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Higher Order Radiative Corrections to Electron Scattering*
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The higher order radiative corrections are examined in the infrared region, and Schwinger s conjecture
regarding the functional dependence of these corrections on the energy resolution is proved.

ECENT high-energy electron scattering experi-
ments' have been carried out under conditions

for which the radiative corrections are quite large in
magnitude, although their eGect on the relative angular
distribution is not too important. Schwinger s' original
calculation of the radiative corrections, correct to
lowest order in both the fine-structure constant and the
external potential, resulted in a fractional correction to
the elastic cross section O-.l computed without regard
for radiation

a (O,E,AE)—(1—
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where, in the high-energy limit, 8 is given by
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t On leave from Hiroshima University, Hiroshima, Japan. The
work was completed during the summer of 1956 while this author
was a visitor at Stanford University.

' Experimental and theoretical results on high-energy electron
scattering are summarized in R. Hofstadter, Revs. Modern Phys.
28, 214 (1956).

2 J. Schwinger, Phys. Rev. 76, 790 (1949).' H. Suura, Phys. Rev. 99, 1020 (1955).
R. G. Newton, Phys. Rev. 97, 1162 (1955);98, 1514 (1955).' M. Chretien, Phys. Rev. 98, 1515 (1955).' F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937).

The various quantities occurring in Eq. (2) have their
usual meanings; in particular, AE is the upper limit of
the energy that can be radiated by the electron if it is
to be recorded by the detection system. The occurrence
of 0E in 8 is a consequence of the well-known infrared
divergence associated with the bremsstrahlung and the
fact that real and virtual photon processes must be
considered together.

The restriction of the validity of Kq. (1) to the
lowest order of the scattering potential was removed

by Suura, ' and explicit calculations by Xewton' and
Chretien' coniirmed Eq. (1) for the special case of
the second Born approximation to scattering in a
Coulomb potential. Schwinger noted that if the energy
resolution of the detector were improved (i.e., AE
decreased), O would become large and Kq. (1) would
lose validity. He pointed out that under these condi-

tions higher order radiative corrections v ould become
important; and on the basis of Bloch-Nordsieck' type

arguments, he conjectured that the proper form for
Eq. (1) would be obtained by the substitution

1-b~e-'.

Zk;=aE
(nA)"
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dks dk2 dk„

cr(O, E,d E) = lim
z —e ~=o k„

Xcr'(O, E,K ), (4)
7 J.M. Jauch and F. Rohrlich, Helv. Phys. Acta 27, 613 (1954);

Theory of Photons and Electrons (Addison-Wesley Press, Cam-
bridge, 1955), pp, 390-405.

S. N. Gupta, Phys. Rev. 98, 1507 (1955); 99, 1015 (1955).' This is the usual quantum electrodynamics with photon opera-
tors for momentum k less than .K omitted from the theory. This
procedure is not invariant, but for the present purpose it is
simpler than introducing a photon mass.

'0 We use units in which A= c= 1.

In this note we shall re-examine the question of the
infrared divergence and show that Schwinger's con-
jecture is asymptotically true for small DE (AE«E).

Starting with Bloch and Xordsieck, ' the infrared
divergence problem has been considered by many
authors. I'or references and discussion of earlier litera-
ture, we refer the reader to Jauch and Rohrlich, ' who
have recently given a comprehensive quantum-electro-
dynamical treatment of soft-quantum processes. In
this paper we shall examine in somewhat more detail
how the statistical independence of the soft quanta
arises. The complicated overlapping of the real and
virtual soft quanta will be disentangled by symmetriz-
ing over the order of their emission and absorption.
The importance of this symmetrization procedure for
emission of real photons was pointed out by Gupta' in
a discussion of multiple bremsstrahlung. These detailed
considerations will be presented later in two lemmas,
and the main features of the proof of Schwinger's con-
jecture (assuming the statistical independence of the
soft photons) will be given f'erst.

E or a given electron energy E and scattering angle 8,
we seek the asymptotic dependence of the cross section
a(O, E,AE) on dE in th. e limit AE«E. As a device for
handling the infrared divergence, we introduce a mini-
mum photon momentum E .' As shown in Lemma I, a
Poisson distribution is obtained for the emitted photons
and the desired cross section is given by'"
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where rr'(H, E,E ) is the renormalized cross section for
scattering without emission of real photons, and where

1 (p„p„')
ks dn4~

&pk p'ki (5)

Equation (4) expresses the usual 1/k depenclence for
the emission of soft photons, and the factors 3 are the
result of the integration over the angles of the emitted
photons. According to the definition of rr(H, E,AE), the
total energy of all the emitted photons must be less
than AE."

If the photon energies occurring in Eq. (4) could
individually range between E and AE, a very simple
result would be obtained since the series would reduce
to exponential form. The actual limits of integration
can be handled easily by a method used previously by
Jauch and Rohrlich' in which the upper limit of in-

tegration is expressed by means of an integral

1
I

"exp[i'(1 —gk;/AE)]
-dA, =

2~i~ . I,—i~

1 if Qk, &AE
(6)

0 if Pk;) hE,

The asymptotic value of the expression in square
bracl;ets (for A «AE) can now be extracted and

a(H, E,AE) takes the form

rr(H, E,DE)
(

=F(trA) lim exp~ nA ln ~a'(H, E,E ), (g).
Km~0 ( + j

where
-1 I" dA. r'dx

F(rrA) = - ' e'" exp nA —(e '"*—1)

= 1——,', tr'(uA)'+

It is shown in Lemma II that, in the limit of small
K„„a' satisfies the differential equation

g~'/HK„= (nA/E )~' (10)

The limit in Eq. (8) therefore exists, and we can infer
that

~(8 F gE) o- eaA lnsE (11)
"The series in Eq. {4) terminates after a finite number of terms

(gA. &AE). While this would seem to introduce difhculties, it
actually causes no trouble as A' becomes small since the series
"converges" before the last term is reached. This may be seen
from the fact that the last term is less than (n.4 lnX) ~/.V!, where.V is the largest integer less than (AE/IC }.

where e is a small positive number. When one uses this
integral representation, the series can easily be summed
to give

rr (H,E,AE)

dX ( i' dx)= lim —
~ e'"exp~ nA e '" —

~x"~ 2tri' „A ie —( &r-„gaE g j
&&0'(H,E,E„). (7)

Because of the nature of Lemma II, the dependence of
the constant of proportionality on E and 8 cannot be
determined by this type of analysis; only the func-
tional dependence on DE is Axed. However, it is con-
venient to express the cross section in terms of the
elastic scattering cross section and an unknown integra-
tion constant E{8)

0. (g E QE) —e
—aA In[1(8) IsE]& (g) (12)

Schwinger's conjecture follows directly from this. In
case the external potential is too strong for the Born
approximation to be valid, E(8) might be expected to
depend on the potential. However, the radiative cor-
rections are associated primarily with the soft photons
which are emitted and absorbed far from the scattering
center and E(8) is in the nature of an upper limit to
the energy of the virtual photons which make an im-
portant contribution. Since the final result is insensitive
to the precise value of E(8), we expect that even when
the Horn approximation is not valid, a good approxima-
tion to E(8) is given by

E(8)~E, (14)

This assumption is strengthened by the explicit ca]cu-
lation of references 3, 4, and 5. This completes the main
part of the proof.

Lemma I.—We shall show that the matrix element
for the emission of e soft photons of momenta k~, k~,

~ . k„and polarizations e&, e, . e„ is given asymp-
totically (Pk;«E) by

3E (p', p; kt, ks, k„)

(e' p -.' p'&

(2k,)i. &k,"p k,"p')

where M(p', p; E)is the matrix element . for an elec-
tron to scatter from a state of momentum p to one of
momentum P', including all the virtual processes. The
remarkable fact about Eq. (15) is that all the real
photons are dynamically independent of each other and
of the virtual photons. This leads to a Poisson dis-
tribution for the emitted photons, and Eqs. (4) and

(5) follow directly upon squaring the matrix element
and averaging over the polarizations. Equation (15)
was derived for the case of one-photon emission by

Some of the higher order radiative corrections appear
explicitly in the tr of Eq. (12); other radiative correc-
tions, such as F(rrA), are contained implicitly in E(8)

If we ignore the higher-order radiative corrections
contained in E(8), we can expand Eq (12. ) to the first
order in o. and compare the result with previous calcula-
tions; this will fix E(8) to zeroth order in n. Comparing
with Schwinger's result, Eqs. (1) and (2), which treated
the external potential to lowest order, we And

InE (8)—1nE.
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—ll}
M~ k 0

P' P- k„-4 P-k„P
ting k„=0 in the erst denominator, we obtain

e e" p l

M. i"'-(p', p k-—) ~~( — lG' (17)
(2k„)& p —l—im E k. p)

The difference between Eqs. (16) and (17) is

Mn-)
(I)

kn

P' P kn-g P

e
M„ i&" (p', p —k„)

(2k„)'* P l —k„—im—

e- plxk. v,
~

— ~G, . (»)
P—l—im & k. p)

Frc. 1. Diagrams representing the emission of n real photons
obtained by inserting the nth photon (momentum k„and polariza-
tion e„) before (a) and after (b) the first vertex of the diagram for
(n —1) photon emission. The photon (momentum L' and polariza-
tion ) ) can be either real or virtual. 3f„ I represents the remaining
part of the diagram for (n —1) photon emission after its second
vertex.

Newton'' -and Jauch and Rohrlich, ' who showed that
the infrared divergence arose from the emission of the
photon from an external electron line. Neglecting vir-
tual photons, Gupta' derived the expression for an
arbitrary number of photons. The essential step in
deriving Eq. (15) is the symmetrization of the order of
emission of all the real and virtual soft photons, as
was done by Gupta for the real photons, the infrared
divergence arising from those emissions which are ex-
ternal to the main scattering process.

Because of the difficulties associated with the over-
lapping of the emission of real and virtual photons, we
shall examine the derivation of Eq. (15) in some detail.
The proof will be by induction on ss. In the various
diagrams contributing to M„, we assign momenta so
that the initial electron momentum p appears in every
electron line before the 6rst potential scattering, and the
final momentum p' in every electron line after the last
potential scattering. We first consider a particular
diagram contributing to M„ I, say 3f„~,and insert the
emission operator for the nth photon in all possible
ways. The matrix element for the emission of a photon
(k„,e„) before the first vertex pz of M„-& (see Fig. 1)
may be written

M„ i&" (p', p —k„)
(2k.)& p —l—k.—im

e„G(, (16)-k„—im
"

where M„~&') represents the part of M„& after the
second vertex, / is the momentum of either a real or
virtual photon, p=—p„p„y„, and G~ is either (1/P) or
[e/(2l)']. Rationalizing the last denominator and put-

"R.G. Newton, Phys. Rev. 94, 1773 (1954).

We have omitted a term k„e„from the last numerator
in both (17) and (18) since it would give a contribution
of order DE to the cross section. Expression (17) with
k„set equal to 0 in M„&~" together with a similar
expression obtained by considering the emission of the
vth photon after the last vertex of M„~ would give
the desired result [Eq. (22) below]. However, even
though expression (18) would not lead to an infrared
divergence for the nth photon, it cannot be neglected
because the infrared divergence associated with the
photon of momentum l has been increased (it would in
fact lead to a 1/K rather than a log K term in the
cross section). We compare (18) with the matrix ele-
ment for the emission just after the first vertex (Fig. 1):

M„ i&" (p', p —k )
(2k„)' P—l—k„—im.

Xe vxGl (19)"—
l—im

Now, moving k„ to the left of (p —l—k„—im) ' in
expression (18), we obtain

f k.[p l i—m]+2k—. p—2k„ l}—
(p —l—k„)'+m'

The first term in the numerator cancels the second
denominator of (18), so that it does not lead to a higher
infrared divergence with respect to an l integration.
The last term of the numerator is proportional to l;
hence it cancels the low-momentum singularity of the
denominator (P—l—im). Thus as the singular term of
(18), we have

2e" p
M„ i&'&(p', p —k„)

(2k„)i (p —l—k„)'+m.'

X qadi. (20)—l—™
In the same way, moving e„ to the left in Eq. (19), we
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obtain the singular term

e
M„g&"(p', p —k„)

(2k.)& (p / —k)—'+m'

X y&,Gi (21)-1—im

(a)

(The term in k„e„ is actually not singular. ) Hence
expressions (20) and (21) cancel each other completely.

Next we compare (17) with the matrix element for
the emission after the second vertex. By the same argu-
ment as before, the singular terms of both matrix
elements cancel. We proceed in this manner until we
reach the first potential scattering. Assuming that the
momentum transfers delivered by the external potential
are large in comparison to k„, we may set k„=0 in the
part of the matrix element after the first potential with-
out introducing any further singularities. The special
case of the Coulomb field may be treated by the methods
of reference 3. The result is

(c)

FIG. 2. Three classes of diagrams contributing to b & Eq. (25)
when one of the virtual photons has its magnitude of momentum
fixed equal to K . The single-photon line is the one whose mo-
mentum is fixed. Shaded area represents the remaining part of
the elastic scattering diagrams.

corrections may be written

M'(8, E,K )

( e- pl

(2k„)l E k„p)

fg d'q, m(8; q q q„), (24)
~=o ~!J

as the infrared divergent contribution. In a similar way,
if we start from the last electron line, we obtain

e )e. p'y
(p', p)I

(2k„)& ( k„p' j
Combining these and summing over all possible dia-
grams M„ i contributing to M„~, the final result is

e (e„.p e„p l

M„(p,p;k„k„
(2k„)& E k„p k„.p')

XM i(p', p; kg . .k i), (22)

or
80'/8K = (o.A/K„)0',

8M'/8K = (nA/2K )M'.

(23a)

(23b)

We use the same type of proof as in Lemma I. The
matrix element for elastic scattering with radiative

which leads immediately to Eq. (15).
Lemma II. We have to show th—at o(8,E,AE) is

actually independent of E . The result is obvious from
the work of Bloch and Nordsieck, ' but we prefer to
give a more modern treatment. From Eq. (8), we see
that 0.' must have as a factor exp(nA logE„); any other
dependence on E must approach a finite limit as
E ~0. The lemma to be proved may therefore be
conveniently expressed as

where m(8; q;) is a symmetric function of the virtual
photon momenta q~, q2, q„. Differentiating Eq. (24)
with respect to E, we find terms of the form

where the 6's are functions of qI, q„ I,. e equal terms
occur in the derivative so that the factorial in Eq. (24)
becomes (s—1)!.In order to obtain b &, we use the
same type of analysis as in Lemma I. The result is
eGectively that the photon of momentum E terminates
on the external electron lines and E is set equal to zero
inside the basic diagram as in Figs. 2(a), 2 (b), and 2(c).
The diagrams (b) and (c) arise from the differentiation
with respect to E of self-energy parts on the external
electron lines. The result for b ~ is

b, = 2(uA)m(8; -q& q„,). (26)

The symmetrization procedure discussed in Lemma I
shows that the later integration over the q's will lead
to no worse divergence than (lnK )" ' in the b's of
Eq. (25). The first term of Eq. (25) should dominate as
E ~0 unless the sum of the remaining terms over n
leads to a more singular behavior. If the latter possi-
bility occurred, it would seem to indicate a fundamental

difhculty with the theory since the limit as E ~0
would not exist. Ignoring this possibility, Eq. (23b) is
obtained.

We have so far considered only the infrared diver-

~
"d4K~(8; q, q„„K)8(~K~ —K )

=K„'b g+bp+. , (25)
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(nA)"
b(DE) = 1++ ln

~1 QE

&n
— n

(27)

If the cut-off parameters e„are all set equal to E(g),
the same result as our Eq. (12) is obtained. In their
book, Jauch and Rohrlich seem to make the mistake

gence. However, because of AVard's identity, there is
not actually any ultraviolet divergence except that
which is associated with the mass renormalization and
the charge renormalization due to self-energy insertions
into the photon lines. Since these renormalizat. ions are
free of infrared divergencies, our argument is not
affected by them.

DISCUSSION

Besides showing the cancellation of the infrared di-
vergence, Jauch and Rohrlich' also considered the
correction factor for electron scattering. In the latter
considerations they treated the electron as a given
classical current distribution. The eRects of the real
and virtual photons produced by such a distribution
cancel automatically in the infrared region, but the
virtual photons must be cut oR arbitrarily in the ultra-
violet region. This leads to a correction factor of the
form

of setting e„=DE, thus obtaining b(&E) =1 for ~E&o;
this is clearly incorrect.

It is obvious that the derivation given here could be

applied to inelastic electron scattering without any
di@.culty; 3 would be changed slightly because the
final electron energy would diRer from the initial. Of

course, if the nuclear system is excited to a continuum

(e.g. , electron production of pions), the extra complica-
tion of folding in the distribution functions for the two
mechanisms of energy loss would be involved. Finally,
as long as E»AE, our results are not restricted to high-

energy electron scattering. Ke had in mind high-

energy scattering because the corrections are largest
there and. oRer the best chance of an experimental test. "
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"Pote added in proof. —Recent experiments on the radiative
corrections to high-energy electron scattering from hydrogen
[R. W. McAllister, Phys. Rev. 104, 1494 (1956) and G. W.
Tautfest and W. K. H. Panofsky, Phys. Rev. 105, (1957)j
seem to confirm the lowest order correction, Eq. (1); but the
higher order corrections have not yet been investigated exlieri-
men tally.
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Exact relations are used to determine parameters like the cutoff and the unrenormalized coupling constant

which are consistent with the low-energy scattering data. Under general assumptions about the Hamiltonian

some inequalities are derived. For the Chew model those parameters can be determined with great accuracy.

If one uses a Yukav a source function, the cutoff must be 4.7 and fo'=0.22 in order not to be inconsistent

with those relations,

(1) INTRODUCTION

A GREAT amount of theoretical work has been
done on the static model for pions (Chew model)

which is characterized by

fH'= (47r)'fp) dxU(x)e Vr.y. (x)

Many approximate results' obtained with this model

* Now at the Enrico Fermi Institute for Nuclear Studies,
University of Chicago, Chicago, Illinois.

t' Now at the Department of Physics, Massachusetts Institute
of Technology, Cambridge, Massachusetts.

' S. M. Dancoff and W. Pauli, Phys. Rev. 62, 85 (1942); G. F.
Chew, Phys. Rev. 95, 1669 (1954).

have been compared with experimental data, although

it had never been shown whether those approximate

solutions were anywhere near the true solutions. In
particular the most promising approximation, the

Tomonaga method, ' has recently' been shown, in its

controllable results, to deviate from the exact solution

by a factor 2 to 10.
However, by using a calculation technique developed

by Low4 and by Kick, ' relations could be obtained

2 In particular, M. H. Friedman et al. , Phys. Rev. 100, 1494
(19ss).

~ R. Stroffolini, Phys. Rev. 104, 1146 (1956).
4 F. Low, Phys. Rev. 97, 1392 (1955).
' G. C. Wick, Revs. Modern Phys. 27, 339 (1955).


