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A simple description is given of the quantum-mechanical theory of multiple scattering. The separation
of the scattered wave into “coherent” and “incoherent” parts is discussed in greater generality than has
been done previously. Applications to transport theory are described. Specific calculations are made of
the refractive index of a medium which is “polarized” by the scattered particle (Lorentz-Lorenz formula)
and also of a medium which has correlated structure (critical opalescence). Other applications are given.

I. INTRODUCTION

N several previous papers, a technique was developed
for the description of the scattering of a given
particle by a system of particles.!™® The derivations
given were somewhat complex and lengthy. In the
present discussion, a much simpler and more straight-
forward development will be given of the previous
results. At the same time, a more comprehensive study
of the separation of the scattered wave into “coherent”
and ““incoherent” parts! will be made.

In an important series of papers, Brueckner and his
collaborators*—® have applied techniques of scattering
theory to the formulation of the energy eigenvalue
problem for many-particle quantum-mechanical systems
in connection with a theory of the structure of atomic
nuclei.” An extension of these methods has been made
to statistical mechanics,® including a ‘“‘nearest neighbor”
expansion for the energy of a homogeneous system.®
These techniques for calculating the energy of a many-
particle system are in many respects similar to those
used for the multiple scattering problem. There are
important differences, however, which we wish to
emphasize.

To aid in the understanding of the multiple scattering
problem, we should like to discuss a number of appli-
cations. These include a description of the propagation
of a wave packet through a sequence of scatterings, a
derivation of a ‘“Lorentz-Lorenz formula” for the
index of refraction, and a discussion of the energy
levels of the w-mesonic atom.™

* Work performed under the auspices of the U. S. Atomic
Energy Commission.
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II. FORMAL DEVELOPMENT OF THE MULTIPLE
SCATTERING PROBLEM

The notation of reference 2 will be followed insofar
as possible. The scattering medium consists of a large
number .V of equivalent particles.! This medium is
supposed to have an angular momentum J with a z
component J,= M. Its states will be represented by the
indices “(y,M)”’ and its wave functions by

g‘Y-M(g)y (1)

where £ is some appropriate set of many-particle coordi-
nates. If Hy is the Hamiltonian for the medium, then

Hygy =W, gy, o, @

where 1V, is the energy of the medium when it is in the
state (y,M). It will be convenient to suppose that the
energy W, is not degenerate, except for the (27-+1)
values of M. This restriction is in no sense important
for our following discussion, however.

The incident particle is described by a complete set
of plane wave functions A,, where ¢= (q,») and q is its
momentum and » is its spin orientation. Then

BN g= €g\q. 3)

Here £ is the kinetic energy operator for this particle.
The interaction of the incident particle with the
target medium is written as

V=3 Va, 4)

where V, is its interaction with the ath particle in the
medium. If we now define

Ho=Hy+h, )

the Schrodinger equation which describes the scattering
is
(Ho+V)V,=EY,. 6)

Equation (6) has the boundary condition that at large
distances from the scatterer

\I’a—)gyo,Mo)\q()E [ d). (7)

1 This restriction may easily be relaxed. We shall usually
suppose our units chosen so that =1 in the following.
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Here (vo,M,) represents the “ground state” (or, more
generally, the initial state) of the scattering medium.
The scattering will, in general, lead to changes in both
the states (yo,Mo) and go.

In the usual manner, the Mgller wave matrix Q is
introduced as follows:

‘I/a_—‘ngo,ﬂ{o)\q():QId). (8)

A relatively complete discussion of the formal features
of the scattering was given in Sec. II of reference 2.
This included a very general definition of the “optical
model” problem, or that of determining the refractive
index of the medium. We shall not attempt to reproduce
that discussion here.

The Schrédinger equation (6) for ¥, may be con-
verted, as is customary,'? into an integral equation for 2:

1
Q=14-V7, 9)
a

where

a=E,+in— H,. (10)

(Here 7 is the usual® positive, infinitesimal parameter
introduced for performing integrations across the pole
of a1.)

We wish, at the outset, to separate the solution Q to
Eq. (9) into parts ‘“coherent” and “incoherent” with
respect to the incident wave. For this purpose, we write

(11)

and define F and Q¢ as the solutions to the equations:

Q———FQc,

F=1+

1
(V—0)F, Q¢=14+-0%c. (12)
a—0 a

The matrix © will be specified presently; for the
moment, we define it to be diagonal with respect to the
indices ‘“y”’ describing the medium:

(Y'M'| 0|yM)=5,,(yM')| 0| YM),

13

(9| ID) =03 e 3).

One readily verifies that Eqs. (11) and (12) provide a
solution to the Schrodinger equation (9). We shall refer
to Q¢ and (F—1)Q¢ as the “coherent” and the “inco-
herent” waves, although this departs somewhat from
customary notation. For instance, if the spin orientation
of the scattering medium or of the scattered particle is
changed, as may be permitted by Eqgs. (13), the scat-
tered wave will not interfere with the incident wave.!
For experimental reasons, it seems desirable, neverthe-

12 See, for instance, B. Lippmann and J. Schwinger, Phys. Rev.
79, 469 (1950) or M. Gell-Mann and M. L. Goldberger, Phys.
Rev. 91, 398 (1953).

13 We might, of course, have defined O to be also diagonal with
respect to M’ and v if this were desirable.
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less, to keep the “spin flip” amplitudes in © and Q¢.M
Were the degeneracy of the energy W, greater than we
have assumed, transitions among the extra states
might also be kept in 0O if so desired.

To continue, we wish to rewrite the first of Egs. (12)
for F as

F=1+——PVF, (14)

a—0

where P is an operator acting on VF which is yet to be
specified.’® In order that Eq. (14) provide a solution to
the first of Eqs. (12), we must have

(I—P)VFQ(]’G>=OFQC'|(Z>, (15)
as is easily verified by substitution of (14) into (12).
Here we have anticipated that F is to operate on Q¢|a),
according to Egs. (8) and (11).

Equation (15) represents the fundamental restriction
on the operators P and O which must be satisfied if
Eq. (14) is to provide a solution to the original
Schrédinger equation.

Equation (14) is now of convenient form for intro-
ducing a “multiple scattering” solution.! Indeed, we
easily may verify by substitution that Eq. (14) is
exactly satisfied by

1~
F=14- 3 Pt.Fa,
d a=1
1w
F,=14-3" PigFg, (16)
B#a
1
ta=Vaot+VaPla.
d
Here
d=a—0, (17)

and the two-body interactions V, were introduced in
connection with Eq. (4). In the next section, we shall
discuss the interpretation of these equations, including
the “two-body” scattering operators q.

To satisfy Eq. (15), a number of choices for P are
possible. For instance, to obtain the solution of
reference 1, we set

PZPND, PNDta:lay (18)

where Pyp acting on ¢, vanishes for elements diagonal
in the v states and is otherwise unity. Explicitly,

Pyp(YM'|ta|yM)= (v'M'|ta|yM) for "7y

19

=0 for v'=n7. (19)

14 As was observed in reference 2, this seems particularly useful

for the description of the elastic scattering of particles by nuclei.

More recently, this point has been developed in greater detail:
for example, E. Fermi, Nuovo cimento 11, 407 (1954).

16 A similar operator and technique have been used in references

1 and 2, but in a quite different notation. The present notation

was introduced in reference 9.
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Pxp does not, however, act on the states ¢ of the
scattered particle. Now,

(I—P;\'D)taE[Ca,

where f¢. represents the matrix elements of ¢, which
are diagonal with respect to the states v.
To see if we can satisfy Eq. (15), we note the general

relation!®
VE=Y 4 toFa.

(1—PND) VFcha)=Za tc,zFanl(l>,

(19

(20)

(21)

This may be re-expressed as (for brevity, we shall
frequently omit matrix indices other than )

Thus

<'Y|Za tCaFa!'YO>=<7|Za @

1
Y14+ 2 Ja
1 1
+ 2 A 22 Aart- -
a1#ad agzFal

ayFa
’Yo>
=y | & ta VXY F [ v0)-

Here Y.,/ means that we omit from the sum over «
that one term which occurred in the previous scattering
in F (if there was a previous scattering). The last step
in Eq. (22) involves only a reordering of the sums taken.

From Eqs. (21) and (22) it is clear that Eq. (15) is
satisfied if we take (again suppressing indices other
than v)

(22)

@Ol =0y (v 2Za tal¥)- (23)

When N is large we can usually simplify Eq. (23) in
that Y_." can be replaced by 2 .. In doing this we
violate Eq. (22) by adding a redundant term of O(1/X).
That is, the added terms are of the form

1
Z(‘Y 'Y;[a"'QC

a>20(1 IN),(24)

since the t,’s are of O(1/.V) (this will be demonstrated
in Sec. IIT). Then we may take

WMoYy Mg)=2 alca
=0y (YM'¢ | e la|¥Mg). (25)

Equation (25) appears to be an adequate approximation
to Eq. (23) except for media having a definite crystalline
structure. In this case a second scattering from the
omitted particle in Eq. (23) may be heavily weighted in
Eq. (25). When this happens the correct Eq. (23) must
be used.

With Eq. (25) we have obtained the form of the
multiple scattering equations introduced in reference 1
and used subsequently.

Except for the obvious possible choice P=1, 9=0,
Eq. (18) provides the simplest form of P which has

16 Equation (20) is easily verified, using Eqs. (16).

M. WATSON

been found. We may, however, easily generalize Eq.
(18) to a class of operators which control virtual states.
For example, we may forbid the repetition of a v state
after one or two scatterings, one or two or three scat-
terings, etc. Carrying this to the limit of all previous
scatterings, we obtain

P:Po, (26)

where P, forbids any repetition whatsoever of a v state
which has occurred after any previous scattering (that
is, following any previous ¢ matrix). In other words,
{y| Pota(1/d)ts- - - |vo) vanishes for terms in which ¥
appears as an intermediate state following a ¢ operator.
When v has not appeared previously, Pola=1, in this
expression.

The converse of this is expressed by the statement
that

| (A=Po)Xa tal a|vo)

has the state y occurring someplace prior to the last
scattering. It may occur at one previous scattering,
before the second previous scattering, etc. Formally,
this may be written explicitly as [see Eq. (20)]

<’Yl (I_PO)VF!’YO):('Y! (1—P0)Za taFal'Y())

Y1+ 2 _P0/a1+ t >

al#a
v>

|14+ 2 —Potaz+

ag#a1 d

+XZ X

a ajFa

1
Y ta—Poial
d

Now, each of the factors on the right is just (y|F|vo)
except for the omission of a single scattering. Just as
was done in Eq. (22), we may rearrange the sums so
as to make these factors equal to (y|F|vy,) by omitting
the term from the first factor instead. (The origin of
this restricted summation is of course due to the
restriction that no fwo successive scatterings may be
from the same particle.)
Then Eq. (27) may be rewritten as

(27)

<7|(1_P0)VFI70)={<7

1
a[1+ 2 —Pola

ajFa d

7>|<7,’F|70>

={y| L ataFd | V¥ | F70).

1 1 !
+ Z —Potal Z “‘Potaz‘f‘"']

aiFa d a27a] d

(28)

Here the notation - - -’|y) means that we must restrict
the summation to the left in such a manner that the
first scattering in Fo|v) does not occur from the same
particle as the last scattering in (y|F|vyy). [This is of
course just what we did in Eq. (23).]
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Again, the single scattering omitted in Eq. (28) is of
the order of

g(vltalv)<vEPota‘ . i'yo>20(§;), (29)

except for crystalline media. Thus we may ordinarily
ignore the restricted summation in Eq. (28).

It is clear from Eq. (28) that Eq. (15) is satisfied by
taking

MG OIYM@=by(yM'¢ | X a tol ' | YMq)

E’Cc.

(30)

This is just the “optical model potential,” as introduced
in reference 2.

Other forms for the operator P are possible. For
instance Pxp, Po, etc. might have been defined with
respect to states other than the states y. To illustrate
this we consider a medium with particle-particle corre-
lations extending over distances comparable to, or
larger than, the wavelength of the incident particle.
Let us suppose the energy of the incident particle to
be large compared to the spacing of states of the medium.
Following a collision which “knocks a particle from the
medium,” the medium requires a certain relaxation
time to settle into a new eigenstate. This process is
described by a “wave packet” of y states. The scattered
particle than travels in an “optical potential” appro-
priate to the ‘“wave-packet state” following the scat-
tering—and because of the assumed correlations, this
potential may be different near the “hole” left by the
scattering than elsewhere in the medium.!” This modi-
fied optical model potential is described most naturally
by defining Pyxp as nondiagonal with respect to this
wave-packet state.

In several respects, our formalism is more general
than is indicated by our application. For example, the
index a may refer to some other property of a system
than its “particles.”

It is evident, in accordance with Eq. (11), that the
operator Py effects a separation into “coherent’ and
“incoherent” waves (as discussed above). That is,
when P= P, F satisfies

(y|Flv)=1.

(We again suppress the indices (M,q,v), since Py does
not affect these.) Consequently,

(vlQlm) =12y

(1)

(32)
and

Vea=Qc|a) (33)

describes the elastic scattering. The wave function of
the medium, g+, is a factor of Eq. (33) and may be

171t is a pleasure to acknowledge that this phenomenon was
called to my attention by Professor M. A. Ruderman. A more
complete discussion is given in the appendix.
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removed by defining
Pe,= (g“ro,\I/Ca)~

From Eq. (12), we see that ®¢, satisfies® the single-
particle “Schrédinger equation”

[h+Vc1®ca= €ac®Pca,

depending only on the variables (M,q,»). Here V¢
=(M'q'v'|V¢c| Mqv) defines the “optical model.”

For a large, uniform medium, V¢ takes the approxi-
mate form

(34)

(35)

Ves (q' — q)(M'qv' | ve | Mqp). (36)

When V¢ does not depend on the spin orientations
(M,v), we may also define an index of refraction » for
the medium. In the nonrelativistic case, h=¢*/2M,
eq0=qo’/2M, and Eq. (35) reduces to

¢+2Mve=qd,
or
(¢/qo)*=n*=1—(2M/qe*)vc. 37)

(The relativistic case was treated in references 1 and 2.)

Similarly, (F—1) describes the inelastic scatterings.
Since ©= V¢ appears in the propagator !, we see that
between inelastic scatterings, the particle “propagates
in a dispersive medium.”

Since V¢ is in general complex, Eq. (37) implies that
the “momentum vector” q is also complex. It is im-
portant to note that the complete set of plane wave
functions A\, (Eq. (3)) in terms of which our operators
are described does not, of course, involve complex q’s.
Equation (37) appears only when we evaluate integrals
over the A, states. Since the wave propagates as e'1'*
in the medium, it is convenient to consider the complex
q as a momentum, however.

III. INTERPRETATION OF THE SCATTERING
EQUATIONS

In this section, we should like to discuss the operators
t, and to make some descriptive comments concerning
the inelastic scattering operator F.

We have remarked in connection with Eqs. (24) and
(28) that the ¢, are of O(1/N). It seems apparent from
Eq. (16) that a useful choice for P and 0 will give /.
and V, the same order of magnitude—and we shall
assume this to be the case (unless V, has singular
matrix elements). Let us also suppose the scattering
medium to occupy a volume V. The average particle
density in the medium is then

pOEJ\Y/’U, (38)

which we consider to be not necessarily ‘“large or small.”
The local density of particles in the scattering medium
is then (we consider z. to be the space coordinate of
the ath scatterer)

p(5) =N f gr¥ve[dr e, (39)
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where by [dr]. we mean that d?z, has been omitted
from the volume element of integration. We also
consider that
p(3a)>=po, (40)
when z, is in .
The order of magnitude of {c, is then, since we are
taking {,=0(V,):

@' tcal pYvop’ | Valvop)

1
2@ 870 gvodTV (X—24)e ("~ X3y
@#'Vip
TN f"(za)d3zaeXp[—i(p’—p)'za], (41)

where

(| V] )= (2m) f BV (@) —vs (42)

Actually, of course, we should replace (p'|V|p) by the
exact (p'|¢|p) in Eq. (41).

Except for crystalline media, when (p’—p) satisfies
a Bragg condition, the integral in Eq. (41) is of order
unity compared to .V'; so

Le=0(1/N),

as was stated in Sec. II. Even for crystalline materials,
the integral in Eq. (41) is effectively of order unity
when either p’ or p is an integration variable (as was
the case in our applications in Sec. II). Finally, the
matrix elements of the ¢, for inelastic scattering will
not be of a larger order of magnitude than those of f¢.

The discussion just given shows that we can replace
the defining Eq. (16) for /. by

1

ta=Vat Va&za. (43)

That is, we can in general omit the operator P. The
reason for this is that P deletes certain y states from
the sum over virtual states. Any finite number (actually,
any number <<V) of such states will not affect the value
of Egs. (16) and (43). To see this, we write Eq. (16) as

1 1
taz Va"*— Va_ta+ VGA(l_P)tUG
d d

and consider the last term as a perturbation. We have
just seen that {,~V,=0(1/N). Thus the last term
above is of O(1/N?) unless the number of vy-states
permitted by (1—P) is of O(N). This is manifestly
not so for P=Pyp. It will also not be true for P=P,
unless the scattered particle makes a number of inelastic
scatterings which is of the order of the entire number
of particles in the medium. For cases of practical
interest to a multiple scattering theory, this would
not seem likely to occur. Henceforth, we shall, therefore,
consider Eq. (43) as replacing Eq. (16).

K. M. WATSON

It will also be sometimes possible to at least partially
ignore the P operator even when it stands between
two fa’s.

The approximation of Eq. (43) is closely related to
the “impulse approximation” of Chew, Wick, and
Goldberger'® and would seem to be valid whenever the
impulse approximation is. Indeed, we should like to
reformulate the impulse approximation as that by
which Eq. (16) for f, is replaced by the two-body
equation

1
tao = Va + Va—'taoy
o

(44)
d'= éqoo-l‘i‘f)_}l‘ha— <'Y | 0 ’ 7))

erOE €q0— (H/-y— I/V',o).

Here we suppose v to be the state of the medium at the
time the scattering begins to take place and %, to be the
kinetic energy of particle a. For the impulse approxi-
mation to be valid, this state v is not necessarily left
unchanged. That is, we suppose there to be many vy
states which lie close together in energy and which
describe the recoil of the particle a—and which leave
the remainder of the medium essentially unchanged.
Then the evaluation of {(y|©]|y) for the single state v
is valid in Eq. (44).

To see the conditions under which Eq. (44) is valid,
we define

AW = —[d—d"]. (45)

AW then represents the excitation of the medium (ex-
cepting the kinetic energy of particle @) during the
single scattering. Expanding Eq. (16) for /. to first
order in AW and using Eq. (44), we easily obtain
[neglecting P, as implied by Eq. (43)]

1 1
taz[l—}-ta“—AW—]t,}’. (46)
dO dO

The second factor in square brackets is just the Chew-
Wick-Goldberger!® correction term. Its order of magni-
tude is expected to be!®

[fluctuation in potential energy of particle «
due to the remainder of the medium ] X [energy

of the incident particle (= eq) ] (47)

When this ratio is small, the impulse approximation is
valid—which means that we neglect the effect of the
medium on particle @ during the scattering. For the
applications in this paper, we shall assume the validity
of the impulse approximation. (At the same time, we
shall not bother usually to keep the superscript O
on £,0.)

Finally, the scattering operator #,° may lead to
transitions of the medium from a state vy to a state v’.

18 G. F. Chew and G. C. Wick, Phys. Rev. 85, 636 (1952);
G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952).
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According to the impulse approximation, we must
evaluate the two-body operator {0 from Eq. (44)
before evaluating the matrix element®

(V' [t |7)= (gysta"gn)- (48)

A rather obvious first correction to the impulse
approximation is to add to %, in d° [Eq. (44)] the
dispersive energy of particle @ moving in the medium
of the other particles. In this case, one must find the
depth of the “optical model potential well” for particle
a. This correction will often not greatly increase the
difficulty of the calculation. [The first-order AW
correction in Eq. (46) will now vanish. ]

Even when the impulse approximation is not valid,
the operators /. of Eq. (43) have physical meaning as
the scattering operators from bound (rather than free)
particles. They are also “physical observables” in the
sense that for “thin media,” or for ‘“‘glancing collisions,”
the wave matrix is given by a single term such as
Q=1+ (1/a)l,, etc. In principle, of course, one needs
to know the wave functions g, of the medium in order
to evaluate the /, when the impulse approximation is
not valid. In the absence of simplifying models, this
will in general considerably increase the difficulty of
obtaining the /,.

To provide a simple illustration of the scattering
Egs. (16), we consider a large, uniform medium con-
sisting of scattering particles which are much heavier
than the scattered particles and which are arranged at
random positions in the medium. We also suppose the
scattering particles to have states of excitation sepa-
rated by energies small compared to that of the scat-
tered particle. Using the form of the scattering equations
given by Eq. (18), we have

1 1 1
w=[1+—z L5 Ip 5 It -]szcw. (49)
d « d B dao=B

For massive scatterers, we may take 7, to have the
form

(k|Za|ko)= (k|t|ko) exp[ —i(k—ko)-za],

where ko and k are the respective momenta of the
incident particle before and after the scattering and
(k|¢| ko) is the scattering matrix for a scatterer located
at the point z,=0. If we neglect the recoil energy of the
(heavy) scattering particle, neglect possible spin inter-
actions, and set Ve~Nt¢ [see Egs. (25) and (36)]:

(50)

k2

d~d"= eqo————1v¢c(k), vc(k)=(2m)3V (k|t|k). (51)
2M
In accordance with Eq. (7), we set
|ay= (2m)"teitox, (52)

19 It appears somewhat ambiguous as to whether one should
take v, v' or some combination for evaluating d°, according to
Eq. (44). Actually, if the impulse approximation is valid, this
should make no difference,

1393

By omitting the wave function gv,, our wave function
¥ is an operator involving the coordinates (z;---zx)
of the scatterers. At a later stage, we may reinsert the
gvo by performing an appropriate average over the
positions of the scatterers.

The coherent wave, ®¢,, is!

Pe.=Qc|a)=(2r)le'*ox, (53)

where ko is in the direction of qo and %, is the root of
the equation :

9

ko“
*“*"‘L’C(k(}) = €qo. (54)
2M

ko has a positive imaginary part and may be written
in terms of real and imaginary parts as

ko=kor+ (i/2)\). (55)
When [v¢|<<q0%/2M, we have
1/A=\o, (56)

where ¢ is the total scattering cross section for the
incident particle on one of the target particles.”

Now, one easily verifies, as usual in scattering theory,
that for go|x—z.|>>1,

1 _ exp (ikoR.) 3
~I,,<bc.l=exp(1k0~za)—~—~—f(ﬁg,,,ﬁ,o). (37)
d (27)iR,
Here
R.=x—1z,, (a=12,---Y), (58)
ﬁUEkO/kO, ﬁ*lﬂaz Ra/Ray (59)
and the scattering amplitude f is
S(Apayito)=— (2m)2M* (ko#i pa | L] Roflo). (60)
Finally, M* is the “effective mass,”
M dV¢
M*EM/(H—— ) (61)
ko dko

We suppose a second scattering to take place at
x=zg and define a ‘“‘small distance” y by

x=1zs+ty. (62)
Then Eq. (57) becomes
1 exp(ikgq- y)
~Ia<boa=exp(ik0-za)—ﬁ—
d (2m)}
exp(iko| 25— 2Za|)
———————[(figa,fio). (63)

25— 24|
We have introduced 7ig. as the unit vector in the
direction of (zg— z.) and kgo=ko#ga.

2 See, for example, reference 2. Equation (56) follows from the
“optical theorem,” which states that

Im (qUI t | Q()) = — [2 (27r) 3:]¥1 (qO/AM)d.
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For the second scattering [for example, see the
second term in Eq. (49)7] we let (1/d)1Is operate on the
state (2r)~? exp(ikgs-y). By analogy with Eq. (37),
we obtain

exp(ikoRp)

11
—I g1 Pca=exp(iko-Za) Ars,Mga)
P p; C P(tKo (27r)*Rg f( RB1B

exp (iko| 25— 2a|)

f(figasia).  (64)

|25— 24|

In this manner, we may obtain as many terms as we
need in Eq. (49). We have assumed, of course, that the
average distance between scatterings is large compared
to gt

Instead of a plane wave, we may choose a wave
packet for |a)? (here ¢ is the time)

la)y=g(|x—2za— V¢|) exp{i[qo- (X— 2Za) — €qot ]}

Here g(u) is a “smooth” function which vanishes for
u>R, the “radius of the wave packet.” We suppose
that R>>q¢ ' and RZ>#2D/MV , where V= qo/ M~ko/M
and D is the distance which the wave packet travels
during the time which we observe it. Then the spread
in the wave packet is negligible. We may also suppose
the density of the medium to be low enough that the
mean free path A>>R.
Then it is easily shown that

1 exp(ikoRa)
éIQCDCa’_\’.A-——-—— exp(——iqut)f(ﬁg,,,ﬁg)

(27)*R,

Xg(| Ratio—Vt[). (65)
This tells us that the first scattered wave from «
appears at time /=0 and spreads out as a spherical
wavelet moving with speed V" and local amplitude

exp(tkoRa)
[ (A Reyig) ——.
(2m)iR,

A second scattering from B will appear when this ripple
passes the point zg. This in turn will appear as a
secondary spherical wavelet. These will give rise to
tertiary waves, etc. The wavelets from such successive
scatterings are obtained on repeating the calculation
which led to Eq. (63), i.e., we let the expression (65)
represent the “incident wave” for the next scattering,
etc.

The connection with classical transport phenomena
is easily obtained, as was shown in reference 1. When
A>q¢!, we may neglect the inferference of wavelets
scattered from different particles in the expression

PxE[\I’|2

21 Extensive use of wave packets in the development of scat-
tering theory has been made by Francis Low (unpublished lectures
at the University of Illinois, 1953).
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for the density of scattered particles. Using the integral
equations (16), the appropriate classical transport
equation is obtained.?? The quantum-mechanical theory
of transport phenomena is contained in the general
transport equation satisfied by ps.

1IV. OPTICAL MODEL POTENTIAL

We consider the choice P=P, of Eq. (26) in this
section. Then the elastic scattering is described by
Q¢|a) and the inelastic scattering by (F—1)Qc|a) as
was mentioned in connection with Eq. (35).

The “optical model potential” V¢ is given by Eq.
(30). The appearance of V¢ in d in F and the F, tells
us that the particle propagates between scatterings in
the dispersive medium as determined by T¢. Thus, for
instance, Eq. (30) is a nonlinear integral equation for
Ve.

A zeroth approximation (the one used in Sec. III) is
obtained on setting F,=1 in Eq. (30). Then

UC:(VlZa tal’Y)‘S'r’“/:

which is just Eq. (25). Corrections to this equation
arise because of correlations between scatterers in the
scattering medium. These correlations may be induced
by the scattered particle or may be an intrinsic property
of the medium. An example of the former type of
correlation is the ‘‘dielectric polarization” in the
Lorentz-Lorenz formulas for the refractive index of a
gas. The manner in which the latter correlations affect
V¢ was discussed in reference 2. In general, these
phenomena will be interrelated.

To illustrate the effect of polarizing the medium,
we shall use the model of Sec. III, supposing the
scatterers to be much more massive than the scattered
particle, to have closely spaced excited states, and to
be randomly distributed in a large, isotropic uniform
medium. As before, we shall take

(66)

k2
d=-eq— e(k)+1n, e(k)=—Fvc(k), 67)
2M
and suppose ko to satisfy
€(k0) = €qy. (68)
We define
1
V,=etko-x_P, Z tg¥g, (69)
d B
so by Eq. (30)
K ve|koy =2 a(vo, k' | ta¥ |0 k0). (70)
This may be written explicitly as
N
(K'|velko= | II & gro(z,- - -2n)|?
y=1
X | Lo ta¥al ko), (71)

using the wave function gv, of Eq. (2).

22 In reference 1, this was done for the special case of point
scatterers. The same method works in general, however.
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To calculate V., we suppose the states of the scat-
tering medium to be so dense that the chance of
repeating a previous state is negligible for all but very
small angle scatterings. The scatterings at sufficiently
small angles will not lead to a change of state of the
medium and must be explicitly excluded by the P,
operator. Also, the mean free path for scattering is
considered to be much greater than k1.

To evaluate Eq. (71), we must solve Eq. (69) for ¥,.
It is apparent that we need ¥, only for x— z4, which is
the position at which the next scattering occurs. Let
us make the assumption that ¥, has the form

Vo=e0xQ, (72)

where Q is independent of « for x~z,. As will be seen,
this implies a homogeneous medium. Also, as in Sec.
ITI, we suppose the distance between scatterings to be

large compared with %,~! and
(k|talko)= (k|| ko) exp[—i(k—ko) - zo]. (73)
Then we obtain
1 .
SﬂEgPollge‘kO"
@*k exp (k- Rp)
= [kl k) explike- 29
€q0+1— G(k)
exp(tkoRpg)
= f(#irg, o) exp (iko- zg), (74)

8

just as in Eq. (57). Here Ry, 7z, f, etc. have been
defined by Eqgs. (58), (59) and (60).
Equations (72) and (74) may now be substituted into
Eq. (69) and the resulting equation solved for Q:
Q=[1-aT", (75)
where

A= 3 Pof(7irg,Ho)
B a 8

€exp (ZkoRg)

exp(—iko-Rg).  (76)

In the expression for A, we suppose that x=z., so
Rs= (2.—1z5). By our assumption that the medium is
homogeneous, we conclude that A, and thus Q, is
independent of a—as was assumed in connection with
Eq. (72).

Equations (72), (75), and (76) provide the solution
for ¥,, so Eq. (71) may be evaluated as

ve= Z I=I1dzylg—,o(zl -zy) |2
Xexp[—i(k'* Ko) -2 ] (K’ [ ¢| ko)

1—-A

77)

If we assume complete randomness in particle positions
we may set |gyo|2=TU"" when all the z’s are within
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the volume U and |gv,|2=0 otherwise. Also, we may
take

f P expl—i (K — ko) - 2o~ (256 (k' — ko),
k0]

and change to the Rg for the remaining variables to
obtain

N
vcz[%(br)aﬁ (k' —ko) (ko ¢ kO)]

1 H,d3Ry
f . O8)
0¥ 1) 1-A(Ry- - -Ry)

(There is no R, in the integral above, of course.) The
refractive index # may be obtained from Eq. (37).
Exact evaluation of the integral in Eq. (78) does not
appear feasible. The only approximate treatment which
we shall discuss is the rather crude one of substituting

2 =po f dsza=P0fngﬁ
Ba

in Eq. (76) for A. Here po=N/9, as before.
Then

exp(tkoRpg)
Ao f PR U0 exp(— ik R9)]

dR
2o f 7‘3 exp (ikR;s) {f (— fio, ) exp(ikoRs)
(24

— f(fio,fie) exp(—ikoRg)}+- - (79)

We now recall the presence of the operator Py in
Eq. (71). Py instructs us to discard all scatterings which
do not lead to a change of state of the scattering medium.
The second term in curly braces in (79) describes
forward scattering, which will not excite the scattering
medium, and must, therefore, be omitted.

Because %o has a positive imaginary part, we may
set the upper limit in the integral equal to infinity to
obtain

Ag%’ (=i, 0. (80)

0

From Eq. (77), we evaluate v¢ as

(ko|?| ko)
e

(k’lvclko)=6(k’~ko)[(21r)3p

From Eq. (37), we obtain the refractive index as

M ﬁo, Ao ™
%[—M—*paf( q[: )J/[l—;);ﬂof(_ﬁo,%)]- (82)

n—1=
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This is similar in structure to the Lorentz-Lorenz
formula for the refractive index of an isotropic medium.

We must recognize that a number of approximations
have been made in obtaining Eq. (82). First of all, we
have made an approximation in treating the P, operator
on which (ko|{|ko) operates in Eq. (78). In other
words, we must suppose this represents only ‘“nearly
forward scattering.” Next, we have kept only the first
term in an expansion (obtained by partial integration)
in (kRg) ™2 A more accurate treatment is beyond
our present scope.

For a medium in which correlations between pairs
of particles are important, but for which the induced
polarization is negligible, we may write, approximately

ap agFal

1]
'OC~<70I§ [a]'y())-"-z Z 'YO;tal(_iPOlaQi'YO>7 (83)

d~eqo+1n—e(k).
We shall neglect the term v¢ in € as well as spin inter-

actions. In carrying out the sum over virtual states in
the second term above, we must omit the state y,. Thus,?

1
<kl’Yo tar—Polas ko’Yo>
| d \

:fd3za1d3za2d3k[P(zal,z@)—P(zal)P(zag)]

[(k’ltlk)(kltlko)
X _—
eqo‘f‘fn—é(k)

] expl—i(k'—k) - za1]

Xexp[—z(k— ko) . Za2].

If the P(za«1) is the probability of finding particle o,
at the point Za, P(Za1,Zas) is the joint probability of
finding particles a; and a, at points ze; and zas, respec-
tively.

We may conveniently write

P(2a1,2a2) — P(2a1) P (2a2) = P (3a1)g(7),

I~ Zay— Zay,

(84)

(85)

for an extended isotropic medium. g(r) represents the
pair correlation function for the scattering medium.

Some discussion of the real part of Eq. (84) was
given in reference 2. When the phase shifts are suffici-
ently small that the #’'s are real, we obtain for the
imaginary part of Eq. (84):

")

do
—s(k k)=o) [ a9 [ ) Jem ot

2 2 Im{y

) aFa;

1
tar—=Polas
a

23 Such an expansion requires a cut-off distance for all but the
lowest order term. This expansion need not be made, of course,

if one performs the angular integration in some other manner in
Eq. (79).
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where the differential scattering cross section is
do  (2m)!
a0 TR

f kD (e— eo) (ko L] B) (k] Bo),

and vg is the velocity of the scattered particle. Com-
bining this with the first term of Eq. (83), we obtain
for the imaginary part of the refractive index:

1 do
Im(n)”_\4~p0fd9~[1+p0fd3rg(r)e‘i<k"‘0’"]. (86)
2ko aQ

This expression for the absorption coefficient is
familiar from the theory of critical opalescence in optics.*

If we extend the series (83), we obtain a dependence
on three-particle correlation functions, etc. It is a
characteristic of our description of multiple scattering,
that the structure of the scattering medium is assumed
to be known in the calculation of the scattering. At
just this point, the formal similarity between the
scattering theory and Brueckner’s'=¢ theory of the
nuclear many-body problem breaks down, since the
aim of the latter method is to obtain a detailed theory
of the medium. Brueckner’s work has recently been
extended® to include a method for the evaluation of the
equation of state of gases and liquids. Applications of
this method can be made to calculate correlation func-
tions such as g(r). When the physical medium is not in
a pure state (i.e., has a finite temperature), an ensemble
average must be performed over its spectrum of states.

V. ENERGY OF A PARTICLE INTERACTING WITH A
SYSTEM—LEVEL SHIFT OF THE =-MESONIC ATOM

In reference 9, a perturbation theory for the energy
of a system of .V interacting particles was described in
a manner formally identical with the expression for the
optical model potential. The energy of a single particle
interacting with a system of particles was also obtained.’
This was identical with our expression for #+U¢ except
for the absence of the iy [see Eq. (10)] in the propa-
gators. Indeed, we can write Eq. (35) as

eq=h(q)+{qvo|vc(eq) | gvo)- (87)

The solution of this equation for ¢, gives the energy of
the particle. The first approximation (Eq. (66)) for v¢
gives the expression used, for instance, in theories of
the level shift of the w-mesonic atom.?5:2

The fact that the level shift is essentially given by
the optical model potential has perhaps been insuffici-
ently emphasized. This point is worth making since the
approximations used for the level shift have seemed
somewhat crude when applied to the calculation of the

2 See, for instance, L. Rosenfeld, T'%eory of Electrons (Inter-
science Publishers, Inc., New York, 1951), p. 80. Compare also
M. Lax, Phys. Rev. 85, 622 (1952).

25 Deser, Goldberger, Baumann, and Thirring, Phys. Rev. 96,
774 (1954).

26 K. A. Brueckner, Phys. Rev. 98, 769 (1955).
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optical model potential.?’” Indeed, neither the ‘‘self-
consistency”’ correction associated with the presence of
V¢ in the propagator defining the £, nor the ‘“‘correlation
corrections” discussed in the last section is likely to be
negligible in a quantitative theory.

Brueckner?® has observed that the level shift of the
m-mesonic atom should include a correction for true
absorption of the meson. This correction also occurs in
the calculation of the pion-nucleus optical model
potential—and was indeed given in reference 1 in the
form used by Brueckner.

When the absorption can occur via an ‘“absorption
operator” R, then Eq. (87) is corrected as follows
[see Eq. (72) of reference 17]:

1
R;R‘mo>+<fml Veleq) | qvo).  (88)

€= h(q)+<tm

The propagator d occurring in U¢ should also be
replaced by!

1
D=d—R-R. (89)
d

Karplus? has observed that the level shift R(1/a)R
does not include all the terms which arise from meson
field theory. Using field theory, the “absorption cor-
rection’” must be calculated by the method of potential
construction in quantum field theories.”

VI. SCATTERING FROM A SMALL NUMBER
OF PARTICLES

When the number of particles in the scattering
medium is small, it is often convenient to take 9=0,
so Q¢=1, F=Q and P=1 in Eqgs. (12) and (16). Let
us again use the model of heavy scatterers of Secs. TIT
and IV, so

d=a=eqp— (K*/2M).

If we let the second of Eqgs. (16) operate on e,
we obtain

1
[(Wo=Fqei0x], V,=¢it0xf— 3 05 (90)

a B*a
To solve this equation, we define
1
Sp=-15¥3, (91)
a
and write (as before R,=x—1z,)
) exp(igoR,)
Vg=eit it 3 ———g,, (92)

=8 R,

27 Frank, Gammel, and Watson, Phys. Rev. 101, 891 (1956).

28 R. Karplus, reported at the Sixth Annual Rochester Conference
on High-Energy Physics, 1956 (Interscience Publishers, Inc., New
York, 1956).

29 K. A. Brueckner and K. M. Watson, Phys. Rev. 90, 699
(1953).
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where Qg, is independent of x. For x—zg, we may
rewrite this as

. exp (igoRsy)
Wp(xzg)~eito-*4 3 —
kel Rgy
Xexp[iksy- (x—25)]0sy.  (93)
Here kg, =qoigy and
Agy=(25—12,)/ | 28— 2,]. (94)

Also, Rg,=| 25— 2z,]|.

If we substitute Eq. (93) into Eq. (91), we obtain
(our model supposes the scattering mean free path to
be much greater than ¢g5™)

exp(iqoRs)
ﬂ=_——ﬂ— S (A rg,fio) exp(iqo- zp)
Ry
exp(igoRsy)
+X _——7f(ﬁkﬁyﬁﬁ7)Qﬂv}: (95)
y#B Rg»,

as in Eq. (57). Here f is the scattering amplitude, as
defined by Eq. (60) (now M*=M, of course, since
Ve=0).

Now, substituting Egs. (95) and (92) into Eq. (90),
there results (with x>~z,)

Qap= f(#lap,fo) exp(iqo-2p)
. exp(iqoRs)
+ gﬂf(ﬁaﬂ;nﬂv)—;—“@ﬂv- (96)
v By

This represents a set of coupled algebraic equations for
the Qug’s. The complete wave function ¥ is then

‘I,: {eiqo'x_i_Za Sa}g‘YO(E)-

For this problem, the multiple-scattering equations are
solved algebraically.

97)

APPENDIX

In Sec. II we described the effect on the optical
model potential of a finite “relaxation time” of the
medium following inelastic scatterings. We here
develop this in more detail.

The incident particle with energy eq scatters from
particle “@” at point z,. The particle “@” is ejected
suddenly from the medium. We suppose the medium
to normally have particle-particle correlations extending
over a distance D. When particle “a” is suddenly
removed, the particles within a distance D of z. are
expected to readjust themselves with a relaxation time
7. The excitation energy of the medium associated with
the removal of particle « we suppose to be of the order
Of AEw.

Now if #/D>>q the momentum of the scattered
particle, this particle will leave the disturbed region
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around the point z. before it has a definite energy and
will consequently interact with an optical potential
which is that of the undisturbed medium. On the other
hand, if #/D<«q the particle will interact until it has
traveled the distance D via an optical potential which
is peculiar to the locally excited region near z,. This
assumes, of course, that D/v<<r (where v is the velocity
of the scattered particle), a condition which will be
met if ¢,>>AEyy, the spacing of levels of the medium.
To develop this from our scattering formula, we write

ta=exp[—1(q—qo) Za](q || qo). (A-1)
Now
SaE_taeiqo‘xg’Yo
=3 e'v%g,(q|t] qo)
7.9
X (gv, exp[ —i(q—qo) *2a"Jgr0).  (A-2)

Since we assume that particle « is ejected, we may write

g+=8~" exp(ip-za)/ (2m)%, (A-3)
where p is the momentum of the recoil particle « and
g4 is an eigenfunction of the residual medium (with
particle a gone).

We must suppose p to be large compared to the
average momentum in gyo, so p~(qo—q). More
specifically,

(. : a)
> e_p(il)— (@ exp[—i(a— o) ZaJgro)

ZEXPE'—’L(q— qo) : za] (g7’17g70)) (A'4)
where 70 integration is performed over z, in
Cyr(2a)=(gy",g70)- (A-5)
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Then

1 exp[iq- (Xx—2a) ]

o= ————8+'Cy(2a)
d 7.7 d

X (a]t] q0) exp(igo-za).  (A-6)
The physical interpretation of this is quite apparent.
The phase of the wave at z is just exp(iqo-z.). The
additional phase change in traveling to point x is
exp[iq- (x—z,)]. Energy conservation is determined
by the pole of d when R= |x—z,| is very large. When
this distance is much larger than #/g, the uncertainty
in ¢, is ~AE=1v%/R. Even when AE/¢, LK1, AE/AE),
may be >>1. This condition will obtain for some range
of R if ¢, is large (as we have assumed) and then

2y 8r'Coyr (2a) = gro, (A-7)
which follows from the completeness of the g,.’. This
means that the medium is “frozen” as it was before a
was ejected. As the scattered particle travels farther,
R becomes large and eventually AE/AEy<<1. Then
the medium has settled into a definite eigenstate.

Now Eq. (A-7) describes a ‘““wave-packet” state of
the medium having an uncertainty in energy ~AEy.
The relaxation time of the medium is determined by
the time required for AE to become comparable to
AEw. As discussed in Sec. II, it is in terms of the
“wave-packet state” that it is desirable to define Pyp.
Then the “elastic scatterings” which make up the
“optical potential” are “‘elastic” with respect to the
wave-packet state.

We emphasize that this change in the definition of
Pxyp is only important if the medium has strong
correlations between particles. Had we used the original
definition of Pyp in terms of v states, it would have
been necessary to sum over many ‘‘slightly elastic”
scatterings to obtain this result.



