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Electronic Band Structure of Selenium and Tellurium
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The band structure of selenium and tellurium has been calcu-
lated according to the tight-binding scheme in which only nearest
neighbor interactions are presumed to be important. As a first
approximation, von Hippel's hypothetical crystal with 90' bond
angles between bonds in the chain is used, and the ninth degree
secular equation for the p bands factors into three identical cubic
equations. Next, the crystal is pulled out along the c axis to the
observed bond angle, and further splitting of. the p bands is
calculated as a perturbation. The fifteen d bands are also com-
puted, and mixing of P and d levels estimated. In addition, matrix
elements for optical transitions between bands have been worked

out. The long-wavelength absorption limit for direct transitions
occurs at k, =m-/c, and is different for light polarized parallel or
perpendicular to the c axis of the crystal. Both p—+p and p~d
transitions give the same order for the two absorption edges, the
results appearing to be in accord with experiments of Loferski on
tellurium. Finally, we note Bridgman's measurements on crystals
of tellurium subjected to hydrostatic pressure: the bond angle
apparently increases with pressure. The calculations here show a
reduction in energy gap with increasing bond angle (i.e., increasing
pressure), which is in the right direction to explain the simultane-
ous large decrease in electrical resistivity observed by Bridgman

I. INTRODUCTION

KLENIUM and tellurium share an unusual hexago-
nal crystal structure, space group D34, the atoms

being arranged in spiral chains which are oriented along
the c axis of the crystal. The hexagonal lattice is
achieved by locating a chain at the center and at each of
the six corners of a hexagon. There are three atoms per
primitive unit cell. Figure 1 shows a view of this
structure in the direction of the c axis. Each atom forms
covalent bonds with the two nearest neighbors in its
chain, the bond angle being close to 90' (Se: 105.5';
Te: 102.6'). The various chains are rather weakly held
together; in the nearest neighbor approximation the
chains are, of course, completely independent of each
other. In both selenium and tellurium, however, the
four second neighbors of an atom are on adjacent chains.
A detailed discussion of the selenium structure, together
with its relation to other group VIb structures, has been
given by von Hippel. '

Although selenium is one of the older semiconductors
and of some commercial importance, very little is known
about its electronic structure. The cohesion of the
spiral chain is usually explained from the Heitler-
London point of view, the two unpaired p orbitals on
each atom forming covalent bonds with its neighbors.
The relatively weak interaction between chains is
generally agreed to be of the Van der Waals type.
Recently, Callen' attempted to explain certain optical
properties of tellurium by means of a "related" tetrago-
nal crystal structure. Actually, closer inspection of
Callen's structure shows that it would produce a
metallic conductor, not a semiconductor; hence, the
electronic structure of these group VIb substances is
still undetermined.

In the following sections, the energy bands of selenium

and tellurium are calculated according to the tight-
binding scheme in the usual approximation in which
only nearest neighbor interactions are taken into ac-
count. It is found that there are three well-separated
groups of p bands, so that the structure may produce an
insulator (or semiconductor) when either two, four, or
six p electrons per atom are present. In addition to the
band structure, matrix elements for optical transitions
between bands have been calculated. Although the
"tight-binding model" is somewhat crude, it seems to
give essential features of the electronic structure. The
optical properties of tellurium as measured by Loferski'
(absorption edge depending on polarization of incident
light) are easily explained by the present calculation.

II. CRYSTAL ORBITALS

In the tight-binding method, the one-electron Bloch
functions, P~(r), are constructed as a linear combination
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FIG. 1.The crystal structure of selenium and tellurium. Similarly
shaded atoms are at the same level in neighboring chains and
above each other in the same chain.
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W'(r —R,,) = U(r) —W(r —R, ,)

is the perturbing potential, i.e., U(r) is the crystal
potential at r and W(r —R,,) is the atomic potential at
the same point due to the atom at R, , Ek is the energy
corresponding to k, and E„o is the energy of the atomic
level. If we multiply (2) in turn by the various X * and
integrate over all space, we obtain a set of linear
equations in the 8„,; fina11y, if we form the determinant
of the coeKcients of the 8„, in these linear equations,
and set it equal to zero, we obtain the corresponding
secular equation which may be solved for EJ,.

%e shall make the usual tight-binding assumption
that two atomic orbitals centered on different atomic
sites are orthogonal to each other, i.e.,

)fX„*(r—R, ,)X„(r R;,.)dr=8 „6;,8i, . —(3)

III. P BANDS

The most important part of the electronic structure
are the p bands deriving from the atomic 4p levels in

selenium, 5p levels in tellurium. In order to reduce the

problem in complexity, we shall assume that the p levels

do not mix with any other type of atomic level. This is

probably not the case in the real structure, since the
lowest group of p bands very likely mixes with an s
level, and the upper group v ith d states. The mixing of
the lowest group is not particularly important to us

since these are not the uppermost filled bands in the
crystal; more significant is the mixing of p and d levels,
which may modify the conduction band of the crystal.
We shall see, however, that there is probably either no

mixing or mixing with the lowest d band only. Further-
more, we are principally interested in one of the band
end points (k= 0 or k, =m./c) where the band is mostly p
or mostly d, even in the mixed case.

There are three nonequivalent atomic sites in the
selenium structure, A, 8, and C, and three degenerate
atomic p levels; hence, the secular equation is of the

of atomic orbitals:

iPk(r) =Q„,,, ;8„,exp (ik R;,)X„(r—R;,), (y)

where X„(r—R;,) is a normalized atomic wave function
corresponding to the atomic level e and centered on site
R;,. The summation over ~z is over those levels which
mix together, s is over the nonequivalent atomic posi-
tions in the unit cell, and j is over the unit cells of the
crystal. The coeKcients 8„, may sometimes be deter-
mined by symmetry arguments, but usually must he
determined by a complete solution to the Schrodinger
problem.

Substituting (1) into the Schrodinger equation, we
obtain

Q„,, g 8„,exp(ik R, ,)
X L

—Ek+E o+ W'(r —R, ,)jX„(r—R;,) =0, (2)

ninth degree. We recall, however, that the p levels do
not mix together in a simple cubic crystal in the nearest
neighbor approximation; thus, we anticipate that we
can factor the ninth degree secular equation for selenium,
for the case where the bond angle in the selenium chain
is exactly 90'. As a first approximation, then, we shall
work out the band structure of "90 -bonded selenium. "
This structure is obtained by compressing the crystal
slightly along the c axis, the symmetry of the crystal
remaining unchanged. Hypothetical selenium (or tel-
lurium) with 90' bonds was first discussed by von
Hippel' in its relation to the polonium structure.

A set of orthogonal axes, P, p, v is constructed, which
because of the 90 bonds may be oriented along the
nearest neighbor directions in the selenium chain. The X

direction (see Fig. 3) extends from atom A to C; p from
A to 8, and v from 8 to C. It will be convenient also to
label the set of nearest neighbor distances: R~, the
distance AC in the positive X directions; R„, etc. It is
clear that R„+R„—R&,=c (the primitive translation
vector along the c axis). If we choose our atomic p
functions along the directions ), p, v, then the ninth
degree secular equation does indeed factor into three
identical cubic equations. The nonzero matrix elements
(together with their exponential coefficients) are:

(pk~ I
w'I pk-~) = (pkcl w'I pic) =po;

(p» I

w'
I p») =po';

(p» I
w'I p)»= (p. [aw'I p )k*= (pp~) exp(ik R„);

(Pkal w'IP&, c) = (Pkcl w'[Pcs)*= (PPz) exp(ik R„);
(Pk c I

w'
I Pk~) = (Pk~ I

w' [Pk c)*=(PP~) exp (—ik R,);
with similar matrix elements betv een p —

p, , and v —v.
Let us abbreviate4

+k +yO po I

'9 p0 poj
0= 0

Then, one of the 3)&3 secular equations (Pk) becomes

vr exp(ik R„) c exp(ik R&)
~exp( —ik. R„) —~+g ~exp(ik R„) =0. (4)
o exp( —ik Rk) m exp( ik R—„) —~

ol
«'(~ n)+ ~(2—~'-+c'—) gc '-+2~'c cos—k,c=-0. (4a)

The three roots of this equation give e as a function of k,
and we see that. it is only the k, component that matters.
The other two cubic equations obtained from p„or p„
are identical to (4a) so that each of the three roots of
(4a) is triply degenerate.

It is instructive to solve (4a) in certain limiting cases.
First, assume (pp7r) =0, then the roots are e =g, & (ppc)

4 In this section ~ will generally mean the integral (pp~); but it
has occasionally been necessary to use x in its normal context, i.e.,
k, =~/c.
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LOWER BAND:

k=O kZ~/c

p, favor the x and y axes of the crystal, respectively. a
may be determined by symmetry arguments or by the
perturbation method outlined in the next section; it is
equal to i/K3. Now the direction cosines of z, x, and y
relative to the ), p, , v axes are:

a: (—1/v3, 1/v3, 1/v3),

x: (1/v2, 0, 1/K2),

y: (I/V'6, 2/v'6, —I/v'6),
(10a)

MIDDLE BAND:

k=O kg=@/g

so that

(10b)
p.= (I/~~)( p~+—p.+p )

P*~ip.= 2LP~(1~~)~2~P.+ (1~~)p ]

UPPER 8AND:

The last two combinations will be denoted: p+ and p .
Finally, we may write the coefficients of p, as

(I3xA ~ I3ÃB fIxc) ~ (I3pA ~ I3pB fIpc) ~ (f~vA ~ ~vB f~vc')

= (»,~:&i,a. %c):(—%c.—&i,~. —Ka):
( +'AB ~ i-I& c ~ fIXA) ~

k*O

FK,'. 3. Schematic drawing showing the relative amplitudes of
the atomic orbitals at atomic positions A, B, and C for the end
points of the three py bands. The exponential Bloch coefficient is
included in the amplitude.

characterized by two vr bonds which change to anti-m.

bonds at k, =~/c. The upper band is an antibonding
band.

The coefficient ratios, (9a) or (9b), as well as Fig. 3
refer to the pq bands. The coefFicients of the p„and p„
bands may be obtained from this case by cyclic per-
mutation.

None of the above wave functions, derived solely
from pi, p„, or p, has the proper symmetry for the
selenium crystal. We may construct wave functions of
the proper symmetry, however, as linear combinations
of the three degenerate functions. It is evident that for
k= (0,0,k,) one of these combinations favors the c axis

(a direction) of the crystal; we denote this by p, . The
other two may be written as p, &&3ap„, where p, and

IV. FURTHER SPLITTING OF THE P BANDS

In the selenium crystal with 90' bonds, each of the
bands shown in Fig. 2 is triply degenerate, being com-
posed of p„p+, and p bands. We can remove the
degeneracy, either by adding interactions between more
distant neighbors, or by pulling the crystal out along the
c axis so as to increase the bond angle. We shall adopt
the latter procedure here, since this introduces no new
parameters into the theory.

We keep the X, p, v axes fixed in space as we distort the
crystal. Ri, R„, and R, are still the nearest-neighbor
distances, but they no longer remain exactly along the
directions X, p, v. In fact, if the direction cosines of R)„
R„, and R„relative to the x, y, s axes are

R„: [O, a, (1— )i]a,

Ry, R„: [—,'&3a, a —,'a, W (1—n') l],

and if we define m=1 a+23, —then the direction cosines
of R)„etc., relative to ), p, v are

Ri, '. (1, —ic, —w),

R~.'(—w) 1) w)q

R„: (—w, w, i),
to first-order terms in ~. The matrix elements of the
last section are unchanged to first order, but there are

TABLE I. Changes in energy of band end points as the crystal is pulled out along the c axis.

Upper group k =0
Upper group k, =~/c

Middle group k=0
Middle group k, =~/c

Lower group k=O
Lower group k, =m/c

pz band

2z (a+2') (1—vr/o)
K (o-—vr)

—4m~ (1—~/o-)—2u7r (1—7r/o)

2x (o —~)
m(sr+2m) (1—m/o. )

p+ band

—gr (o+2m. ) (1—7r/o. )
m(o- —m-)

2& m (1—~/o. )—2' 7r (1—m./o.)

—m(o- —~)
z (a+2m. ) (1—x/o. )

p band

—z (o+2~) (1—vr/o. )—2z (o —x)

2m7r (1—~/o-)
4a m (1—~/o. )

—~ (o.—vr)—2~(o.+2 ) (1—~/o)
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now a number of additional matrix elements:

(p» I
~

I p.e) = (p»le' I p.~)*=(p.RI ~ I
p»)*

=(p„glW'lp, e) = —ic(o—m.)e'""»,

(p»l ~
I p. c) (p—kcl lf'

I
p")*=(p.cl ~ I

p»)*
=(p. Ilf" Ipkc) = —~( —)e'""",

plus similar elements between X—v, and p, —v. In calcu-
lating these matrix elements, Table I from the article by
Slater and Koster' was found helpful.

For p„ the set of coefficients (11) must still satisfy
each of the simultaneous equations at all k= (0,0,k,); at
k=0 and k, =~/c, (9a) and (9b) are modified slightly to

Bkx/B&a/Bkc= —(1+6) exp[ik. (R„+R„)]/
h exp(ik R„)/1, (12a)

Bkx/Bka/Bkc= (1+6) expLik (R„+R„)]/
II exp(ik R„)/1, (12b)

where 6 and h are small quantities of the order of w. For
p+ or p, the set of coefficients is

(ppo')

0-

-(ppe)

pg

(B» ~ AB ~ Bk,c) ~ (BpA ~ BpB ~ Bpc) ~ (BvA ~ BvB ~ Bvc)
= (B»(1+a):B&a(1+a):Bkc(1+a)):

(2aBkc. 2aBk&. 2aB&,R):
((1—a)Bka. (1—a) Bkc. (1—a)B»), (13)

&/c

with (12a) or (12b). But in order that all nine equations
be satisfied simultaneously, a= &i/VS

The shifts in energy of the end points of the various
bands are given in Table I, and the modified p-band
structure is shown in Fig. 4. In both selenium and
tellurium, zv is approximately O.i.

Adding second neighbor interactions will also remove
the degeneracy, but it may reverse the order of some of
the bands. Preliminary calculations indicate that some
of bands tend to shift in the opposite direction from
Table I if the second neighbor (ppo) 2 and (pp~) 2

integrals are large enough and of the same sign as the
corresponding erst neighbor integrals. But Slater and
Koster' have shown that when orthogonalized atomic
orbitals are used, the second neighbor integrals are
often of the opposite sign from expected, and usually are
quite small. Further support for the order of the bands
as shown in Fig. 4 (at least for tellurium) comes from
optical studies of the crystals, as we shall see shortly.

V. d BANDS

There are five atomic d levels and three nonequivalent
sites, so that there are fifteen bands. We shall consider

FIG. 4. The nine p bands of the selenium structure for the case
where the bond angles are greater than 90'. The lowest d band is
also shown, but its exact position relative to the p bands has not
been calculated.

only the 90'-bonded crystal here, since even in this case
the band structure is almost completely split. Kith 90'
bonds, three of the d levels: Xp, p, v, and vX do not mix
with the other two: P' —p, ', 3v' —r'-. Furthermore, the
Xp, pv, and vX do not mix with each other in the nearest
neighbor approximation. Hence, the secular equation
factors into three identical cubics and a 6X6 equation.
The cubic equation is similar to the p-band cubic with
e" replacing c, q=0, and with (ddt) and (dd7r) replacing

(ppo) and (ppm) respectively. Since (ddt) is of the
opposite sign to (ppo), the bands will slant in the
opposite direction (see the dotted curves in Fig. 5).

The X'—p' and 3v' —r2 levels mix together to form a
sixth degree secular equation. This equation involves
the integrals (ddo), hence will give rise to the lowest of
the d bands. We may easily construct the secular
determinant by using Table I of reference 5; abbrevi-
ating o= (ddo), 8= (ddt), we obtain

—e'+ —,'g' -'(3o+6)e'" R~

—e'+ g'

(complex
conjugate)

-'(3o+6)e'" Rk

sheik R„

C +'g

0
—,'v3(o.—8)e '" R~

1v3(o g)e
—~k R&,

—,'V3 (o —8)e'" R~

0
0

1(o+3g)e ik Rq

1v3(o g)eik R&,

0
0

-'(a+38)e "Rk

5 J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
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This set of coe%cients does indeed satisfy each of the six
linear equations, but only for the case q'=0. This case
gives us all of the essential features of the d-band
structure; hence we limit ourselves by this restriction.
Ke find that g is purely imaginary:

g= —(2i/K3) [(o 8—)/(~+8)] cot(-', k,c)

+i{1+(4/3)[((r—8)3/(0+5)'] cot'-(-', k,c)}', (15)

0-

(ddcr)

3'= ——,
' (a+8) cos (

—', k,c) (1&2[(a.—6)'/((r+8)'-

+-', tan'( —ok,c)]l). (16)

'The second set of coeflicients is obtained from (14) by
multiplying the 8 and C amplitudes by ~ and oP, re-
spectively, where oi= (1)'*= e'-'".The third set: 8 and C
amplitudes multiplied by co'- and ~, respectively. The
four other roots of the secular equation are obtained
from (16) by replacing -', k,c by —33m.&—,'k, c. All fifteen d

bands are shown in Fig. 5.

VI. OPTICAL TRANSITIONS

FIG. 5. The fifteen d bands of the selenium structure for the
particular case of 90' bond angles. The three broken curves are
each triply degenerate.

etc. The coefficient ratio of the six linear equations
becomes

(+X —y, A ~ A Iv, a ~ % y, C)~-—
(+3v —r, A ~ +3v r, a ~ +3v —r, C)—

= (g:l(~3—g): —l(v3+g)):
(1:—3 (1+~g):—3 (1—v3g) ) (14)

which must be set equal to zero. Here

~'= &~—&~0—do )

g =do —do,

where

do= (d3.', ', a~&& ~d3,', ', a);
do ('A —o, a

~
If

~
A —p, a) ~

Now, X'—p' and 3v' —r' favor the v direction, which
is not a symmetry direction in the crystal. For k
oriented along the c axis of the crystal, the correct wave
function should favor the s direction. Such a function
may be constructed as

(3v-' —r'-) A+ (3X'—r') a+ (3p' —r') c
+g( (l~' —~') A+ (~'—~') a+ (~'-—&') c),

where g is a constant to be determined. This construc-
tion is facilitated by the fact that 3X'—r', 3p' —r'-, etc. ,
may be obtained as linear combinations of the two
normalized functions: 3v' —r' and X'—p, '. Thus,

3V—r'-= —-', (3v'-—r')+-', K3(V-—p-')
v

In selenium and tellurium, the lower and middle

group of p bands are filled, the upper p group and the d

bands are empty. Optical transitions correspond to
transitions between the middle p group and one of the
conduction bands. If the bands are ordered as in Fig. 4,
then the long wavelength limit corresponds to a ~p
transition at k.=3r/c. It is possible, since we do not
know the exact values of po and do, tha, t the lowest d
band actually cuts across the upper p group. Then, the
absorption limit would correspond to ~d, still at
k, =3r/c. In this case there would be mixing between the

p and d levels, and the simple theory of the preceding
sections would not be strictly true; nevertheless, the
lowest part of the "d band" would still be predomi-
nantly d.

3Iatrix elements for the optical transitions are rather
easy to work out in the tight-binding approximation
provided the number of interacting neighbors is not;

very large. We are interest. ed in the matrix element:

(iso y*~a"eo ~~go;),

wherein; and |Pi, i are wave functions of the form (1) for
the particular electron which changes its state during
the absorption, q is the wave number of the incident
radiation, and ao is a unit vector along the polarization
direction of the electric vector in the radiation. Since the
wavelength of the radiation is very large compared to
interatomic distances, and since k'= k+q=k in the one-
electron scheme, substantial simplifications may be
made in the form of the matrix element. Further, the
matrix element of ro V' may be converted in the usual

way to one of $, where $ is the magnitude of an arbitrary
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vector in the direction of polarization, eo ..

M.E.~ Q, , f, , „B i*(k)B„,(k)e*' iR~ —"'
atomic orbitals on nearest neighbors. The elemental
matrix elements are either zero or of the following two
types, which we denote by 0& and 0& ..

"Xf *(r—R,)&X,„(r—Rf,)dr, (17)
(X,A I

v
I v,C) =Oi,

(v B
I

v
I

v C) =Os.
(22)

(Bi —v, A ~ BX —v, B ~
' ' '

~ Bsv —r, C)

=(g:2(v3 —g)~: s(v3+g)~'):
(1:—2 (I+~~g)~: —2 (1—v3g) ~');

using these together with (11), we find

(20)

i%I.E.» rl ~ (15) '(ds re dr+rods)

X [2B&B reB» re B&c+v3g(~—B„A ~'-B),c)]. (21)

This vanishes if the radiation is polarized in the z

direction [refer to (10a)]. Actually the quantity in
square brackets vanishes right at k, =zr/c; at slightly
smaller values of k„however, the matrix element
vanishes only if the light is polarized along the c axis of
the crystal.

Using (20) together with (13),we are able to calculate
the matrix elements for p+—+d and p ~d. The former
again vanishes if the radiation is polarized along the c
axis; the latter vanishes for polarization perpendicular
to the c axis. Hence, there are two absorption edges.
From the ordering of p bands as given in Fig. 4, it is
evident that the absorption edge for light polarized
perpendicular to the c axis is at the longer wavelength.
This is in agreement with the measurements on tellurium
as reported by I.oferski. '

For p—+p transitions, the contribution from terms
in which the atomic orbitals are on the same atom
vanishes; hence, we must consider interactions between

where s, j, n refer to the initial state and are as per
Eq. (1), m is an index to summed over levels con-
tributing to the final one-electron function, and t is
summed over to all atoms interacting with a given s, j.
Finally $ is written as

$ =drX+dzzz+ds v, (18)

where di, d2, and d3 are the direction cosines of the
polarization direction with respect to X, p, , v axes. When
only dominant interactions are considered, the number
of nonzero terms retained in (17) is not particularly
large. The summation over j may be replaced by E,
where E is the number of unit cells in the crystal.

We first consider p~d transitions since they are
simpler. Here the dominant contributions come from
terms in which the two atomic orbitals are on the same
atom. The quantities, (X-'—zz', A

I
X

I
X, A), etc. , are well-

known atomic matrix elements. Neglecting all but the
dominant contributions, (17) becomes

'~I.E.~ (15) ' Q,[B*s,', ', , (2dsB„, , drBi„, —dzB„v)—
+v3B*g „,, (d,Bi,—d, B„,,)]. (19)

Now the lowest d band has the coefficients:

Hence, the matrix element, (17), becomes

M.E.~ dsOs[B*f,BB,ce'" "" B*f—„CB„Be '" ""]
+ds01[B+f AB Ceik Ri BkfiCB Ae

ik R—i
+B*f.ABice'" " B*f,CA—Ae '" "'
+B fvAB Beik R„Bwf BB Ae ik Rv-

+B*f,AB Be' "v B*f„'BB—Ae '" "v]
+ (23)

plus similar terms in di and dz. The subscript f refers to
the final state. For p,~p, at k= (0,0,zr/c), we find with
the aid of (11)

M E ».~». ee —(di —ds —d, )zV30rH, (24)

VII. EFFECT OF HYDROSTATIC PRESSURE

Bridgmans has measured the compressibility of tel-
lurium under hydrostatic pressure, finding an anomalous
expazzsiozz parallel to the c axis and a normal contraction
perpendicular to this axis. Hence, it appears that one of
the eGects of hydrostatic pressure on Te is to increase
the bond angle between adjacent bonds in each chain.
Bridgman' also observed a decrease in resistivity of
tellurium under hydrostatic pressure, the decrease being
more than a factor of 600 at a pressure of 30 000 kg/cm',
and from the decrease Hardeen' was able to calculate the

P. W. Bridgman, Proc. Am. Acad. Arts Sci. 60, 303 (1925).
7 P. W. Bridgman, Proc. Am. Acad. Arts Sci. 72, 159 (1938).' J. Bsrdeen, Phys. Rev. 75, 1777 (1949).

where H is the symbol in (gb) referring to the end point
of the middle band, namely, H = [(rr+ rl)/zr+2zr/
(a+z1)]. Equation (24) vanishes if the radiation is
polarized perpendicular to the c axis (s direction) of the
crystal.

In a similar fashion, we find that the matrix element
for p ~p vanishes for the same polarization, but
p,~p and p+~p vanish if the polarization direction
is parallel to the c axis. Referring to Fig. 4, we find two
absorption edges corresponding to transitions from the
middle two p levels to the lowest of the upper p group at
k, =zr/c. Again, the absorption edge for light polarized
perpendicular to the c axis is at the longer wavelength.

Thus, we cannot distinguish between ~d and ~p
on the basis of this single criterion. It is probable,
however, that a detailed analysis of the absorption
beyond the edge could distinguish between these two
cases, since the behavior of (21) and (24) are quite
different in the vicinity of k, =zr/c. At all events, the
structure of the lowest conduction band is really not
much diferent in the two cases: where the lowest d band
does or does not cut the upper p group.
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corresponding reduction in energy gap between valence
and conduction bands (E,=O at pressure of 30000
kg/cm').

If we assume that the principal e6ect of hydrostatic
pressure is the eRect on the bond angles mentioned
above, then we find that for P1P transitions the energy
gap decreases, in agreement with experiment. In fact,
according to Table I the change in energy gap for this
case is

aE, = —2 (hw) (0.—21r+m'/o-),

where Dz is the change in the quantity, ze, defined in
Sec. IV.

For p~d transitions, we cannot predict with certainty
that the energy gap decreases with increasing ~, since

the d bands (Fig. 5) have only been calculated for the
90' bonded crystal.

VIII. CONCLUSION

The tight-binding scheme has been applied to the
selenium structure and appears to give the essential
features of the electronic structure. It appears that the
scheme may be used to advantage in obtaining first
approximations to the band structure of certain other
complicated crystalline materials. Matrix elements for
optical transitions are fairly easy to work out in the
tight-binding approximation provided the dominant
"atomic" interactions are sufficient for one's purpose.
Application to tellurium has explained the polarization-
dependent absorption edge observed by Loferski. '
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Incoherent Neutron Scattering by Polycrystals

G. PLACZEK*
Institute for Adlnced Study, Princeton, Ãem Jersey
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General expressions are given for the first terms in the expansion in powers of the neutron to nuclear mass
ratio of the total cross section for incoherent scattering of neutrons by polycrystals. Special limiting cases of
these expressions had been published earlier,

A NEW method of calculation for the total cross
section of incoherent scattering of slow neutrons

by a polycrystal was presented very briefly in an earlier
publication and a few results were mentioned for the
special case of low neutron energy and high crystal
temperature. ' The aim of the present note is to give the
main equations of the method for the general case.
Regarding the crystal the simplifying assumption is
made that it has a Bravais lattice and that all lattice
vibrations (phonons) have the same velocity, irre-
spective of wave vector and direction of polarization.

Ke denote by x and y the energies of incident and
scattered neutrons, expressed in units of the Debye
temperature OL) of the crystal. In the same units, T is the
crystal temperature and $ the energy of a phonon. The
mass M of the nuclei in the crystal, in units of the
neutron mass, is the expansion parameter of the method:
the total cross section is expanded in powers of M '. All
cross sections are given in units of the bound incoherent

* The present note contains results obtained by George Placzek
a few years ago and never published, except in very fragmentary
form as a Letter to the Editor LG. Placzek, Phys. Rev. 93, 895
(1954)j. In view of the importance of these results for actual
computation of slow-neutron scattering cross sections, it was
considered useful to publish them after Dr. Placzek's death, as a
complement to the above-mentioned letter. The author's original
notes have been reviewed and edited for publication by L. Van
Hove, Utrecht, Netherlands.' G. PIaczek, Phys. Rev. 93, 895 (1954).

nuclear cross section previously denoted by s.' Finally
the quantity F, a function of the temperature, is defined
by

1

F=-,'~ coth($/2T)gdg.
0

It is the mean square deviation of a nucleus in the
crystal from its equilibrium position, in units of the de
Broglie wavelength of a nucleus with energy 0D.

Decomposing the total scattering cross section o. into
cross sections o.

~ for processes in which / phonons are
emitted or absorbed, one has

0= 0&)
L=0

where'

pl pl ~1 1 l (01= ~ f . g coth( f-1 p,d(;
&2r&

Xp, (x, x+Q &,), (2)

2 G. L. Squires, Proc. Roy. Soc. (London) A212, 192 (1952).The
equations of this paper must be rearranged and expressed with the
present notation to reduce to the more compact form (2).


