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Electron Capture by Protons Passing through Hydrogen*

TRILOCHAN PRADHANt

(Received October 3, 1956)

A formal treatment of the capture problem is presented and a suitable approximation scheme valid for
fast collisions is developed. The approximation consists of: (1) using a suitable perturbed initial wave
function instead of the unperturbed initial wave function used in the Born approximation, (2) neglecting
the contribution of what we call two-step capture processes, and (3) in an impulse approximation fashion,
neglecting the effect of the binding of the electron in the atom in the initial state "during" the collision.
All the above three approximations result from an attempt to express the transition matrix for capture in
terms of two-body operators. The improved wave function is orthogonal to the final wave function in the
limit of infinitely heavy incident ion, unlike the Born approximation wave function. Consequently the
(incident ion)-(nucleus) interaction has zero matrix element for transition from the initial state to the
final state. Only the (incident ion)-(electron) interaction contributes to the capture cross section in this
approximation. Good agreement with experiment is obtained in the particular case of protons picking up
electrons from hydrogen gas for proton energies above 25 kev.

l. INTRODUCTION

la. Review of Previous Theoretical Work

HEORETICAL work done so far on capture of
electrons by ions passing through gases has been

confined to the Born approximation' ' and other
equivalent first-order approximations' for fast col-
lisions. For slow collisions the method of "perturbed
stationary states'" has been used. Oppenheimer' cal-
culated the capture cross section for fast alpha particles
passing through hydrogen gas using the Born approxi-
mation. The interaction Hamiltonian to be used in the
Born approximation has two terms: (1) the Coulomb
interaction between the alpha particle and the electron
in the hydrogen at.om, and (2) the Coulomb interaction
between the alpha particle and the hydrogen nucleus.
Oppenheimer neglected the contribution of the (alpha
particle)-(hydrogen nucleus) interaction to the capture
cross section. Such neglect is perfectly justified for
inelastic collisions because the initial and final wave
functions are orthogonal. In rearrangement collisions,
such as the capture problem, however, this is not the
case. Oppenheimer showed that the scalar product of
the initial and final wave functions is small for fast
collisions so that they can be considered approximately
orthogonal. Following Oppenheimer, Brinkman and
Kramers' (referred to hereinafter as BK) calculated the
capture cross section for protons in hydrogen using
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Born approximation and neglecting the proton-proton
interaction. They found for the cross section four times
the experimental result for a proton energy of 100 kev
and still larger value for lower energies. Jackson and
Schiff' (referred to hereinafter as JS) and also Bates
and Dalgarno, ' on the other hand, have calculated the
capture cross section using the complete interaction
Hamiltonian in the Born approximation. Their results
agree with experiment for proton energies above 25 kev
(e'(Av&1). Wick, ' however, ha, s pointed out that if one
were to make an exact semiclassical calculation using
an impact parameter treatment, the proton-proton
interaction will give a negligible contribution to the
capture cross section (of the order of m(M where
m=electron mass and M=proton mass). AVick also
points out that by an appropriate canonical trans-
formation the proton-proton interaction can be removed
from the total Hamiltonian in the limit M/I —+~. In
view of Wick's remarks, the agreement of JS results
with experiment looks paradoxical and, if his remarks
are correct, it is not easy to see why BK's results should
not agree with experiment.

lb. Summary of Results and Outline of Paper

In the present work the capture problem is inves-
tigated by the forrnal methods of collision theory and
an approximation scheme is developed. The approxi-
rnate wave function for the initial perturbed stat. e
obtained in the present work is found to be orthogonal
to the final wave function in the limit of infinitely
heavy protons. Consequently the proton-proton inter-
action does not contribute to the capture cross-section
in keeping with %Pick's remarks. It is also easily seen
why BK's results do not agree with the experiment.
The results obtained with this improved initial wave
function agree very well with the experiment for
energies above 25 kev.

A brief outline of the work leading to the above con-

7 See "Note added in proof" to the paper quoted in reference 3.
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clusions runs as follows: First, an exact expression for
the transition matrix for capture is derived following
the formal methods of collision theory given by Gell-
Alann and Goldberger. ' The Afpller matrix of this
three-body system is then expressed in terms of two-body
Afflller matrices by using an operator identity given
by Chew and Goldberger' in connection with the
impulse approximation. The transition matrix expressed
in terms of two-body operators has several terms. Some
of these terms are small enough to be neglected. The
terms that remain are shown to correspond to what we
call direct or one-step capture and two-step capture
processes. It is shown that the proton-proton inter-
action has zero matrix elements for direct capture in
the limit M/ng~ee. It has, however, nonzero matrix
elements for two-step capture. This two-step capture is
somewhat analogous to "double scattering" discussed
by Chew and Goldberger' in connection with the
impulse approximation. Since the two-step capture
amplitude is one order higher in e'g'Eiv than the direct
capture amplitude, it is neglected for energies for which
e'/AU (1.The only term that contributes to direct cap-
ture is the one containing the proton-electron interac-
tion. This term is evaluated and is found to give good
agreement with experiment. Identity of protons is ig-
nored because the cross section is so much peaked in the
forward direction that the protons are effectively distin-
guishable. Capture into excited states has not been
treated. The cross section for capture into excited states
is presumably very small compared to that into the
ground state. The calculatio&s of BK, which are prob-
ably over-estimates, show that the cross section for
capture into an excited state rt decreases as 1/e'. We
shall ignore the fact that the target hydrogen is actually
in the form of molecular hydrogen.

2. DERIVATION OF EXACT TRANSITION MATRIX

In this section we shall derive an exact expression
for the transition matrix for capture. Let us assign
numbers 1, 2, and 3, respectively to the hydrogen
nucleus, incident proton and the electron. Figure 1(a)
represents symbolically the situation before collision
and Fig. 1(b) that after collision, i.e., after capture.
We look for the probability of transition from the state
described by Fig. 1(a) to the state described by Fig.
1(b).Let

H= K+ Urs+ Urs+ U. s,

H, =K+U, s,

He K+U„, ——

where E is the kinetic energy operator for the system
of three particles and the U's are interaction potentials
between the different particles denoted by the sufhxes.

The transition probability is given by

~U. (t) = 1&4»(t)
I
+-(t) ) I

'/(+. (t)
I
+.(t) ) (1)

'M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
(1953).Also see: B. A. Lippmann, Phys. Rev. 102, 264 (1956).' G. F. Chew and M. L. Goldberger, Phys. Rev. 87, 778 (1952).

(a) (b)

FK'. 1. (a) Situation before collision. (b) Situation after collision.

H.U. (t) =i a U. (t)/at

The solutions of Eqs. (3) and (4) can be written as

cy&(t) (t)&e
iE&(—

U, (t) =u.e 'E" (6)

Following the methods of Gell-3Iann and Goldberger, '
we find for the tra, nsition probability per unit time (in
the limit of infinite quantization volume)

~b. (0)= »m L
—i(esl U»+U»l+. '(0))

X(A +. (0))*+c.c.j, (7)
where

or

4 '(0)=u + —(Ui +U2,)u,
E&, H+i e—

+.'(0) =u.+—— —(Ui2+ Use)+.'(0). (9)
E. K U)s+ie— —

Equation (8) is the formal solution of Eq. (9). The
latter is the integral equation for 4,'(0). The intro-
duction of the parameter e is discussed in detail in
reference 8. In the evaluation of cross section, e is
allowed to approach 0+.

Our next step is to express Q(, !4,'(0)) in terms of
interaction potentials in a suitable form. For this we
shall make use of Eq. (8). We then get

1
(( le.'(&))=(( l~.)+ ( (U +U )~.)E, H+ie—

1
=(4 ls.)+(4b (U»+U )M.)E, HU+ie—

1
+ (H —H,)

E, Hs+ie—
(U +U )u.). (10)X

E, H+ie—

where C»(t) and 4', (t) are state vectors defined by

H+.(t) =ia@.(t)/Bt,

Hoes(t) =i ae(, (t)/at.

(We use units such that A=1.) We also need a state
vector defined by
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Here we have made use of the operator relation

1 1 1 1

Q—.
P Q—P P Q—P

Now we have from Eqs. (3) and (5),

From Eqs. (17) and (8), we have, since E =Eb,

Rb =(/bi U&2+Uizlu )
(11)

1

+(V I& +b'
I (& +»«.)E H—+i e

Hbgb =Ebb) (12) =(ybl U»+U»l«-&
and from Eq. (8),

(Z.~&2+ U2,)u, =&I,'(0) —u. . (13) (
1

E —H —ie
(& +U &s I& +& I&.)

L„H+ie—

3~1aking use of Eqs. (12) and (13) in Eq. (10), we obtain

(S I+-'(0) &

=(yblzz. &+ - I(@bl Ui, +Uizl .'( ))
E« E&b+2 b—

—
(&bi Jt+ Uizl«. &+(&bi K+ U22I u, )7,

and since

(E+Ui, )yb= Ebyb, (E+Ui, )u« E,u„——
or

(&&b I Uiz+ U&3 I
«.&+((+b' ' —A) I

U12+ U22I «.)
=(~ ' 'IU-+U-l«. &+Q»IU. -U-I .&

=(+b'-&
I U»+U»l «.)
+(y, lR+U„lu. )—(@,IR+Z „Iu.)

=(+b' '
I
U»+ U22I «.)+(E.—Eb)(AI «.&,

Rb. ~-& ——(+b'-&
I
Uiz+ U22I «.). (2o)

we have

(0 I
~'.'(0) &= (I+E —E.)(0 I

«.)

-+ (ybl U„+-U»l~„(o)). (14)
E, kb+2 e—

Since (pb I
zz ) is real, we get, by substituting Eq. (14)

into Eq. (7),

2E
'b, (o)= »m l(4 IU,+U„le,'(0)&l'

e —b0+ (E,—Eb)'+ b2

(15)
or

~b. (0) = 22r
I (Pb I

U &2+ Ui 2
I

+„'+'
& I

'8 (E.—Eb)
=22rlRb, '+'I28(E, Fb), (16)—

where

Rb. '+&=(&bi U»+U»IO. '+», +.~+&= lim+. '(0). (17)

In this expression for the capture amplitude, U;~
appears explicitly. It is to be noted that expressions
(17) and (20) are equivalent. We shall use the form
given by Eq. (17). The Born approximation is obtained
if 4,&+& and %b& & in Eqs. (17) and (20) are replaced
by u, and g, respectively. Since Eqs. (17) and (20)
equivalent, it then follows that

(~ IU. I«.)=(~.IU-I«. )

3. APPROXIMATE REDUCTION TO TWO-BODY
OPERATORS

We now begin to express the exact capture amplitude
in terms of two-body operators in so far as possible.
As mentioned in the previous section, we shall use Eq.
(17) for our reduction. It is convenient to introduce the
XIpller wave function matrix 0'+&, defined by

@ (+) —g(+)0

It then follows from the integral equation for 4 (+), t.hat

fl&+&=1+
E'« K U&2+ze— —

Rb (+' is the transition matrix or, as we shall call it, the
capture amplitude. The interaction U23 is, of course,
concealed in the integral Eq. (9) for 4 '+'.

One can derive an alternative expression for Rb
where V» appears more explicitly. For this we dehne The formal solution of this integral equation is given by
the incoming wave state vector 0'b( ):

4b $b+ (U»+ U&2)+b' &, (18)
Eb—K—V23 —Ze

V. '+& =1+ (U12+ U22) ~

E, H+ie—(21)

which has the formal solution When expressed in terms of Q~+&, Eq. (17) becomes

Rb ~+&=(Pbl Uiz+Uizl 0'+&«.). (22)
+b' &=yb+ (U12+ U13)fb.

H zE
(19)

We now define two-body ihlgller matrices and two-body
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state vectors by the following integral equations: Using this identity, we get

b)23 = 1+ V23,
E~ K U23+z&3

(23a) (Uiz+ U23)
E, H+—ie

%13 1+U13E„K—U)—3+zb
(23b) = (~ (+) 1)+ [Uiz, b)23(+)]

E, H+i—e

4-( '(23) =x-+ U23$„(+) (23), (24a)
E K+i —e

so that

+ Ui~~~a(+),
E, H+i—b

' (13)= x„+ U)3$&&' ' (13). (24b)
E„—E—i~

El) H+—i 2

(U12+ U23)

The z's are the wave functions for the system of three
particles when there is no interaction between them.
P„(+)(23) is the wave function of the system of three
particles when there is interaction between particles 2

and 3 only. Similarly, P„( '(13) is the wave function of
the system when there is interaction between particles
1 and 3 only. The superscript (+) stands for outgoing
waves and superscript (—) stands for incoming waves.
This is clearly seen from the structure of the integral
equations. The differential equations for x's and P's are

&x =Ex,
(K+ U23)P„(+) (23) =E P (+) (23),

(K+U)3)P„( )(13)=E„P„( '(13),

where the appropriate boundary conditions are imposed
on the P's. It is now obvious that the f's are products
of Coulomb wave functions and plane waves. It follows
from Eqs. (23) and (24) that

b)2 (+)x =p (+)(23) (di (—)x —p (—)(13)

and

g (+)—
E, K U13—V~+ze— —

With these definitions and preliminaries, we are now

in a position to express the transition matrix given by
Eq. (22) in terms of two-body Mgller matrices. For this
we make use of an identity used by Chew and Gold-

berger. ' According to this, if

(+)+ U„„(+)
E, H+ie—

+ [Ui3 (d23(+)], (25)
E, H+ze—

1
+ (0, I

U, ,+U„
I

U &+&«.)E, H+ie—
1

+(y IU +U;I [U„, , ;&+&]«.).E, H+ik—
(26)

This expression still contains the three-body operator
1/(E H+ib), an—d so we try to reduce it further into
two-body operators co»( ). This is done by making use
of the relation

B' '=bik' '+([blk&U23]+blk (Ve Uik))—

where

X
~

7

Eb K U23 Vb+z2

Eb —K—U23 —V3+i 2

and consequently the expression for transition matrix
expressed in terms of co~3(+) becomes

Re, '+' = Q b
~
U12+ U)3~ (U23'+'zz, )

b2g(+) = A,
E~—K—U2I, +it.'

Vb= Uiz+ U».
Eb K Ulk+1 3

where V,= U»+U23, and P is an arbitrary operator, Using this relation we have

then 1

P(+) —b „(+)+
E, K Ui,,—V +ib——

X ([U13P2k(+)]+ (Va —Uzk)bzk'+) ).

(U12+ U13) = ((d»(
—) —1)

E, H+i2—
+ ( [(&)13 &

U23]+e&)13 U12) (27)
E H+ik—
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We now make use of Eq. (27) in the second and third
terms of Eq. (26) as a second step of an iteration pro-
cedure. It is then enough to keep only the first term in
Eq. (27). We thus get the following approximate ex-
pression for the transition matrix:

Rb.'+'= (A I
V12+ V»

I
~23'+'u. )

+8 I(
+(yb I

(~»' ' —1) (LV»,~ 3'+'j)
I
«.) (28)

The third term in Eq. (28) contains the commutator
[V13,b123'+']. V» does not commute with b1.3'+&, because
~23'+' contains the operator E. The assumption that
the third term is small is precisely what is called the
impulse approximation. Chew and Wick' have given
as a rough criterion for its validity, the relation:

(&I V13&b123 +'])Av++1
~ (2~)

where r is the "collision time" and is equal to the
inverse of the extent to which conservation of energy
is violated during collision. The left-hand side of Eq.
(29) is certainly less than e2/Piv, and in keeping with
our approximations we shall consequently drop the
third term in Eq. (28).

I.et us now examine the second term in Eq. (28). We
shall designate the capture process represented by this
term as a two-step capture process and the capture
process represented by the first term as a direct or
one-step capture process. The justification for this
designation will be clear from the following discussion.
The first term is the sum of matrix elements of VI3
and V~~ between the state cu.~'+'n and the state @b. It
will be shown later that co23'+'u, is proportional to the
continuum wave function of the hydrogen atom formed
by particles 2 and 3. The term (/bi V»lca»'+'«, ) and

(ybl V13lid23&+'ua) in Eq. (28) represent direct capture
from the continuum states of the hydrogen atom 23 to
the ground state of the same hydrogen atom through
the interactions U~2 and U~3, respectively. The term

(4'b
I

(~13 1)v12
I
ia23 ua)

also represents a capture from the continuum state
~23'+'I to the ground state pb of the hydrogen atom 23,
but not directly. It takes place through two successive
interactions, V2~ and V~3, and hence we designate this
as a two-step capture. Such processes are less likely
than the direct capture process by a factor of e2/32v as
is evident from Eq. (28) and so we can neglect the
second term in Eq. (28) for fast collisions.

It is worthwhile to mention that the third term in
Eq. (28) vanishes more rapidly with proton energy
than the second term. This is seen as follows: In the
high-energy limit co»~+)~1. 9 hen this limit is ap-
proached, the third term approaches zero while the
second term remains finite.

It is now clear that we obtain a fairly good approxi-
mation by retaining only the first term in Eq. (28):

Rba —(Qb I V12+ V13
I
ia23 u ) ~ (30)

"Q, F. Chew and G, C. Wick, Phys. Rev, 85, 636 (1952),

daba ( u l vb

I I Rb. '+312-
dQ E 22r3332) v.

(31)

where v and vb are relative velocities before and after
collision, respectively, and are related by the following
equation by energy conservation:

gP&a 6a= gPSb 6b&

where b1=
I (M+m)M1/(2M+m) is the reduced mass

of the system, e, and eb are binding energies of the
hydrogen atom before and after collision, respectively.
For capture into the ground state, t = 6b and v, =nb.

In order to compute do/dQ we have to evaluate the
transition matrix Rb '+' given by Eq. (30). It will be
shown in the Appendix A that

(4'bl V12liA123 u ) (32)

in the limit M/213 —b~, so that we have

R'=&~.lv I-- .) (33)

We shall drop the superscript (+) hereafter. The
integral given by Eq. (33) is difficult to evaluate. For-
tunately, there exists an approximate identity between
this integral and that obtained by replacing V» by V.

;&

in Eq. (33), i.e.

The validity of this approximation will be discussed in
the Appendix B. Thus our working formula for Eb now
becomes

Rb =(ybl V23I~23« ). (35)

The coordinate system to be used for the computation
is described below. Figure 2 gives the geometry of the

FIG. 2. Relative coordinates used for the computation of
transition matrix.

4. COMPUTATION OF THE CROSS SECTION

We shall now compute the cross section for capture
using the approximate transition matrix given by Eq.
(30). The differential cross section for capture is given

by
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relative coordinates. C, and Cb are the centers of mass
of particles 1 and 3 and of particles 2 and 3 respectively.
Relative coordinate vector between 1 and 2 is R,
between 2 and 3 is rp, and between 1 and 3 is r. It is
clear from the geometry that the relative coordinate
vector R», 2 between C, and 2 is (r—arp) and the
relative coordinate vector R» ~ between C~ and 1 is
(ar —rp), where a=&/(M+2rb). Let the momentum
vectors conjugate to the coordinate vectors rp, R» y

and R» & be K, K» & and K» 2, respectively. Our next
task is to write down expressions for u, pb, Xb and fb(23)
in terms of the above coordinates and momenta. We
have

8 function,

u»u, = "dKG~, (K) exp[i(1/a) (kp+K) r
(2m.)l"
—ikp rp] "V(K. )F(isa/K, 1, iKrp iK—ro). (39)

Using this we get

R =Q»lU»l~»~, )
—e' P P f 1

,
dr

~
dro dK p—&8*(ro)

(22r)» & ~ ro

2b, = exp[ikp (ar —rp)]o2~, (r),
(22r) l

(36a) &&exp[ip. rp+i(1/a) (K—p) r]

)&G~,(K).V(K)F(isa/K, 1,iKrp iK rp)—

exp[ik, (r—arp)]oo&, (rp),
(22r) l

(36b) = —e'a dr, dK(1/rp)5(K —p)

where p&, is the hydrogen atom ground state wave
function.

Xexp(ip ro]o218 (ro)Gi, (K).V(K)

and

—exp[i(K+aK23 g) rp —iK23 $' r], (36c)
(2~) '*

&(F(isa/K, 1, iKrp iK ro). —(40a)

Performing the integration over K space we get

P, (23) =1V (K)x(F(isa/K, 1, iKro iK r—p), (36d) O'I "I " ')

where

X(K)=e+:--r(1—i ), =„/K, s= 1/ap,

etP ~ rp

= —e'a "dro.V(p)Gi, (p) o i,*(ro)
t'p

ap being the B.ohr radius. I' stands for the confluent
hypergeometric function. The arguments of this
function are properly chosen so as to correspond to
outgoing waves.

We now proceed to evaluate the integral given in Eq.
(35). For this we expand 2b in the complete set of eigen-
functions y~ ..

~.=Et xi(x l~.),
so that

~232ba Zl ~23Xl(xi' 2b.)= Bi A(23)(xt l
a-) (37)

Using expressions for X& and 2b, given in Eq. (36), we get

(xil ~.)=
(22r)'

f
~dr dr, to„(r)

J

&& exP [i(akp+ K22 y)
' r+i (kp+ aK22 ]+K) ' rp]

=Gy (akp+K22 y)8 (kp+aK22 y+K),
where

Gq, (K) =
~r dre' 'oo„(r) =

(s'+K')"-

(38)

is the Fourier transform of the hydrogen atom ground
state wave function. Substituting Eq. (38) into Eq.
(37) and using the expression (36d) for P~(23), we get,
after integrating over K» & space by making use of the

&(F(isa/p, 1, ipr, i p rp).—(40b)

Here p=ak, —kp, SO that p'= (kp2/g2)+4ko2 Sinp(8/2),
where ko= lkol = lk l, g=M/222, and 0 is the angle
between kp and k, .

At this point it will be worthwhile to attempt to
visualize as to what kind of process the transition
matrix Rb, =(/bi U22lco»2b, ) represents physically and

how is this illustrated in the structure of the integrands
in Eqs. (40a) and (40b). To start with we have a state
u which represents a proton approaching a neutral

hydrogen atom in its ground state. This state is per-

turbed by the potential U23 when the proton comes

close to the hydrogen atom giving a perturbed state
co22u, . From Eqs. (37) and (39) it is clear that the state
u»n, represents the scattering of particle 2 by a wave

packet of the particle 3 which has the same momentum

distribution as that of the hydrogen atom ground state.
In other words, ~»n, describes a continuum of states
of particles 2 and 3 interacting through their Coulomb

potential, but one of them has a momentum distribution
restricted in a definite manner. Capture is the process
of transition from this state co»u to the state @q through

t.he interaction U». The 6 function in the integrand of

Eq. (40a) tells us further that only those states of the

continuum states co»u which have a momentum K= p

can make transition to the state gb Equation (40. b)
shows that the transition matrix (gb l

Uoblc023B ) is pro-
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portional to the matrix element of V~3 between the
continuum state, with momentum p, of the hydrogen
atom formed by 2 and 3 and the ground state of the
same hydrogen atom, i.e.,

(Al U»I~23u. &= (22r)'aG1 (p)(p 1 (ro) I
U»

I
U (p, »)&

= —e'aN(p)G1, (p) (s3/vr) lI, (40c)
where

&ip -rp

I=)fdre "" F(2sa/P, 1, 2Prp ip r—p) (41)
'rp

and 'U, is the hydrogen atom continuum wave function
with momentum p. It should be noted here that BK's
result would follow if our perturbed initial wave function
co»u is approximated by the unperturbed wave function
u, . This is equivalent to putting

N(p)F(isa/p 1 iprp ip'1'p)

equal to unity. This would be possible if as/p&&1. One
finds however, that the transition matrix is large for
small values of p, i.e. , for small angles between kp and

Thus for the most important scattering angles,
as/p)1 and hence ~23u, cannot in general be approxi-
rnated by u, unless the energy of the incoming proton
is very large.

The integral given in Eq. (41) is evaluated in Appen-
dix C. The result is:

from these angles is practically zero. Integrating over
all angles we get the total cross section:

where

do
cr =2m —sinedg =

~p dn

128mrs'g'A

(~ap'),
kp'

expL(4/x) arc tan(1/x) —(~/x)]
A= dx (46)

~ kp/sg (1+x2) 3 sinh(~/2:)

The integration variable x=p/s is introduced for
convenience in doing the numerical computation of 2.
It was not possible to evaluate the integral in Eq. (46)
analytically.

S. COMPARISON WITH BORN APPROXIMATIONS OF
BK AND JS

Rba (Qbl U12+U13I~23u ).

In this section we shall discuss the relation of the
present work to the earlier work of BK and JS. Both
of these sets of authors use Born approximation, the
difference being that BK consider only the proton-
proton forces. We shall see that both results may be
obtained as further approximations to our result. Fur-
thermore we shall see that the paradoxical situation
noted by Wick may also be understood quite readily.

Our final expression for the transition matrix has been
written as

42r 2S (S i prS

exp —arc tanl —
I

——
s'+.p' p E p) p

(42) The result of JS is obtained by replacing cu, , by unity:

Rb. (JS)= (pb I
U12+ U13I u, ). (47)

Substituting this in Eq. (40c), we obtain

Rb
42rlN(p)G1, (p)sl

(s-'+ p')

2s (s ) 2rs
exp —are tan

I

—
I

——;(43)
-p (p p-

and using this expression for Rb in Eq (31), .we get
the following expression for the differential cross section:

der 64g2S1p ~S/p 4S (S ) m S
exp —arc tan

l

—
I
——

dQ (s'+p')' sinh(2rs/p) p L pJ p

~s/p 4s (s 'l ~s
exp —arc tanl —

I

——,
dQ sinh (m-s/p) p Ep) p

do-a x

or

where

da do g~
f(~),

dQ dQ

2rs/p 4s (s ) ms

f(0)= . exp —arc tan
l

—
I

——.
sinh(mrs/p) p Ep) p

For large 9, do/dQ~do. 221r/dQ and for small values of 8,
do/dQ&do11rr/dQ The factor . f(0) reduces the BK
cross section in the most important range of angles and
approaches unity for angles where the cross section is
so sma11 that the contribution to the total cross section

Actually this is not a bad approximation here, but it
has the unfortunate eGect of distorting the physics
rather badly. The point is that

Q b I U12I ~23u.&=0

in the limit of infinite proton mass as already men-
tioned. Thus we obtain

Rb.——(yb I
U»

I
~23u.&.

We see then that Wick's assertion that the proton-
proton interaction should play no role is verified and
that the proton-electron interaction alone is needed.
The critical point is that one can no longer replace ~ 3

by unity, since Eq. (32) is then badly wrong. What
happens is that in our case the reduction of the BK
result

Rb.(BK)= (yb I
U13I u.)

is brought about by the use of an improved wave
function (&u23u instead of u,); in the work of JS,
Rb (BK) is reduced by the fact that (pblU12lu)
interferes destructively with (pb I

U»
I
u, ). The dif-

ference between our result and those of BK and JS
may be written as

R„—R„(JS)=(ybl U„+U„l (cu23 1)u,&,

Rb.—Rb~(BK) = Q'bl U»
I
(~23—1)U.)
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Clearly all these result. s coincide in the limit as co»~1,
but the significant criterion for the agreement of all
three is the extent to which the influence of (pb

~
V/9~ Q~)

in (pb~ U~2+U~b~u, ) is negligible.
Unfortunately t.he difference Rb R—b (JS) is of the

same order of magnitude as the terms neglected in
deriving R~, so that no definite conclusion can be
reached as to which result is really more accurate. It is
our feeling that our errors are not as great as are
incurred in the Born approximation; if the latter is
valid, our results are of course also correct. In addition
our approach has the advantage of giving a more satis-
factory physical picture of the capture process.

IOO

IO—

OJ
E

I

O

b

I.O—

6. COMPARISON WITH EXPERIMENT
AND CONCLUSIONS

TABLE I. Capture cross sections from present theory.

P(kev) rr +1or7(cnr') cr &(10' (crn~)

Experimental data on capt. ure of electrons by protons
in hydrogen are available in the energy range from 2 to
150 kev. There is no data above 150 kev. We are con-
cerned with the high-energy region (above 25 kev) and
in this energy range the data" "are quite good. Cross
sections calculat. ed from the present work are given in
Table I and are plotted in Fig. 3, along with experi-
mental data of diA'erent workers. It is seen from the
plot that the agreement with experiment. is good for
energies above 25 kev. It should, however, be mentioned
that we have calculated the cross section of capture into
ground state alone whereas experimental dat. a is for
the total capture, i.e., capture into all the discrete
states. We also show JS and BK curves for cross section
of capture into the ground state alone. It is seen that
the curves of JS and the present theory approach each
other as one goes to higher energies. According to dis-

cussions in Sec. 5, our results should also go over to the
BK result at high energy. However, at such energies

that the BK approximation becomes valid, the capture
cross section is essentially zero.

At low energies the agreement with experiment is

not good. This is understandable since our approxima-
tion, which consisted of keeping the direct capture

gI' I I I I I I I I I i I I I

IO 50 IOO
Proton Energy in Kev

I50

l' &G. 3. Capture cross section as function of incident proton
energy. Solid lines give theoretical values. Experimental values
obtained by different workers are shown by the various symbols.

process only, is not valid at low energy. We have made
no attempt to study the low-energy problem.
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APPENDIX A

Here we shall prove that (q4~ f!~2I~2bu )=0 in the
limit M/ns —b ~. We have, from Eq. (39) in the text, in

this limit, when a = 1,

9
16
25
36
49
64
81

100
121

260.3670
100.0000
42.1268
18.2912
8.3792
4.0852
1.8914
0.8808
0.4213

144
169
196
225
256
289
324
361

0.1974
0.0928
0.0430
0.0186
0.0080
0.0053
0.0019
0.0004

el kb
R

c ~ll„= — riK ) (P')G~r(K)e' '"+'"'
(2m)' ~

XI'(is'h. , 1, iKrb —iK rn),

and so

(4~ fi~ I&-'~'b )

"F.L. Ribe, Phys. Rev. 83, 1217 (1951).
'2 Fogel, Krupnik, and Safronov, J. Exptl. Theoret. Phys.

U.S.S.R. 28, 589 (1955) LSoviet Phys. JETP 1, 415 (1955)j.
' J. P. Keene, Phil. Mag. 40, 369 (1949).

A. C. Whittier, Canadian J. Phys. 32, 275 (1954); P. M. Stier
and C. F. Barnett, Phys. Rev. 103, 896 (1956).

e'- 1

dKX(lk)G„(K) dr, dRy„*(r,)—

)&exp[i(K+p) R+iK rbjF(is/K, 1,iKrb iK r„). — .
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On performing the R integration, we get

e'- t Gz, (K)
(yblUz l~:z&')= I « i «ov». ,*(ro)

(K+p)' "
)gr(K)e & ~oI'(is/E, 1, i. Kro iK rb)

&2e ' '-G), (K)J(K)
) dK

Qzr
where

This is possible since ~,„ is of the order of few electron
volts, whereas Iz'kb'/2tz is of the order of 10'- kev. For
state zz lying in the continuum with large e„, (&b, «)
becomes very small so that these states are not very
important in the series in Eq. (81). As a consequence
of Eq. (82), it is possible to pull E„outside the sum-
mation sign in Eq. (81). Consequently we get

(yb I K+ U, , I
~„«„)=Eb P„,(yb I «.„)(«.„,

I
~„«.)

=Eb(gb
I
cu g«, '). (83)

Also we have

.I(K) =
(2~)" ~

~drbp), *(ro)X (Ii)e'" "&
(pb K+I'z3j(u&3«, )=Eb(pb (u)z«„)

XI'(is/A, 1, iK.rb iK rb—)

=(b.„(r,) I
&,(K, r,))=0,

since p„(rb) and V, (K,rb) are orthogonal to each other.
Thus (Qbl U»j~zgzz )=0

APPENDIX B

We shall prove here that to a fairly reasonable ap-
proximation

(4bl Ugbj(uzzzz„) —(Al U»l &z&zz~).

For this purpose we expand the state vector ~ 3~~ i»
the complete set of eigenfunctions I, of the operator
(K+U»). The suftix stands for all possible variables,
continuous and discrete, needed to describe the com-

plete set. To be morc specific,

u„„=— exp[i K» (ar —rb)] p „(r),
(2zr) i

where m stands for all possible continuous K~3 ~ values
and all possible discrete as well as continuous is values
of hydrogen atom formed by 1 and 3.

~&zz4=Zni «n»i(«nml~zzz4)).

and hence

(pb I
K+ U&:~ ~'-'3«o) = Q«~(4'b j

K+U»
I
«~»)(zz.

j
~»zz~)

=2„,&.„,(ybj«.„)(«.
I

co.' b?«, (81)
where

I:„,= (O'-'Kgb z'-/2tz) —e„,

e„being the binding energy of the hydrogen atom
state n. Now

Comparing Eqs. (83) and (84), we get

(y, lK+U,
l

.,zz.)=—(@,IK+I. „,'', ,zz„&,

from which it follows that

(Qb I
I zb I co &zzz )=(Qb

~

Uzb
I
Mzb«~) .

In this connection it might be noted that

(@~ I

I »i«.)=9bj U zj«-)

(83)

APPENDIX C

Here we shall give a method of evaluating integrals
of the type occurring in Sec. 4, Eq. (41). The integral
in question is of the type:

eiq. r

I= I dre "" F(ia, 1, ipr ip r), —
r

(C1)

We use the convenient integral representation for the
confluent hypergeometric function":

1
I'(ia, 1,z) = dtt" '(t 1) '~e-' (C2)—

27ri

]I,v

'l'his relation has been proved in Sec. 2 and is exact
ivhereas relation (85) is approximate.

Another point deserves comment in connection wit, h

Eq. (84). It has been assumed in this equation that K
is Hermitian. Here E appears between g~ and ~~3u and
one might worry that because of the presence of t.he
singular Mltlller matrix cu.3, this may not be the case.
Fortunately the state vector co»u, contains bound
states of the hydrogen atom as a factor which makes it
~ anish at infinity, assuring thereby the Hermiticity of E.

(gb I
«.„,) G&, (k, —K», z)G„(k,—K, ,),

and since these G's sharply peaked" about ko in t.he

K]3 2 space, we can put:

E,„—(Iz'k '-/2zz) —e„(Iz'k '/2tz) —Lib. —
"P.M. Morse and H. Feshhach, 3fethods of TheoretI'ca/ Physics

(iUIcorav -Hill Book Company, Inc. , New York, 1953), hrst
edition, p. 1680.

Complex t —plane

FIG. 4. Contour for the integral representation of the
confluent hypergeometric function.

"A. Nordsieck, Phys. Rev. 93, 785 (1954).
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The contour is closed and encircles each of the two
points 0 and 1 in the t plane once anticlockwise as
shown in Fig. 4. There is a branch cut between points
t=0 and t= 1 on the real axis.

Substituting the integral representation (C2) into
Eq. (C1), we get

1
dt t'.-'(t —1)-*.V(t),

27ri

where

e
—h. r+i q ~ r+it (pr—p ~ r)

U(t) = dr—
r

FIG. 6. Relative phases of vectors t0 and (t0 —l)
in the complex t-plane.

Cauchy theorem, we then get

where

so that

i q —pt i' —(pt+8)' (n+q)t n—

n= —'(q'+V'), y= p. q+iXp n, —

I= [Residue at t = to ]
n+y

2' t' to

to(n+~) &to—1&

In Eq. (41), p= q, X=s, and a=s/p, so t.hat

i t "-'(t—1)—'
dt

n+ r t —to

where to=n/(n+y). The integrand has simple poles at
ti ——0 and at to

——/n( +ny). Since there are branch points
at t= 0 and t = 1 on the real axis, to evaluate the complex
integral by Cauchy's theorem, the contour is suitably
deformed as shown in Fig. 5 (since there are no other

t=fo

n= ,'(p'+-s'), n+y= p'+isp

Since (to —1) "and (to)" in Eq. (54) are mult. ivalued,
proper care must be taken to fix the correct value of I.
For this it is enough to know the relative phases to teal

and (to 1). In —the present case [Eq. (41)], we have

to= ,'(is/2p), —to—1=—-', —(is/2p—).
The vectors to and (to —1) are shown in Fig. 6. It is clear
from the figure that

arg(to) = (2ir —8), arg (to 1)= [—2' (ir —8—)]= n.+0,
where tang= s/p; and the phase at the point infinitely
close to positive real axis, but lying below the branch
cut, is arbitrarily put as 2m since we only need relative
phases of to and to 1. We also ha—ve ~to~ = ~to 1~, so-
that to/(to —1)=e" '-". Using this in Eq. (C3), we get

e~y rp

FIG. 5. Deformed contour for the evaluation of I,
employing Cauchy theorem.

I= dre ""
rp

F(is/p, l, i pro ip ro)—
poles) so as to enclose the pole at t=to. The pole at
t=0 as well as the branch cut then lie outside the
contour. The deformed contour is clockwise with
respect to the point t = to. This is compensated by
putting a negative sign in the integrand. From simple

(n+p) to

(2se 7rs )
exp/ (p pj

4m 2s Sl mS'
exp —arc tan

so+ p'- p ( p) p


