. An idea of the magnitude of
this photon diffusion coefficient can be had using
=103, (K~2)=3X1073, giving an effective diffusion
coefficient of 1 cm?/sec corresponding to a carrier mo-
bility of 40 cm?/volt sec at room temperature, which is
quite small compared to actual mobilities.

WILLIAM P.

DUMKE
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The Thomas-Fermi theory of the atom is generalized to include the effects of temperature as well as ex-
change. This leads to a nonlinear integral equation for the Fermi electron-momentum distribution function,
and the usual Poisson equation for the electron-density distribution. Analytical solutions of the integral
equation'are given for the limiting cases of near-degeneracy and complete nondegeneracy, and a numerical
method of calculating solutions in the intermediate case is described. A complete discussion.of the thermo-
dynamics of the atom is given; in particular, it is shown that the Gibbs free energy is the product of the
number of electrons and the electronic chemical potential (Fermi energy), despite statements which have
been made to the contrary. Numerical results have verified the virial theorem for all Z, T, and atomic vol-
umes. The ratio of the calculated energy for T=@=0 to the experimental total ionization energy varies
from 2.07 for H down to 1.33 for Al, and is presumably still closer to unity for higher-Z elements. Some
numerical results are given for iron over the density range 0.1 to 10 times normal and for values of AT from
0 to 1000 ev. Pressures, energies, and entropies are lower than the corresponding values calculated without
exchange by as much as 40% at kT'=10 ev, by up to 109 at kT'=100 ev, and by only negligible amounts

at k7'=1000 ev.

1. INTRODUCTION

HE Thomas-Fermi (TF) and Thomas-Fermi-
Dirac (TFD) statistical models of the atom!—?
have been extensively used as the basis for approximate
calculations of the equations of state of compressed
materials.*¢ The original Thomas-Fermi model has
been extended in two directions—first by taking into
account exchange effects at zero temperature?*=® and
second by allowing nonzero temperatures but neglect-
ing exchange.®7
Some attempts have been made to include the effects
of both exchange and elevated temperatures. Umeda

1L. H. Thomas, Proc. Cambr)idge Phil. Soc. 23, 542 (1927);
E. Fermi, Z. Physik 48, 73 (1928).

2 P.rA, M. Dir};.c, Proc. Cambridge Phil. Soc. 26, 376 (1930).

3 For general discussions see for example : L. Brillouin, Actualités
sci. et ind. 160 (1934); P. Gombds, Die statistische Theorie des
Atoms und ihre Anwendungen (Springer-Verlag, Wien, 1949); E:
M. Corson, Perturbation Methods in the Quantum Mechanics of n-
Electron Systems (Hafner Publishing Company, New York, 1950),
Chap. IX.

4a]? C. Slater and H. M. 7Krutter,) Phys. Rev. 47, 559 (1935);
H. Jensen, Z. Physik 111, 373 (1938).

5JFeynman, Metropolis, and Teller, Phys. Rev. 75, 1561 (1949).

¢ R. E. Marshak and H. A. Bethe, Astrophys. J. 91, 239 (1940).

77J. J. Gilvarry, Phys. Rev. 96, 934 and 944 (1954); J. J. Gil-
varry and G. H. Peebles, Phys. Rev. 99, 550 (1955); R. Latter,
Phys. Rev. 99, 1854 (1955).

and Tomishima® have done this by deriving a tempera-
ture-perturbation type of Thomas-Fermi equation® in
which the effects of exchange are taken into account
by using an effective temperature?® which minimizes
the Helmholtz free energy. Ashkin! has generalized
the Thomas-Fermi-Dirac theory (with exchange), ob-
taining equations applicable for any temperature. How-
ever, his solution, obtained by an analytical perturba-
tion procedure, is (like Umeda and Tomishima’s valid
only to temperatures of a few volts (1 volt=211 605.6°K).
The present paper is an extension of this early work
(including the perturbation solution), and also outlines
a method by which accurate solutions may be calcu-
lated for arbitrarily high temperatures.

2. THEORY

A. Basic Integral Equation and Associated
Differential Equation for the Charge Density

The application of the statistical theory of the atom
to equation-of-state calculations is well known, but for

(1;5135 Umeda and Y. Tomishima, J. Phys. Soc. (Japan) 8, 360
9A]B. Lidiard, Phil. Mag. 42, 1325 (1951).
1 J. Ashkin (unpublished).



